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Construction of functions

with prescribed H�older

and chirp exponents

St�ephane Ja�ard

Abstract. We show that the H�older exponent and the chirp exponent

of a function can be prescribed simultaneously on a set of full measure,

if they are both lower limits of continuous functions. We also show that

this result is optimal: In general, H�older and chirp exponents cannot

be prescribed outside a set of Hausdor� dimension less than one. The

direct part of the proof consists in an explicit construction of a function

determined by its orthonormal wavelet coe�cients; the optimality is the

direct consequence of a general method we introduce in order to obtain

lower bounds on the dimension of some fractal sets.

1. Introduction and statement of results.

A bounded function f is C�(x0), � � 0, if there exists a polyno-

mial P of degree at most [�] and a constant C such that, if jx�x0j � 1,

jf(x)�P (x�x0)j � C jx�x0j
�. The H�older exponent of f at x0 (which

will be denoted by hf (x0)) is by de�nition the supremum of all values

of � such that f is C�(x0). Note that the knowledge of hf (x0) does not

give a very sharp information about the modulus of continuity at x0; for

instance, for all � 2 R, all functions jxj1=2 (log (1=jxj))� have the same

H�older exponent 1=2 at 0. The determination of the H�older exponent

of a function at a point x0 can be reduced to estimating its wavelet
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coe�cients near x0, using Proposition 3. Conversely, this proposition

allows to construct explicitely functions with prescribed H�older expo-

nent, see [3] and [7]. The class of all admissible H�older exponents hf (x)

(if f is continuous) coincides with the class of lower limits of contin-

uous functions, see [1], [3] and [7]. Prescribing the H�older exponent

has been proved to be an e�cient technique for signal simulation, in

several situations where the H�older exponent is strongly variable, see

[2], [3]; however, characterizing the regularity with the sole H�older ex-

ponent yields a rather poor information since it does not describe the

more or less oscillatory behavior of the function near the point x0. This

oscillatory behavior is properly modelled with the help of the following

de�nition, which was introduced by Yves Meyer, [9], [11].

De�nition 1. Let f be a function in L1loc(R), and denote by f (�l) a

l-th order primitive of f ; f is called a (h; �)-type chirp at x0 if

f (�n) 2 Ch+n(1+�)(x0) ; for all n 2 N :

The simplest example of a (h; �)-type chirp at x0 is supplied by

the function

(1) jx� x0j
h sin

� 1

jx� x0j�

�
:

The interior of the set of points (h; �) such that a function f is a

(h; �)-type chirp at x0 is always a domain of the form h < hf (x0),

� < �f (x0), see [8]. The non-negative real number �f (x0) is called the

chirp exponent at x0.

A strong local oscillatory behavior such as in (1) is very remarkable,

and it was commonly believed that it could only be found at isolated

points of a function; it was therefore a great surprise when Y. Meyer

showed that the Riemann function
P
n�2 sin (� n2 x) has a dense set

of points which are chirps of type (3=2; 1). Since then, several other

functions were shown to have a dense set of chirps (see [8] for instance).

However the problem of determining which couples (h(x); �(x)) can be

simultaneously the H�older and chirp exponents of a function remained

completely open untill recently: In sharp contrast with the problem of

the prescription of the sole H�older exponent, it was shown in [5] that the

couple of functions (h(x); �(x)) must satisfy the following very strong

a priori requirement.
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Proposition 1. Let f be a function whose H�older exponent hf (x)

satis�es

0 < h � hf (x) � H < +1 ; for all x :

Then the chirp exponent �f (x) vanishes on a dense set of points.

Of course, this result doesn't prevent the possibility of prescribing

the H�older and chirp exponents at \most" points, and one of our pur-

poses is to prove that they can be prescribed on a set of full measure.

We now �x a (quite arbitrary) set of points of measure 0, outside which

we will prescribe h and �.

The Borel-Cantelli lemma implies that for almost every x 2 R,

there exists C > 0 such that

(2)
���x� k

2j

��� � C

j2 2j
; for all j 2 N� ; k 2 Z :

We denote by E the complement of this set.

Theorem 1. For any couple (h(x); �(x)) of bounded nonnegative func-

tions which are lower limits of continuous functions, there exists a func-

tion f whose H�older and chirp exponents are respectively h(x) and �(x)

at every point x satisfying (2). Furthermore, the restriction \at every

point x satisfying (2)" can be dropped at the points where � vanishes.

Remark. The set E chosen here is an explicit set of points satisfying a

dyadic approximation property. However it will be clear from the proof

that many other choices are possible (in particular, one can exclude from

E any given countable set, or we can replace dyadic approximation by

p-adic approximation : : : ).

We know from [5] that E has to be a dense set but one may wonder

if E can be chosen \smaller". The following proposition shows on an

example that the size of the set E is essentially optimal (the class Clog

will be de�ned below; let us just mention at this point that it is a weaker

condition than assuming that f 2 [">0C
"(R)).

Proposition 2. Let H and B be positive real numbers, and let dimH(A)

denote the Hausdor� dimension of the set A. Any function f in Clog

satis�es

dimH(fx : h(x) 6= H and �(x) 6= Bg) = 1 :
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In other words constant exponents (H; �) cannot be prescribed

outside a set of Hausdor� dimension less that one.

This proposition will be proved at the end of Section 4, as a con-

sequence of a general technique that we will develop in Section 5 in

order to obtain lower bounds for the Hausdor� dimension of a fairly

general class of fractal sets. Since this technique might prove useful in

other settings, Section 5 can be read independently from the rest of the

paper.

Proposition 2 could have consequences in the context of multifrac-

tal analysis. Recall that the spectrum of singularities of a function is

the function d(h) which associates to each positive real number h the

Hausdor� dimension of the set of points whose H�older exponent is h,

and the spectrum of chirps is the function d(h; �) which associates to

each couple (h; �) the Hausdor� dimension of the set of points whose

H�older and Chirp exponents are (h; �). In view of Proposition 2, one

can reasonably conjecture that, in contrast with the case of the spec-

trum of singularities d(h), the spectrum of chirps cannot be an arbitrary

function, but necessarily satis�es some explicit conditions.

The main result proved in Section 5 is the following. Let �n be a

sequence of points in [0; 1] and "n > 0. We consider the sets

Ea = lim sup
N!1

[
n�N

[�n � "a
n
; �n + "a

n
]

(i.e., Ea is the set of points that belong to an in�nite number of inter-

vals [�n � "a
n
; �n + "a

n
]). The function a �! dimH(Ea) is decreasing.

Furthermore, if

A = sup
n
� :

X
"�
n
=1

o
= inf

n
� :

X
"�
n
<1

o
;

using the covering by the intervals [�n� "
a

n
; �n+ "

a

n
], one easily obtains

dimH(Ea) � A=a. This upper bound often turns out to be sharp in

situations where the �n are `equidistributed' in some sense. However

this type of information is often hard to obtain or to handle; sometimes

a di�erent kind of information is easily available: For an a small enough,

we may know that almost every point of [0; 1] belongs to Ea (it is the

case in problems related to diophantine or dyadic approximation, or

if the �n are independent equidistributed random variables). We will

prove that this sole information yields a lower bound on dimH(Eb) for

b > a. In practice, a more precise result is often required: One needs

to obtain a positive Hausdor� measure for A.
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Let h : R+ �! R
+ be a continuous increasing function satisfying

h(0) = 0, and let A be a bounded subset of Rd . If jIj denotes the length

of the interval I, let

Hh

"
(A) = inf

U

n X
(ui)2U

h(juij)
o
;

where the in�mum is taken on all coverings U by families of balls fuigi2N
of radius at most ". The Hh-measure of A can be de�ned as

Hh(A) = lim
"!0

Hh

" (A) :

Theorem 1. Let hd(x) = (logx)2jxjd. If almost every x belongs to Ea,

Hha=b(Eb) > 0 ; for all b > a :

(In particular, the Hausdor� dimension of Eb is larger than a=b.)

2. Construction of the function f .

The function f with prescribed H�older and chirp exponents will

be constructed by imposing its coe�cients on an orthonormal wavelet

basis. Therefore, we start by recalling some properties of wavelet ex-

pansions.

If the  j;k(x) = 2j=2  (2jx�k) form an orthonormal basis of L2(R),

with  in the Schwartz class, as in [10], we de�ne the wavelet coe�cients

of f by

Cj;k = 2j
Z
f(x) (2jx� k) dx

(note that we do not use a L2 normalization here).

We denote by Clog the class of functions such that

(3) jCj;kj � C 2�j= log j :

It is a slightly stronger asumption than uniform continuity, but it im-

plies no uniform H�older regularity, see [9]. More precisely if �(t) =

1=(log log (1=t)),

jf(x)� f(y)j � C jx� yj�(jx�yj) for all x; y ;
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implies that f belongs to Clog, and conversely,

f 2 C log implies jf(x)� f(y)j �
� C

�(jx� yj)

�
jx� yj�(jx�yj) ;

for all x; y. The following proposition is a slight extension of [6, Theo-

rem 1]. For the sake of completeness, we prove it in the Appendix.

Proposition 3. Suppose that f 2 C�(x0); if jk 2
�j � x0j � 1=2 then

(4) jCj;kj � C 2��j(1 + j2jx0 � kj)� :

Conversely, if (4) holds for all j; k such that jk 2�j � x0j � 2�j=(log j)
2

,

and if f belongs to Clog, there exists a polynomial P of degree at most

[�] such that

(5) jf(x)� P (x� x0)j � C jx� x0j
� (log jx� x0j)

2 :

The following corollary is a straightforward consequence of this

proposition and will be useful in order to determine H�older exponents.

Corollary 1. Suppose that f 2 Clog; then

(6) hf (x) = lim inf
jk2�j�xj�2�j=(log j)

2

log jCi

j;k
j

log(2�j + jk 2�j � xj)
;

where the limit is taken for j �! +1 and k 2�j �! x.

We now start the proof of Theorem 1. We thus suppose that h(x)

and �(x) are respectively lower limits of the sequences of continuous

functions hn(x) and �n(x); the prescription problem is local, so we can

make the construction of the function f only on the interval [0; 1]; thus

we can suppose that each of the hn(x) and �n(x) are uniformly contin-

uous. Each function hn and �n can itself be uniformly approximated

arbitrarily well by a Lipschitz function, so that we can suppose, without

losing any generality, that hn and �n are actually Lipschitz functions.

Furthermore, since h and � are bounded, we can also suppose that

(7) 0 � hn(x) � H and 0 � �n(x) � B ; for all x; n :
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We can also replace hn(x) by infi=1;:::;n hi(x), so that we can suppose

that the sequence hn(x) is decreasing, and for the same reason, that

the sequence �n(x) is also decreasing. Let

eHn = sup
x 6=y

jhn(x)� hn(y)j

jx� yj
and eBn = sup

x 6=y

j�n(x)� �n(y)j

jx� yj

be the uniform Lipschitz constants of hn and �n. We de�ne

(8) A(n) = n+ eHn + eBn :

Finally, we pick an increasing sequence of integers jn such that for all

n, jn � An, and we replace the functions hn(x) by

(9) hn(x) +
B + 1

log jn
;

where B is de�ned by (7).

The changes we made mean that without loss of generality, we

may make the following additional asumptions: h and � are limits of

decreasing sequences of nonnegative Lipschitz functions, and further-

more

hn(x) �
B + 1

log jn
; for all x :

We now de�ne the wavelet coe�cients of f . If j is not one of the

numbers jn, for all k, Cj;k = 0.

Suppose now that the index j coincides with jn. All the Cjn;k will

vanish except for a sequence fkingi�0 de�ned as follows.

First k0
n
= 0 and the corresponding wavelet coe�cient is

Cjn;k0n = 2�(hn(0)=�n(0)+1)jn :

We now construct the following values ki
n
. For i � 0, we denote by

�in the location of the corresponding wavelet, i.e. �in = kin 2
�jn . The

second nonvanishing wavelet coe�cient is located at the distance

2:2�[(1=�n(0)+1)jn] = �1
n
= k1

n
2�jn ;

from �0n ([x] denotes the integral part of x) and the corresponding

wavelet coe�cient is

Cjn;k1n = 2�(hn(�
1
n)=�n(�

1
n)+1)jn :
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The location �2
n
of the next nonvanishing wavelet coe�cient is deter-

mined as follows. It is located at the second next integer multiple of

2�[(1=�n(�
1
n)+1)jn], and its size is

Cjn;k2n = 2�(hn(�
2
n)=(�n(�

2
n)+1))jn :

We construct all the following nonvanishing wavelet coe�cients the

same way.

Note that the substitution we made in (9) has for consequence that

all wavelet coe�cients satisfy jCj;kj � 2�j=log j , so that the function we

constructed belongs to the class Clog.

This construction rule implies that for all k,

(10) 2�(1=(�n(�
k
n)+1))jn � j�kn � �k+1

n j � 4:2�(1=(�n(�
k
n)+1))jn :

3. Lower bounds of the H�older exponents of f and its primi-

tives.

Suppose that x =2 E, so that (2) holds at x (we will treat the case

x 2 E and �(x) = 0 at the end of Section 4). For each n, x will belong

to one of the intervals [�k
n
; �k+1

n
]. By construction, �k

n
is a multiple of

2�[(1=(�n(�
k�1
n )+1))jn], and �k+1

n
is a multiple of 2�[jn=((�n(�

k
n)+1))]; thus,

because of (2),

(11) jx� �k
n
j �

C� jn

�n(�
k�1
n ) + 1

�2 2�(1=(�n(�
k�1
n )+1))jn ;

and, because of (10),

(12) jx� �knj � 4:2�(1=(�n(�
k
n)+1))jn :

For the same reasons,

(13) jx� �k+1
n j �

1� jn

�n(�kn) + 1

�2 2�(1=(�n(�
k
n)+1))jn ;

and

(14) jx� �k+1
n

j � 4:2�(1=(�n(�
k
n)+1))jn :
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Using Corollary 1, and the particular sequence of wavelet coe�cients

corresponding to the locations �k
n
, we obtain

(15)

hf (x) � lim inf

� hn(�
k

n
)

�n(�kn) + 1
jn

� log2(2
�jn + j�k

n
� xj)

�

= lim inf

hn(�
k
n)

�n(�kn) + 1

1

�n(�kn) + 1

(because of (11) and (12)). Thus

hf (x) � lim inf hn(�
k

n
) :

But, using the mean-value theorem and the bound on h0
n
given by (8),

hn(�
k

n
) = hn(x) +O(jn j�

k

n
� xj) = hn(x) +O(jn 2

�jn=(�n(�
k
n)+1))

but, since the functions 1=(1 + �n(x)) are uniformly bounded from be-

low,

hn(�
k

n
) = hn(x) +O(jn 2

�Cjn) ; for a C > 0 :

Thus the H�older exponent at x satis�es

hf (x) � lim inf hn(x) = limhn(x) :

The determination of the H�older exponent of the iterated primitives of

f is made easy by the following remark. If (Cj;k) denote the wavelet

coe�cients of a function f , the (2�ljCj;k) are the wavelet coe�cient of

f (�l) using the wavelets  (l)(2jx�k), and the criterium given by Propo-

sition 3 remains valid using this system of nonorthogonal wavelets, since

it is the biorthogonal system of the  (�l)(2jx � k), see [6]. Denote by

hl
f
(x) the H�older exponent of f (�l). These nonvanishing biorthogonal

wavelet coe�cients of f (�l) are thus

~Cjn;kmn = 2�(hn(�
m
n )+l(�n(�

m
n )+1)=(�n(�

m
n )+1))jn ;

and the same argument as above yields

(16) hlf (x) � lim (hn(x) + l (�n(x) + 1)) :
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4. Upper bound of the H�older exponents.

Let now �m
n

be the position of a non-vanishing wavelet coe�cient

at the scale 2�jn . This wavelet coe�cient satis�es

jCjn;kmn j = 2�(hn(�
m
n )=(�n(�

m
n )+1))jn ;

which, using (8) and the mean-value theorem, is bounded by

2�(hn(x)=�n(x)+1))jn 2j
2
njx��

m
n j :

Since in Corollary 1 we only have to consider the coe�cients such that

jx� �m
n
j � 2�j=(log j)

2

, it follows that j2
n
jx� �m

n
j � 4 and

jCjn;kmn j � 16:2�(hn(x)=(�n(x)+1))jn :

Furthermore, using (11) and (13)

jx� �mn j � inf
nC
j2n

2�(1=(�n(�
k�1
n )+1))jn ;

C

j2n
2�(1((�n(�

k
n)+1))jn

o
;

which, using the same argument as above, is larger than

C

j2
n

2�(1=(�n(x)+1))jn :

Applying Corollary 1, we obtain

hf (x) � limhn(x) = h(x) :

We have thus obtained that, if x =2 E, hf (x) = h(x).

Using again that the biorthogonal wavelet coe�cients of f (�l) are

~Cjn;kmn = 2�(hn(�
m
n )+l(�n(�

m
n )+1)=(�n(�

m
n )+1))jn ;

the same argument as above yields

(17) hlf (x) � lim (hn(x) + l (�n(x) + 1)) :

So, at every point x =2 E, and for every l, the H�older coe�cient of f (�l),

a l-th iterated primitive of f , is exactly

hl
f
(x) = lim (hn(x) + l (�n(x) + 1)) ;
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it follows that �f (x) = lim�n(x), and the theorem is proved.

We now consider the case where �(x) = 0 and x 2 E. In this

case we go back to (15), which is still true. The proof for the upper and

lower bounds of the H�older exponents of f and f (�l) remain exactly the

same, except for the lower bound bound of 2�jn + j�k
n
� xj which was

obtained in (11) using the fact that x =2 E, and is now crudely replaced

by 2�jn . The same calculations as above then yield hf (x) = h(x) and

hl
f
(x) = h(x) + l, so that �f (x) = 0.

Let us now show that Proposition 2 is a consequence of Theorem

2 (which will be proved in the next section). We suppose that h(x) =

H > 0 and �(x) = B > 0 almost everywhere.

Let A < 1=(1 + B) and h > H. Using Proposition 3, applied to

f and its primitives, it follows that for almost every x there exists a

sequence jn �!1 and kn such that

jx� kn 2
�jn j � 2�Ajn and jCjn;kn j � 2�hjn :

Thus almost every x belongs to an in�nite number of the intervals

[k 2�j �2�Aj ; k 2�j +2�Aj ], where j and k are such that jCj;kj � 2�hj.

Let C > A and denote by EC the set of points which belong to an

in�nite number of intervals [k 2�j � 2�Cj ; k 2�j + 2�Cj ], with jCj;kj �

2�hj . It follows from Theorem 2 that EC has Hausdor� dimension at

least A=C. But if x 2 EC , �(x) � (1=C)� 1. The result follows since

A and B satisfy

A <
1

1 + B
< C

but can be chosen arbitrarily close to each other.

5. A priori lower bounds of the dimension of \approximation-

type" fractals.

The idea of the proof of Theorem 2 is to construct a generalized

Cantor set K included in Eb and simultaneously a probability measure

� supported by this Cantor set, with speci�c scaling properties. The

\mass distribution principle" will allow us to deduce from these scal-

ing properties a lower bound for the Hha=b Hausdor� measure of Eb.

The Cantor set and the measure will be constructed using an iterative

procedure.

After perhaps reordering the sequence (�n; "n), we can suppose

that "n is non-increasing. Let b > a �xed. We introduce the notations

In = [�n � "a
n
; �n + "a

n
]
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and eIn = [�n � "b
n
; �n + "b

n
] :

(More generally, If I is the interval [� � e; � + e], eI will denote the

interval [�� eb=a; �+ eb=a].)

We now construct the �rst generation of the intervals of the cantor

set K. First we will select a �nite subsequence I�(n) of In as follows.

Denote by 5 In the interval of same center as In and of width 5 jInj. We

�rst choose �(1) = 1 (i.e., we select I1); �(2) is the �rst index such that

I�(2) is not included in 5 I�(1); �(3) is the �rst index such that I�(3) is

not included in 5 I�(1) [ 5 I�(2); : : : We stop this extraction at the �rst

index N such that

(18) mes
� N[
i=1

5 I�(i)

�
�

1

2

(where mes (A) denotes the Lebesgue measure of A). The index N

exists because each interval In which has not been selected among the

I�(i) is included in one of the 5 I�(i) previously selected (because "n is

decreasing), so that

(19)

�(N)[
i=1

5 Ii �

N[
i=1

5 I�(i) :

Since almost every x belongs to Ea, mes (
S
n

i=1 Ii) �! 1, and (18)

follows if N is large enough.

By construction, the intervals I�(i) thus selected are disjoint, and

(18) implies that

(20) mes
� N[
i=1

I�(i)

�
�

1

10
:

The N intervals eI�(i) are the �rst generation intervals of our Cantor

set. The measure � will be supported by the union of these intervals,

and we take

�(eI�(i)) = jI�(i)j

NX
j=1

jI�(j)j

; for all i :
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(20) implies that

(21) �(eI�(i)) � 10 jeI�(i)ja=b :
We will now construct the second generation intervals by subdivising

each eI�(i). Let n be such that

(22)
1

"n
� exp

� 1

"�(N)

�
:

Let us consider one of the intervals eI�(i); since [j�nIj covers almost

every point of eI�(i), we can as above select a �nite number of intervals

I�(i;1); : : : ; I�(i;N(i)) from the sequence (Ij)j�n such that

mes
�N(i)[
j=1

5 I�(i;j)

�
�

1

2
jeI�(i)j :

The I�(i;j) are disjoint, so that

mes
�N(i)[
j=1

I�(i;j)

�
�

1

10
jeI�(i)j :

The intervals eI�(i;j) are the second generation intervals in the construc-

tion of K, and we take

(23) �(eI�(i;j)) = �(eI�(i)) jI�(i;j)j

N(i)X
j=1

jI�(i;j)j

:

Thus

(24) �(eI�(i;j)) � 10 jeI�(i;j)ja=b �(eI�(i))
jeI�(i)j :

This construction is iterated, and we thus obtain a generalized Cantor

set K, and a probability measure � supported by K.

The intervals thus constructed at each generation are called the

fundamental intervals of the Cantor set. Note that the fundamental
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intervals constructed are indexed by a tree, and the lengths of the in-

tervals at a given depth of the tree need not be of the same order of

magnitude. If I is a fundamental interval, we will denote by bI the

\father" of I, i.e., the fundamental interval from which I was directly

obtained.

The lengths of the fundamental intervals have been chosen such

that, if I is any fundamental interval of the n-th generation,

(25)
1

jIj
� exp

�
sup

� 1

jJ j

��
;

where the supremum is taken on all fundamental intervals J of the

previous generation.

We will now check that, if I is an arbitrary open interval,

(26) �(I) � C jIja=b (log jIj)2 ;

following [4, Principle 4.2], the Hausdor� measure of Eb constructed

with the dimension function ha=b will then be positive.

We �rst check that (26) holds for the fundamental intervals, by

induction on the generation of the interval; (21) asserts that it is true

for the �rst generation. Suppose now that I is any interval of the n-th

generation. The analogue of (24) at the n-th generation states that

�(I) � 10 jIja=b
�(bI)
jbIj ;

which, using the induction hypothesis, is bounded by

10 jIja=b jbIj(a=b)�1 (log jbIj)2 ;
which, because of (25), is bounded by 10 jIja=b j log jIj j log (log (jIj))2.

Thus (26) holds for the intervals of generation n.

Let now I be an arbitrary open interval. If I does not intersect the

Cantor set, �(I) = 0. Else, I contains fundamental intervals. Denote

by eL1; : : : ; eLp the fundamental intervals of smallest generation included

in I; I intersects at most two more fundamental intervals of the same

generation, which we denote by eL0 and eLp+1. All these fundamental

intervals share either one or two fathers.

First case. We suppose that they share two fathers; for instance eL0; : : : ;eLk are the sons of fM1 and eLk+1; : : : ; eLp+1 are the sons of fM2. Denote
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by J the interval between fM1 and fM2; the de�nition of eIn implies that

the gap between two fundamental intervals is much wider than these

intervals, so that

jIj � jJ j � jfM1j+ jfM2j ;

and thus, since (26) holds for fundamental intervals,

�(I) � �(fM1) + �(fM2)

� C jfM1j
a=b (log jfM1j)

2 + C jfM2j
a=b (log jfM2j)

2

� 2C jIja=b (log jIj)2 :

Second case. We suppose that eL0; : : : ; eLp+1 share a common father fM .

If eL0 and eLp+1 do exist, we will write I as a union of three intervals

I1, I2 and I3. Suppose that eL0 = [a0; b0]; : : : ; eLp+1 = [ap+1; bp+1]. We

take

I1 = I
\h

a0;
b0 + a1

2

i
;

I2 = I
\hb0 + a1

2
;
bp + ap+1

2

i
;

I3 = I
\hbp + ap+1

2
; bp+1

i
:

jI1j � jeL0j (we use again the fact that the gap between two fundamental

intervals is much wider than these intervals), and �(I1) � �(eL0); thus

(26) holds for I1 because it holds for eL0. For the same reason, (26)

holds for I3. The conclusion will follow if we check that (26) holds

for I2. In the following, the only assumption we make on I2 is that it

includes eL1; : : : ; eLp, in order to cover the cases where eL0 or eLp+1 do

not exist. We separate two cases:

If p = 1. eL1 � I2 and �(eL1) = �(I2); thus (26) holds for I2 because it

holds for eL1.

If p � 2. Since I2 contains the intervals between eLi and eLi+1 for

i = 1; : : : ; p� 1, it follows that

(27) jI2j �
1

4

pX
i=1

jLij :
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We denote by eL1; : : : ; eLn (n � p) all the intervals sons of fM . Since

nX
i=1

jLij �
1

10
jfM j ;

(23), rewritten for fM , implies that

�(eLi) � 10
jLij�(fM)

jfM j
; for all i :

Thus

�(I2)=�(eL1)+� � �+�(eLp) � 10
jL1j+ � � �+ jLpj

jfM j
�(fM) � 40

jI2j

jfM j
�(fM) ;

using (27). Since �(fM) � C jfM ja=b (log jfM j)2, we obtain

�(I2) � C jI2j jfM j(a=b)�1 (log jfM j)2 � C jI2j jI2j
(a=b)�1 (log jI2j)

2 ;

because jI2j � jfM j, and (a=b)� 1 < 0.

It follows that the measure � thus constructed is a probability

measure supported by a subset of Eb and satis�es, for any interval I,

�(I) � C (log jIj)2 jIja=b ;

so that, following [4, Principle 4.2], the Hausdor� measure of Eb con-

structed with the dimension function ha=b is positive.

Appendix. Proof of Proposition 3.

Suppose that f belongs to C�(x0). Then

jCj;kj =
��� Z f(x) 2j  (2jx� k) dx

���
=
��� Z (f(x)� P (x� x0)) 2

j  (2jx� k) dx
���

� C

Z
jx� x0j

�
2j

(1 + 2j jx� k 2�j j)N
dx

� C 2j
Z
jx� k 2�j j� + jk 2�j � x0j

s

(1 + 2j jx� k 2�j j)N
dx

� C 2��j (1 + j2j x0 � kj�) ; if N � [�] + 2
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(the second inequality is true because the wavelets have vanishing mo-

ments.) Let us now prove the converse result.

Let j0 denote the integer such that

2�j0�1 � jx� x0j < 2�j0 ;

let j1 = j20 and

fj(x) =
X
k

cj;k  (2
jx� k) :

From (4), using the localization of the wavelets, we deduce

(28) jfj(x)j � C 2��j (1 + 2j jx� x0j)
� ;

and, since f 2 Clog,

(29) jfj(x)j � C 2�j= log j :

Similarly, for any l, using the localization of the derivatives of the

wavelets,

(30) jf
(l)
j
(x)j � C 2(l�s)j (1 + 2j jx� x0j)

s :

If g is a smooth function, let T (g)(x0) be the Taylor expansion of g at

the order [�] at x0. Then

jf(x)� T (f)(x0)j

�
X
j�j0

jfj(x)� T (fj)(x0)j+
X
j�j0

jfj(x)j+
X
j�j0

jT (fj)(x0)j :

Let l = [�] + 1. Using (30), the �rst term is bounded by

C jx� x0j
l
X
j�j0

sup
[x;x0]

jf l
j
(x0)j � C jx� x0j

l
X
j�j0

2(l��)j � C jx� x0j
� :

As regards the second term, using (28),X
j0�j<j1

jfj(x)j �
X

j0�j<j1

jx� x0j
� � C (j1 � j0) jx� x0j

� ;

and using (29),X
j�j1

jfj(x)j �
X
j�j1

2�j= log j � C j1 2
�j1= log j1 :
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By (30), the third term is bounded by

C
X
j�j0

[�]X
m=0

jx� x0j
m 2(m��)j � C jx� x0j

� :

Hence the converse part of the proposition, since

j1 � C
�
log

� 2

jx� x0j

��2
:
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