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On the generalized Bernoulli

numbers that belong

to unequal characters

Ilya Sh. Slavutskii

Abstract. The study of class number invariants of absolute abelian

�elds, the investigation of congruences for special values of L-functions,

Fourier coe�cients of half-integral weight modular forms, Rubin's con-

gruences involving the special values of L-functions of elliptic curves

with complex multiplication, and many other problems require congru-

ence properties of the generalized Bernoulli numbers (see [16]-[18], [12],

[29], [3], etc.). The �rst steps in this direction can be found in the

papers of H. W. Leopoldt (see [15]) and L. Carlitz (see [5]). For further

studies, see [22], [24], [29]. This paper presents some new examples ex-

tending both old author's results and recent investigations of H. Lang

(see [14]), A. Balog , H. Darmon, K. Ono (see [3]), etc.

On the whole the proved results are consequence of congruences

connecting the generalized Bernoulli numbers that belong to unequal

characters.

0. Notations.

Here it is listed some general notations which will be used through-

out this paper

� p, a prime number greater than 3,
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� m = (p� 1) pl�1=2, l 2 N ,

�
�
n

k

�
= n!=(k! (n� k)!), the binomial coe�cient,

� [x], the greatest integer at most x for a real number x, i.e. [x] �
x < [x] + 1,

� Bn, the n-th Bernoulli number in the \even su�x" notation, i.e.

B0 = 1, B1 = �1=2, B2 = 1=6, B3 = 0; : : :

� Bn(x), the n-th Bernoulli polynomial,

� �, the character with conductor q > 1, (p; q) = 1,

� !, the Teichm�uller character (with conductor p),

� � = � !s, the character with conductor f = q p, (p; q) = 1, q > 1,

s 2 N and 1 � s � p� 2,

� Bn; , the n-th generalized Bernoulli number belonging to a char-

acter  (with the corresponding conductors).

We give relevant facts about Bn, Bn(x), Bn; below. All other

notations will be de�ned as they arise.

1. Some congruences for the generalized Bernoulli numbers.

In this section, it is proved the extension of known properties con-

cerning to the generalized Bernoulli numbers and useful in theory of

modular forms of half-integer weight (see, e.g., [3, Theorem 4]).

As known, the Bernoulli numbers are de�ned by the symbolic re-

currence relation Bn+1 = (B + 1)n+1, n = 1; 2; : : : ; B0 = 1, which in

expanded form becomes

Bn = �(n+ 1)�1
n�1X
k=0

�
n+ 1

k

�
Bk :

From this identity (or from the equivalent de�nition of Bn by formal

power series) it is easy proved that B2n+1 = 0 for n > 0 and other prop-

erties of Bernoulli numbers. Also, it is well known the Staudt-Clausen

theorem for denominators and the Staudt theorem for numerators of

Bn (see, e.g., [29], [28] or [7]).
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Further, if  is a character with the conductor g, then L(1�n;  ) =
�Bn; =n, that is, the special values of Dirichlet L-functions at nega-

tive points are represented with the help of the generalized Bernoulli

numbers Bn; de�ned by the formal series

gX
a=1

 (a) t
eat

egt � 1
=

1X
n=0

Bn; 
tn

n!
:

From this identity we �nd that

(1) Bn; = gn�1
gX
a=1

 (a)Bn

�a
g

�

with Bernoulli polynomials

(2) Bn(x) =

nX
j=0

�
n

j

�
Bj x

n�j :

Here Bn;" = Bn for n 6= 1, B1;" = �B1 = 1=2, where " is the iden-

tity character. Remark that properties of Bn; are also important to

construct the p-adic L-functions ([13] or [29]).

Now, let � = � !s, s = (p� 1)=2, be a representation of the char-

acter � with the conductor f as the product of the character � with the

conductor q, q > 1, and !s, the s-th power of Teichm�uller character !

with the prime conductor p > 3. It is known that ! = !(x) may be

de�ned by the p-adic limit

!(x) = lim
l!1

xp
l

;

for an integer x with (x; p) = 1, so that !(x) 2 Qp , the �eld of p-adic

numbers, !p�1 = " and !(x) � xp
l

(mod pl+1). As usual, by setting

!(0) = 0 we remark that !(x) is a p-adic character (mod p) of order

p� 1.

Note that !(p�1)=2(x) = (x=p), the Legendre symbol (see, e.g., [23]

or [29]), so that in our case we have � = �(�=p).

Theorem 1. In the above notations, if �(p) = 1, then Bm+1;� � 0

(mod pl), where l 2 N and m = (p�1) pl�1=2 for any odd prime p > 3.
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Proof. First, with the help of (2) we conclude that the identity

Bm+1;� = fm
fX
i=1

�(i)Bm+1

� i
f

�
;

may be rewritten as

Bm+1;� =

fX
i=1

�(i)
�
f�1 im+1 + (m+ 1)B1 i

m

+ (m+ 1)mf im�1
B2

2
+ � � �

�
;

so that

Bm+1;� �
fX
i=1

�(i) f�1 im+1 + (m+ 1)B1

fX
i=1

�(i) im (mod pl) ;

because mf � 0 (mod pl), B3 = 0 and

ordp

��
m+ 1

i

�
f i�1 im+1�i

�
� l ; for i > 3 :

Further, since �(x) (i=p) is a character modulo f , we have

fX
i=1

�(i) im �
fX
i=1

�(i)

�
i

p

�
� 0 (mod pl) :

Therefore,

Bm+1;� �
fX
i=1

�(i) f�1 im+1 (mod pl)

or

f Bm+1;� �
fX
i=1

�(i) im+1 (mod pl+1) :

Since f = q p with (p; q) = 1 and !(p�1)=2(x) = (x=p), it follows that

f Bm+1;�

�
q�1X
j=0

p�1X
k=1

�(p j + k)

�
k

p

�
(p j + k)m+1

�
q�1X
j=0

p�1X
k=0

�(p j + k)

�
k

p

�
(km+1 + (m+ 1) p j km) (mod pl+1) ;
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because

ordp

��
m+ 1

i

�
pi
�
� l + 1 ; for i � 2 :

Further, we can replace km+1 by (k=p) (m + 1) k because in any casePq�1
j=0 �(p j + k) = 0. Moreover, as

p km � p

�
k

p

�
(mod pl+1) ;

we have

fBm+1;� � (m+ 1)

q�1X
j=0

p�1X
k=0

�(p j + k)

�
k

p

�2

(p j + k)

� (m+ 1)

fX
i=1

(p;i)=1

�(i) i

� (m+ 1)
� fX
i=1

�(i) i� p �(p)

qX
i=1

�(i) i
�

� (m+ 1)
�
p

qX
i=1

�(i) i� p �(p)

qX
i=1

�(i) i
�

� (m+ 1) p (1� �(p))

qX
i=1

�(i) i (mod pl+1) ;

or

(3) Bm+1;� �
m+ 1

q
(1� �(p))

qX
i=1

�(i) i (mod pl) :

The congruence implies Theorem 1.

Remarks. 1) The paper [3] considers the case l = 1 for a real character

� only.

2) The result can be proved with the help of properties of p-adic

L-functions too (see, e.g., [29, Chapter 5]).



464 I. Sh. Slavutskii

3) The values of Dirichlet L-functions L(sj�) at negative integers
s are algebraic numbers: L(1 � nj�) = �Bn;�=n. We denote by Cp

the completion of Q p, the closure of Qp . As known, the �eld Cp is

algebraicaly closed. We �x an embedding of Q in Cp and considerBn;�,

as an element of Q p (for details, see also [29, Chapter 5]).

4) Note that Bm+1;� 6= 0 if and only if �(�1) = �1. Indeed, it is
known that

Bm+1;� 6= 0 if and only if �(�1) = (�1)m+1

(see, e.g., [15] or [29, Chapter 4]). In order to �nish the proof it will

su�ce to remark that

�(�1) =
��1
p

�
�(�1) and (�1)m = (�1)(p�1)=2 =

��1
p

�
:

2. Congruences for generalized Bernoulli numbers belonging

to unequal characters.

In this section, we would like study some connections between the

generalized Bernoulli numbers belonging to unequal characters. The

�rst results in this direction can be found in the papers [24], [25] (see

also [29]).

Theorem 2. Let �(�1) = (�1)n, n > 1, n 2 N. In the notations of

Section 0, we have

(4) Bn;� � Br;� (mod p2l) ; l 2 N ; r = s p3l�1 + n ;

and

(5)
Bn;�

n
�
Bspl�1+n;�

s pl�1 + n
(mod pl) ; ordpn � l :

Proof. As known (see, e.g., [15]), in usual symbolic form we have

S :=

fpl�1X
x=1

�(x)xn = (n+ 1)�1((B� + f pl�1)n+1 �Bn+1;�) :
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Then

S = (n+ 1)�1
n+1X
i=1

�
n+ 1

i

�
Bn+1�i;� (f p

l�1)i

or

S

f pl�1
= Bn;� +

n+1X
i=3

�
n

i� 1

�
Bn+1�i;� q

2 f i�3
p(l�1)(i�1)+2

i
;

because �(�1) = (�1)n implies Bn;� 6= 0 and Bn�1;� = 0. Remark

that

a) (l � 1) (i� 1) + 2 � 2 l for i � 3,

b) ordpBn+1�i;� � 0 because f = q p and p; q > 1, see, e.g., [15] or

[29],

c) ordp(f
i�3=i) � 0 for i � 3 and p > 3.

Therefore, we have the congruence

(6)
S

(f pl�1)
� Bn;� (mod p2l) :

On the other hand, with the help of

!(x) � xp
3l�1

(mod p3l) ;

we obtain that

S =

qX
x=1

pl�1X
y=o

� (q y + x)!s (q y + x) (q y + x)n

�
qX

x=1

� (x)

pl�1X
y=o

(q y + x)r (mod p3l) ; with r = s p3l�1 + n :

Now, noting that

N�1X
t=0

(b+ a t)k = ak (k + 1)�1
�
Bk+1

�
N +

b

a

�
� Bk+1

� b
a

��

or
N�1X
t=0

(b+ a t)k = ak (k + 1)�1
k+1X
j=1

�
k + 1

j

�
Bk+1�j

� b
a

�
N j ;
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for integers a 6= 0, b, k � 0, N � 1 (see, e.g., [24, Lemma 2]. Remark

that this identity was recently reproved in [8]), we conclude that

S �
qX

x=1

� (x) qr (r + 1)�1
rX
j=1

�
r + 1

j

�
Br+1�j

�x
q

�
plj (mod p3l) ;

or

S � (r + 1)�1
rX
j=1

�
r + 1

j

�
pljqjqr�j

qX
x=1

� (x)Br+1�j

�x
q

�
(mod p3l) :

By the same arguments as above, we conclude that

S � f pl�1Br;� + r q2 p2l
Br�1;�

2
(mod p3l) ;

or
S

f pl�1
� Br;� + r q pl

Br�1;�

2
(mod p2l) :

Further, if Br;� 6= 0 then Br�1;� = 0. Therefore,

S

f pl�1
� Br;� (mod p2l)

and together with the congruence (6) we obtain

Bn;� � Br;� (mod p)2l ; for Br;� 6= 0 :

To prove the congruence (4) it remains to note that

(7)
Bn;� 6= 0 if and only if Br;� 6= 0 ;

with r = s p3l�1 + n and � = � !s :

A short way to do it was proposed to the author by the referee

Bn;� 6= 0 if and only if �(�1) = (�1)n ;

if and only if � (�1) (�1)s = (�1)n ;

if and only if � (�1) = (�1)n+s ;

if and only if � (�1) = (�1)r ;

if and only if Br;� 6= 0 :
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Provided that ordpn � l, from the congruence (4) we conclude that

Bn;�

n
� Br;�

n
(mod pl) ;

so that by Kummer's congruence

Br;�

r
�
Bspl�1+n;�

s pl�1 + n
(mod pl)

and r=n � 1 (mod pl) the proof of Theorem 2 is �nished .

Remarks. 1) A special case of Theorem 2 can be found in [24, Lem-

ma 4].

2) The congruence (4) is Staudt's type congruence (for details,

see, e.g., [27] or [28]). Kummer's type congruences for the generalized

Bernoulli numbers Bn; of �xed character (for example, in the case

when  is a nonprincipal character of conductor g 6= vl with a prime v

and l 2 N) show that characters  \smooth over" requests to congru-

ences: they are correct for the case n � 0 (mod (p � 1)) too (see [5],

[29], [22] or [24]). As we see, sometimes the same situation takes place

for the generalized Bernoulli numbers belonging to unequal characters.

3. Applications.

Now we will indicate some applications of the results. Firstly,

let � (n) = (�q=n) be an odd character of conductor q and � (n) =

� (n) (n=p), the real character of conductor f = q p, (p; q) = 1. Here

(n=p) = !(p�1)=2(n) is Legendre symbol.

Then, by the congruence (3) we have

(8) (1� � (p))h(�q) � �Bm+1;�

m+ 1
(mod pl) ; m =

(p� 1) pl�1

2
;

where

h(�q) = �q�1
q�1X
j=1

� (j) j

is the class number of the imaginary quadratic �eld Q (
p�q). Note that

for (p; h(�q)) = 1 (in particular, for h(�q) < p) we have

� (p) = 1 if and only if Bm+1;� � 0 (mod pl) :
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Further, it is known that h(�q) < (1=3)
p
q log q (see, e.g., [21]). Hence,

if (1=3)
p
q log q < pc+1, c 2 N [ f0g and l > c, the above equivalence

(i.e., a small sharpening of Theorem 1) is valid too.

Remark. The congruence (8) was proved by A. A. Kiselev ([10], l = 1)

and I. Sh. Slavutskii ([12] or [22], l 2 N) in the form

(1� � (p))h(�q) � �B2m+1;�

2m+ 1
(mod pl) :

But the right sides of the congruences coincide (mod pl). Indeed, by

the congruence (5) with n = m+1 = (p�1) pl�1=2+1 and s = (p�1)=2

we obtain

(9)
Bm+1;�

m+ 1
� B2m+1;�

2m+ 1
(mod p)l :

Now by the congruence (9), Theorem 1 implies

Corollary 1. In the above notations, if � (p) = 1 then B2m+1;� � 0

(mod pl), where l 2 N and m = (p�1) pl�1=2 for any odd prime p > 3.

Among other things, the last congruence has an equivalent form.

Corollary 2.

B2m+1;� � 0 (mod pl) if and only if

fplX
x=1

(x;p)=1

� (x)
h x
pl

i
� 0 (mod pl) ;

(p; q) = 1 ; q > 1 ; � (mod q) :

Indeed, by Voronoi's congruence for the generalized Bernoulli num-

bers ([22])

2
Bn;�

n
� 2

q

qNX
x=1

� (x)xn�1
h x
N

i
(mod N) ;

n;N 2 N ; q > 1; (N; q) = 1 ;
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(for more general congruences, see [24, Lemma 1]) we can conclude that

Bn;�

n
� 1

q

qplX
x=1

� (x)xn�1
h x
pl

i
(mod pl) ; (p; q) = 1 and q > 1 :

Now, let n = 2m + 1 = (p � 1) pl�1 + 1. If we note that xn�1 � 0

or 1 (mod pl) respectively when pjx or (p; x) = 1, then Corollary 2 is

proved.

Further, we can supplement the congruence (9) by the similar ones

Bm;�

m
� B2m;�

2m
(mod pl) ;(10)

B2m;�

2m
� Bm;�

m
(mod pl) ;(11)

B2m+1;�

2m+ 1
� Bm+1;�

m+ 1
(mod pl) ;(12)

if in the congruence (5) we assume n = m (respectively m + 1 and

2m+ 1).

With the help of these congruences it is possible to rewrite the

known system of the congruences for class numbers of quadratic �elds

in the universal form, i.e. to obtain an approximation of Dirichlet's

class number formula of quadratic �elds (or the p-adic L-functions) in

the universal form.

In 1948-64 by e�orts of a group of the authors [9], [10], [1], [2],

[4], [20], [12] (see also the survey [27]) it was proved the system of the

congruences for class numbers of quadratic �elds

h(d)
Ul

pl�1
� �Tl

Bm;�

2m
(mod pl) ;

d = q p > 0 ; q � 1 ; � mod q ;

(13)

h(d)
U l

pl
� �T l

B2m;�

4m
(mod pl) ;

d > 0 ; (d; p) = 1 ; q � 1 ; � mod d ;

(14)

h(d) � �Bm+1;�

m+ 1
(mod pl) ;

d = �q p < �4 ; q � 1 ; � mod q ;

(15)
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(1� �(p))h(d) � �B2m+1;�

2m+ 1
(mod pl) ;

d < �4 ; (d; p) = 1 ; � mod jdj ;
(16)

where E1 = T1 + U1
p
d is the fundamental unit of Q (

p
d), d > 0,

El = Tl + Ul
p
d = E

pl�1

l , El = T l + U l
p
d = E

(p��(p))pl�1

1 , m =

(p � 1) pl�1=2, l 2 N . Here p is an odd prime and � is Kronecker

character (of the corresponding conductor).

Now it is easy to see that the congruences (13)-(16) may be ar-

ranged into groups. Firstly, we will consider the case of the imaginary

�eld, that is, the congruences (15) and (16). We can combine them in

the form

(17) (1� �(p))h(d) � �B2m+1;�

2m+ 1
(mod pl) ; d < �4 ; � mod jdj :

Indeed, if (d; p) = 1, then the congruence coincides with (16). If pjd and
d = �p q then �(p) = 0. Hence, by the condition (12) the congruence

implies (15).

Let d > 0. We claim that the congruences (13) and (14) may be

grouped together in the form

(18) h(d)
U l

pl
� �T l

B2m;�

4m
(mod pl) ; � mod d :

Indeed, if (d; p) = 1, then the congruences (14) and (18) coincide. But

if d = q p > 0 then the congruence (18) implies

(19) h(p q)
Ul+1

pl
� �Tl+1

B2m;�

4m
(mod pl) ; � mod d :

To �nish we must prove that

(20)
Ul+1

pl
� Ul

pl�1
and Tl+1 � Tl (mod pl) :

First of all it should be noted that Ul � 0 (mod pl�1) (see [21, Lem-

ma]). Then

(Tl + Ul
p
d)p�1 = E

(p�1)pl�1

1 implies T
p�1
l � 1 (mod pl)

and

Tl+1 + Ul+1
p
d = (Tl + Ul

p
d )p
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implies

Tl+1 = T
p
l + p (p� 1)T

p�2
l U2

l

p q

2
+ � � �

and

Ul+1 = p T
p�1
l Ul + � � �

Hence, the conditions (20) is proved. Finally, with the help of the

congruences (11), (20) and (19) we have

h(p q)
Ul

pl�1
� �Tl

Bm;�

2m
(mod pl) ; � mod q :

Therefore, it is proved

Theorem 3. The system of congruences (13)-(16) is equivalent to

8>><
>>:

(1� �(p))h(d) � �B2m+1;�

2m+ 1
(mod pl) ; d < �4 ; � mod jdj ;

h(d)
U l

pl
� �T l

B2m;�

2m
(mod pl) ; d > 0 ; q � 1 ; � mod d ;

where El = E
(p��(p))pl�1

1 and E1 = T1+U1
p
d is the fundamental unit

of the real quadratic �eld Q (
p
d).

As we earlier indicated, the system is an approximated form of the

class number formula for quadratic �elds (for details, see [22], [29]).

Therefore, it was solved the old problem which was set up by H. Hasse

(see his review Zbl 43.40 of the paper [1]). Namely, it was given the

universal form of the cited congruences for class numbers of quadratic

�elds, belonging to A. Kiselev, N. C. Ankeny, E. Artin, S. Chowla, L.

Carlitz, etc.

Remark. Consider one special situation. Let p = 3 and l = 1. Com-

bining the congruences of the above system (13)-(16), we obtain the

relations between h(3 q) and h(�q) (or between h(q) and h(�3 q)), the
main case of Scholz theorem (see [19]). A. Scholz used in his proof

methods of class �eld theory. By elementary methods this theorem was

proved by A. A. Kiselev ([10], [11]), and the result has been reproved

by several authors ([2], [26], [14], etc., see also [29]).

Now we want to rewrite the proved above Theorem 1 in the terms

of the theory of modular forms. In the cited paper [3] the authors
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were interested in the congruences of the type a(pN) � 0 (mod p) for

every N 2 Z with (�N=p) = 1, where a(n) are integer coe�cients of

holomorphic half-integer weight form. Following H. Cohen (see [6]),

they explicitly constructed holomorphic modular forms of half-integer

weight whose Fourier coe�cients are explicit expressions involving the

special values at negative integers of Dirichlet L-functions of quadratic

characters.

Let k � 2, k 2 N . We consider holomorphic modular forms of

half-integer weight k + 1=2 with Fourier coe�cients a(n) = H(k; n) =

�Bk; =k where  = ((�1)k n=�) when (�1)k n is a fundamental dis-

criminant.

De�nition ([3]). Let F (n) be an integer valued arithmetic function,

M a positive integer, and p a prime. If F (p q) � 0 (mod M) for every

positive integer q that is a quadratic residue (respectively nonresidue)

modulo p, then we say that F has a quadratic congruence modulo M

of type (p;+1) (respectively (p;�1)).

With these notations we prove

Theorem 4. Let � = � !(p�1)=2 be the character of a quadratic �eld

with the fundamentail discriminant

D = (�1)(p+1)=2p q = ((�1)(p�1)=2p) (�q)

and � = (�q=�) where positive integer q is prime to p. Then Fourier

coe�cients H(m + 1; n) of the weight m + 3=2 modular form satisfy a

quadratic congruence modulo pl of type (p; (�1=p)).

Proof. As above, let m = (p � 1) pl�1=2, so that m � (p � 1)=2

(mod 2), and �, �, !(p�1)=2 are the Kronecker characters for the corre-

sponding conductors (in particular, !(p�1)=2 is the Legendre symbol).

It is obvious that (q=p) = (�1=p) implies � (p) = (�q=p) = 1. Hence,

by Theorem 1 we have

H(m+ 1; p q) � �Bm+1;�

m+ 1
� 0 (mod pl) :
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