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Pseudo di�erential operators

with negative de�nite

symbols of variable order

Walter Hoh

1. Introduction.

One way to represent the generator of a Markov process is given

by pseudo di�erential operators. Above all this is due to the fact that

the generator satis�es the so-called positive maximum principle. Then

by a result of Ph. Courr�ege [4] it is known that a linear operator A :

C1

0 (Rn ) �! C(Rn) which satis�es the positive maximum principle,

that is for any ' 2 C1

0 (Rn) and x0 2 R
n we have

'(x0) = sup
x2Rn

'(x) � 0 implies A'(x0) � 0 ;

has a representation as a pseudo di�erential operator

(1.1) A'(x) = �p(x;D)'(x) = �

Z
Rn

ei(x;�) p(x; �) � '̂(�) d�� ;

with ' 2 C1

0 (Rn ). Here the symbol p(x; �) is a function p : Rn �

R
n
�! C which has the basic property that for �xed x 2 R

n the

function � 7�! p(x; �) is a continuous and negative de�nite function.

Symbols with this property we call negative de�nite symbols. We refer

to Berg, Forst [3] for the de�nition and properties of negative de�nite
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functions. Conversely a negative de�nite symbol de�nes by (1.1) an

operator satisfying the positive maximum principle. Here

'̂ =

Z
Rn

e�i(x;�) '(x) dx

denotes the Fourier transform and d�� = (2�)�n d�.

Starting with a symbol of this type there had been several attempts

to construct an associated Markov process or semigroup (see Jacob [13],

[14] and also [7], [8], [9]). The fundamental idea is to �x a continuous

negative de�nite function a2 : Rn �! R as a reference function. Then

the x-independent symbol a2(�) de�nes by (1.1) an operator �a2(D)

and it is well-known that �a2(D) is the generator of the L�evy process

with characteristic exponent a2(�). In [7], [8], [9] and [13], [14] as-

sumptions on the symbol p(x; �) are expressed in terms of the reference

function a2(�). More precisely, there are upper bounds of the symbol

and its derivatives with respect to x up to a certain order

(1.2) @�
x
p(x; �) � c (1 + a2(�))

as well as a lower bound

(1.3) p(x; �) � � a2(�) ; j�j large ;

which should be regarded as a kind of ellipticty condition. But note that

(1.3) is no ellipticty condition in the usual sense since the growth of a2

might be quite anisotropic and hence the symbol might be degenerated.

Under assumptions of this type it was shown that either the opera-

tor extends to the generator of a Feller semigroup or the corresponding

martingale problem is well-posed.

The purpose of this article is to give similar results in an explicitly

non-elliptic situation, that is in the case of operators of variable order.

Recently several investigations were made in the case of the best known

example, the generator of the so-called stable-like process which is given

by the symbol

(1.4) p(x; �) = j�j�(x)

or to avoid problems with di�erentiability

(1.5) p(x; �) = (1 + j�j2)�(x)=2 ;
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where 0 < �(x) � 2. For �xed x the operator �p(x;D) coincides with

the generator of a symmetric �(x)-stable process, but the order varies

with x. Note that in particular for �xed x the symbol is a negative

de�nite function.

In the one-dimensional situation Bass [1] proved well-posedness of

the corresponding martingale problem under weak assumptions on �(x).
In the higher dimensional case the process corresponding to (1.4) was

constructed by Tsuchiya [29] as the solution of a stochastic di�erential

equation. Symbols as in (1.5) are contained in the H�ormander classes

Sm
%;�

and were studied by the symbolic calculus of pseudo di�erential

operators by Unterberger, Bokobza [27], [28], Unterberger [26], Vi�sik,

Eskin [31], [32] and Beauzamy [2].

In [15] Jacob and Leopold constructed a Feller semigroup generated

by operators with symbols (1.5). Their approach is mainly based on

the method of Jacob concerning the generation of Feller semigroups by

pseudo di�erential operators in [13], [14], and the results of Leopold

on pseudo di�erential operators of variable order and corresponding

Sobolev spaces, [17], [18], [19]. See also Negoro [25] and Kikuchi, Negoro

[22] for further results concerning existence of transition densities and

path behaviour of stable-like processes.

In this paper we consider a more general situation. The functions

j�j2 and 1+ j�j2 in (1.4) and (1.5) are associated to a di�usion process,

i.e. Brownian motion. Thus the stable-like process can be regarded as a

di�usion subordinated by a subordinator given by the exponent �(x)=2,
but the subordinator depends on x. Our starting point will be the

generator �a2(D) of a L�evy process or even a generator with variable

coe�cients which satis�es upper and lower estimates with respect to

a2(�) in the sense of (1.2), (1.3). We denote this symbol by s(x; �) and
consider the symbol

(1.6) p(x; �) = s(x; �)m(x) ;

where 0 < m(x) � 1. Note that if s(x; �) is a negative de�nite symbol,

then p(x; �) also is negative de�nite.

Negative de�nite symbols are in general not in H�ormander classes

Sm
%;�
, they are even not di�erentiable with respect to �. But if we re-

strict to the situation that the associated jump type processes only have

jumps of bounded size, then the corresponding negative de�nite func-

tions turn out to be in�nitely often di�erentiable and certain estimates

for the derivatives hold true. In [9], see also [10], this behaviour is used

as the motivation to de�ne appropriate symbol classes Sm;�

%
. More pre-

cisely, let a2 : Rn �! R be a continuous negative de�nite reference



222 W. Hoh

function as above with the property that the L�evy measure of a2 has

bounded support (see Section 2). Moreover we will assume that a2 has

a minimal growth behaviour at in�nity, i.e. there are constants r > 0

and c > 0 such that

(1.7) a2(�) � c j�jr ; j�j large :

It turns out to be more convenient to express estimates for the symbol

in terms of the square root

(1.8) �(�) := (1 + a2(�))1=2

instead of a2 itself. Moreover let

(1.9) %(k) := k ^ 2; k 2 N0 :

Then the class Sm;�

%
of symbols of order m 2 R is de�ned as the set of

all C1-functions p : Rn � R
n
�! C such that

(1.10) j@�
�
@�
x
p(x; �)j � c�;� �(�)

m�%(j�j) ;

where x 2 R
n , � 2 R

n , �; � 2 N
n

0 . Negative de�nite symbols that can

be compared to a2(�) typically belong to S2;�% (see also Section 2). Our

main result is the following

Theorem 1.1. Let a2 : Rn �! R be a continuous negative de�nite

function such that the L�evy measure of a2 has bounded support and

(1:7) holds. Let s 2 S2;�% be a real-valued negative de�nite symbol which

is elliptic, i.e. there is a � > 0 such that

(1.11) s(x; �) � � �2(�) :

Consider a C1-function m : Rn �! (0; 1] with bounded derivatives and

let M := supx2Rn m(x), � := infx2Rnm(x).
If

(1.12) M � � <
1

2
and � > 0 ;

then

(1.13) p(x; �) = s(x; �)m(x)
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de�nes by (1:1) an operator �p(x;D) : C1

0 (Rn) �! C1(Rn), the set

of continuous functions vanishing at in�nity. The operator �p(x;D)

is closable in C1(Rn ) and the closure is the generator of a Feller

semigroup (Tt), i.e. a strongly continuous sub-Markovian semigroup

in C1(Rn).

The conditions in Theorem 1.1 can be relaxed by a localization ar-

gument using the martingale problem as carried out in the last section.

In this way we obtain

Theorem 1.2. Let s(x; �) be as in Theorem (1:1), m : Rn �! (0; 1] be

a C1-function and p(x; �) as in (1:13).
Then �p(x;D) : C1

0 (Rn ) �! C1(Rn) has an extension that gen-

erates a Feller semigroup (Tt).

The proof of Theorem 1.1 relies on the theorem of Hille-Yosida. In

particular for some � � 0 we have to �nd solutions of the equation

(1.14) (p(x;D) + �)u = f

for su�ciently many right hand sides. We split the proof into a part

concerning the existence of (weak) solutions and a part dealing with

regularity. We treat both parts using typical techniques for pseudo

di�erential operators, but in a suitably modi�ed way. For that purpose

we introduce an appropriate scale of anisotropic Sobolev spaces, which

are de�ned in terms of the function �(�)

(1.15) Hs;�(Rn) = fu 2 S 0(Rn) : kuks;� <1g ; s 2 R ;

where

(1.16) kuks;� =
�Z

Rn

�2s(�) jû(�)j2d�
�1=2

:

Note thatHs;�(Rn) coincides with the spaceHs=2;a2(Rn) de�ned in [12],

in particular H0;�(Rn) = L2(Rn) and C1

0 (Rn) is dense in Hs;�(Rn) for

all s 2 R.

To prove existence of solutions we �rst apply a modi�ed version

of Friedrichs symmetrization that yields a sharp G�arding inequality,

that is a lower bound for the corresponding bilinear form in terms of

the lower order norm k � k�;�. Then we show that the bilinear form is
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continuous on the space obtained by closing the symmetric part of the

form and �nally show

Theorem 1.3. Let p(x; �) be as in Theorem 1:1 and � > 0 su�ciently

large. Then for any f 2 H��;�(Rn) there is a unique u 2 H�;�(Rn)

such that

(p(x;D) + �)u = f :

Next we show that the operator p(x;D) admits a (left-) parametrix,

i.e. there is a symbol q such that

q(x;D) � p(x;D) = id + r(x;D) ;

where r(x;D) is an operator of negative order, hence has smoothing

properties. We then easily obtain the following regularity result.

Theorem 1.4. Let p(x; �) as in Theorem 1:1 and u be a solution of

(1:14) for some f 2 Hk;�(Rn), k � 0. Then for all " > 0 we have

u 2 Hk+2��";�(Rn) :

2. Symbolic calculus.

In this section we recall some results from [9] and [10] where a

symbolic calculus for pseudo di�erential operators with negative de�nite

symbols is developed. Let again a2 : Rn �! R be a continuous negative

de�nite reference function. Then by the L�evy-Khinchin formula a2 has
the unique representation

(2.1) a2(�) = c+ q(�) +

Z
Rnnf0g

(1� cos (y; �)) �(dy) ;

where c is a nonnegative constant, q is a positive de�nite (possibly

degenerate) quadratic form and the so-called L�evy measure � is a sym-

metric Borel measure on R
n
n f0g satisfying

Z
Rnnf0g

jyj2

1 + jyj2
�(dy) <1 :
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Important examples of continuous negative de�nite functions are � 7�!
j�j�, 0 < � � 2 which lead to the symmetric �-stable process, but they

also illustrate that in general continuous negative de�nite functions

are not di�erentiable. However if we consider a continuous negative

de�nite function with a L�evy measure that has bounded support, that

is supp � � BR(0) for some R > 0, then we have, see [9, Proposition 2.1]

or [10, Proposition 1],

a2 2 C1(Rn)

and

(2.2) j@�
�
a2(�)j � c� a

(2�%(j�j))(�) ; %(k) = k ^ 2 ; � 2 N
n

0 ;

where the constants c� depend only on the (�nite) absolute moments of

the L�evy measure of order greater or equal to 2 and the maximal eigen-

value of the quadratic form q. Supposing that a continuous negative

de�nite symbol

p : Rn � R
n
�! R

also has L�evy measures supported in BR(0) and is controlled by a2 in

the sense that

p(x; �) � c (1 + a2(�)) ;

then using the notation of (1.8) the estimate (2.2) yields

j@�
�
p(x; �)j � c� a

(2�%(j�j))(�) � c� �(�)
(2�%(j�j))

and the constants c� are independent of x. Therefore the condition

p 2 S2;�
%

, that is

(2.3) j@�
�
@�
x
p(x; �)j � c�;� �(�)

2�%(j�j) ; x 2 R
n ; � 2 R

n ; �; � 2 N
n

0

is nothing but the assumption that we have the same behaviour for the

x-derivatives of the symbol.
Moreover we will use the larger class Sm;�

0 which we obtain from

(1.10) by replacing % by 0

(2.4) j@�� @
�

xp(x; �)j � c�;� �(�)
m ; x 2 R

n ; � 2 R
n ; �; � 2 N

n

0 :

Note that in particular �m(�) is an intrinsic example of a symbol in

Sm;�

%
.

In [9] a symbolic calculus for these classes of pseudo di�erential

operators was developed similar to the results of Kumano-go [23] for
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symbols with general weight functions �. Since our weight function �
doesn't satisfy the di�erentiability properties which are assumed for the

basic weight functions of [23] it does not �t into that framework. Thus

modi�ed proofs were necessary, using explicitly properties of negative

de�nite functions. We will need the following results: For p 2 S
m;�

0

the operator p(x;D) is a well-de�ned object that satis�es ([9, Proposi-

tion 3.2])

p(x;D) : S(Rn) �! S(Rn ) continuously :

Therefore it makes sense to talk about composition of operators and

formally adjoint operators.

Proposition 2.1 ([9, Corollaries 3.5, 3.11], [10, Theorem 2.4]). Let

p1 2 S
m1;�

0 , p2 2 S
m2;�

0 . Then p1(x;D) � p2(x;D) is again a pseudo

di�erential operator with symbol in S
m1+m2;�

0 .

If moreover p1 2 Sm1;�
% , p2 2 Sm2;�

% we have

(2.5) p1(x;D) � p2(x;D) = (p1 � p2)(x;D) + r(x;D) ;

where the product of the symbols satis�es p1 � p2 2 Sm1+m2;�

%
and r 2

Sm1+m2�1;�
0 .

By p�(x;D) we denote the formally adjoint of p(x;D), which means

(p�(x;D)u; v) = (u; p(x;D)v) ; u; v 2 S(Rn) ;

where (�; �) is the L2-inner product.

Proposition 2.2 ([9, ,Corollaries 3.6, 3.11], [10, Theorem 2.4]). Let p 2

Sm;�

0 . Then the formally adjoint p�(x;D) is again a pseudo di�erential

operator with symbol in Sm;�

0 .

If moreover p 2 Sm;�

%
we have

(2.6) p�(x;D) = p(x;D) + r0(x;D) ;

where the complex conjugate p of the symbol satis�es p 2 Sm;�

%
and

r0 2 Sm�1;�
0 .

Therefore up to lower order terms composition and taking the for-

mally adjoint have easy interpretations on the level of symbols.
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By duality the formally adjoint allows for p 2 S
m;�

0 to extend the

operator continuously to

(2.7) p(x;D) : S 0(Rn) �! S
0(Rn)

and we now can �nd a natural meaning of the order of an operator.

Recall the de�nition of the spaces Hs;�(Rn ) in (1.15), (1.16).

Proposition 2.3 ([9, Theorem 3.7], [10, Theorem 3]). Let p 2 S
m;�

0 .

Then for every s 2 R the operator

(2.8) p(x;D) : Hs+m;�(Rn) �! Hs;�(Rn)

is continuous.

Finally we will need the Friedrichs symmetrization, which in a mod-

i�ed form is also available in this context (see [9, Theorems 4.1, 4.4]).

Theorem 2.4. Let p 2 Sm;�

% be a real-valued non-negative symbol.

Then there is a symbol pF 2 Sm;�

0 such that p � pF 2 Sm�1;�
0 and

the operator pF (x;D), the Friedrichs symmetrization, is a symmetric

non-negative de�nite operator in L2(Rn ), i.e.

(2.9) (pF (x;D)u; u) � 0 ;

for all u 2 S(Rn).

3. Existence of solutions.

In this section let s 2 S2;�% be a negative de�nite elliptic symbol,

i.e. there is a � > 0 such that

(3.1) s(x; �) � � �2(�) ; x; � 2 R
n ;

and let m : Rn �! (0; 1], m 2 C1

b
(Rn) be as in Theorem 1.1, that is

for

(3.2) M = sup
x2Rn

m(x) ; � = inf
x2Rn

m(x) ;
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we assume

(3.3) M � � <
1

2
; � > 0 ;

and consider

p(x; �) = s(x; �)m(x) :

The �rst property we have to check is whether p(x; �) is a symbol in

the symbol classes Sm;�

%
. Since the exponent m(x) depends on x, dif-

ferentiation of p with respect to x yields certain logarithmic term of

s(x; �). In the case of symbols (1.5) this can be treated by considering

the H�ormander classes Sm
%;�

with � > 0. A similar procedure for symbols

in Sm;�

%
causes problems for the symbolic calculus, since the order of the

derivatives @�
�
p(x; �) does not decrease arbitrarily as j�j ! 1. There-

fore it is more convenient to capture the e�ect of the x-derivatives by
slightly increasing the order of the symbol, i.e. p 2 S2M+";�

% for " > 0.

First we need

Lemma 3.1. Let G;K;L : RN �! R be C1-functions, G > 0, L 6= 0.

Then we have for  2 N
N

0 , l = jj

i)

@ expK = expK
X

1+���+l0=

l
0=0;1;:::;l

cfig

l
0Y

i=1

@iK ;

ii)

@ logG =
X

1+���+l=

c0
fig

lY
i=1

@iG

G
; if  6= 0 ;

iii)

@
1

L
=

1

L

X
1+���+l=

c00
fig

lY
i=1

@iL

L
:

The summation is taken over all choices of multiindices 1; : : : ; l0 2

N
N

0 and 1; : : : ; l 2 N
N

0 , respectively, that have sum . The constants

cfig, c
0

fig
and c00

fig
depend on the choice of the multiindices.
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The proof by induction is an elementary application of the chain

rule. See also Fraenkel [6] for general higher order chain rules in higher

dimensions.

We now are able to prove

Proposition 3.2. Let p(x; �) be as above. Then for all " > 0

(3.4) j@�
�
@�
x
p(x; �)j � c��" p(x; �)�

�%(j�j)+"(�) :

In particular p 2 S2M+";�
%

.

Proof. We have to estimate the derivatives

@�� @
�

xp(x; �) = @�� @
�

x s(x; �)
m(x) = @�� @

�

x exp (m(x) log s(x; �)) :

We apply Lemma 3.1.i) with N = 2n,  = (�; �), l = j�j+ j�j. Thus

(3.5)

j@�
�
@�
x
p(x; �)j � exp (m(x) log s(x; �))

�

�����
X

�1+���+�l0=�

�1+���+�l0=�

l
0=0;1;:::;l

cf�i;�ig

l
0Y

i=1

t�i�i(x; �)

����� ;

where

(3.6)

t�i�i(x; �) = @�i
�
@�i
x (m(x) log s(x; �))

=
X
�

0

i
��i

�
�i

�0
i

�
@
�i��

0

i

x m(x) @�i
�
@
�

0

i

x log s(x; �) :

Again by Lemma 3.1.ii), if k = j�ij+ j�0
i
j 6= 0

@�i
�
@
�

0

i

x log s(x; �) =
X

e�1+���+e�k=�i

e�1+���+e�k=�
0

i

c
fe�j ;

e�jg

kY
j=1

@
e�j

�
@
e�j
x s(x; �)

s(x; �)
:

Since s(x; �) is an elliptic symbol in S2;�
%

we �nd

j@�i
�
@
�

0

i

x log s(x; �)j � c�i�0

i

X
e�1+���+e�k=�i

e�1+���+e�k=�
0

i

kY
j=1

��%(je�j j)(�)

� c�i�0

i
��%(j�ij)(�) ;
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where we used the subadditivity of % in the last step. Moreover we

always have jlog s(x; �)j � c log�(�) � c" �
"=l(�). Since m 2 C1

b
(Rn)

we therefore get from (3.6)

jt�i�i(x; �)j � c�i�i"

�
��%(j�ij)(�) ; �i 6= 0 ;

�"=l(�) ; �i = 0 ;

and �nally by (3.5)

j@�
�
@�
x
p(x; �)j

� p(x; �) c��"
X

�1+���+�l0=�

�1+���+�l0=�

l
0=0;1;:::;l

� Y
i=1;:::;l0

�i 6=0

��%(j�ij)(�)
Y

i=1;:::;l0

�i=0

�"=l(�)

�

� p(x; �) c��" �
�%(j�j)+"(�) :

The second statement follows immediately from p(x; �) � c �2M (�).

We want to consider the equation

(3.7) (p(x;D) + �)u = f ;

for � � 0. Let p� (x; �) = p(x; �) + � and

B� (u; v) = (p� (x;D)u; v) ; u; v 2 C1

0 (Rn ) ;

be the associated bilinear form. Here (�; �) is the inner product in

L2(Rn). We note

Lemma 3.3. Let q 2 S2m;�

0 . Then the bilinear form

(u; v) 7�! (q(x;D)u; v) ; u; v 2 C1

0 (Rn ) ;

has a continuous extension to Hm;�(Rn).

This follows immediately from

j(q(x;D)u; v)j = j(��m(D) � q(x;D)u; �m(D)v)j � c kukm;� kvkm;�

by Cauchy-Schwarz inequality, since by Proposition 2.1 both ��m(D) �

q(x;D) and �m(D) are operators of order m.
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Observe that by the ellipitcity of s there is a �0 > 0 such that

(3.8) p(x; �) � �0 �2�(�) :

Theorem 3.4. Let " > 0 such that M � � + " < 1=2 and let M 0 =

M + "=2. Then B� extends continuously to HM
0
;�(Rn ) and if � is

su�ciently large, the lower estimate

(3.9) B� (u; u) �
�0

2
kuk2

�;�

holds.

Proof. The �rst statement is immediate from Lemma 3.3 since p� 2
S2M

0
;�

%
. Let Q(x; �) = p(x; �)� �0 �2�(�) 2 S2M

0
;�

%
. By (3.8) we have

Q(x; �) � 0 and hence by Theorem 2.4 we know that the Friedrichs

symmetrization QF (x;D) is a symmetric nonnegative operator with

symbol QF 2 S2M
0
;�

0 such that r = Q�QF 2 S2M
0
�1;�

0 .

Then by Lemma 3.3

(p(x;D)u; u)� �0 kuk2
�;�

= (Q(x;D)u; u)

= (QF (x;D)u; u) + (r(x;D)u; u)

� �c kuk2
M 0�1=2;�

� �

�0

2
kuk2�;� � c(�0) kuk20 :

Note that the �rst inequality represents a modi�ed form of the sharp

G�arding inequality. In the last step we used the fact that M 0
�1=2 < �

and the inequality

kuks2;� � A kuks1;� + c(A) kuks3;� ;

for s1 � s2 � s3 and any A > 0 (see [8, (2.9)]). Choosing � � c(�0)
proves (3.9).

B� is a continuous bilinear form on HM
0
;�(Rn ) but satis�es a lower

bound only with respect to a lower order norm, which of course reects

the character of varying order. To get a weak solution of (3.7) in terms

of this form B� we will use a method which is known in the case of
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degenerate elliptic di�erential operators, see Louhivaara, Simader [20],

[21]. For that purpose let

eB� (u; v) =
1

2
(B� (u; v) +B� (v; u)) ; u; v 2 HM

0
;�(Rn) ;

be the symmetric part of B� . Then obviously

(3.10) j eB� (u; v)j � c kukM 0;� kvkM 0;�

and

(3.11) eB� (u; u) �
�0

2
kuk2

�;�
:

Therefore eB� is a symmetric bilinear form on HM
0
;�(Rn) which by

(3.11) is positive and not degenerate, i.e. eB� (u; u) = 0 if and only if

u = 0, that is eB� is an inner product. Of course in general HM
0
;�(Rn)

is not complete with respect to this inner product. By Hp� we denote

the completion of HM
0
;�(Rn) with respect to the norm k � kp� = eB1=2

� .

Then (Hp� ; k � kp� ) is a Hilbert space. By (3.10) and (3.11) we can

construct the completion in such a way that the continuous and dense

embeddings

HM
0
;�(Rn) ,! Hp� ,! H�;�(Rn)

hold.

Lemma 3.5. B� is a continuous bilinear form on (Hp� ; k � kp� ).

Proof. Since p� (x; �) is real-valued, Proposition 2 yields

1

2
(p� (x;D) + p�� (x;D)) =

1

2
(p� (x;D) + p� (x;D)) + r1(x;D)

= p� (x;D) + r1(x;D) ;

where r1 2 S2M
0
�1;�

0 and therefore for u; v 2 C1

0 (Rn)

jB� (u; v)j = j(p� (x;D)u; v)j

�

���1
2
((p� (x;D) + p�

� (x;D))u; v)
���+ j(r1(x;D)u; v)j

= j eB� (u; v)j+ j(r1(x;D)u; v)j :
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eB� is continuous on H
p� by de�nition and by Lemma 3.3 (r1(x;D)u; v)

is continuous on HM
0
�1=2;�(Rn) and therefore also on Hp� , because by

M 0
� 1=2 < � we have the continuous embedding

Hp� ,! H�;�(Rn ) ,! HM
0
�1=2;�(Rn) :

Remark. In other words B� with domain Hp� is a sectorial form in

the sense of Kato [16, VI.2].

It is now easy to give a

Proof of Theorem 1.3. By Lemma 3.5 we know that B� is a con-

tinuous and by de�nition coercive bilinear form on Hp� . Thus by the

theorem of Lax-Milgram for any f in the dual space (Hp� )0 there is a

unique u 2 Hp� such that

B� (u; v) = hf; vi ; for all v 2 Hp� :

We choose a sequence fukg in C
1

0 (Rn ) which converges to u in Hp� and

consequently also in H�;�(Rn). Note that for any v 2 C1

0 (Rn) the map

u 7�! (u; v) has a continuous extension to H��2M 0
;�(Rn) and p� (x;D) :

H�;�(Rn) �! H��2M 0
;�(Rn) is continuous. Thus the equation

(p� (x;D)uk; v) = B� (uk; v) ; v 2 C1

0 (Rn) ;

yields for k �!1

hp� (x;D)u; vi = B� (u; v) = hf; vi ; for all v 2 C1

0 (Rn ) ;

and therefore

p� (x;D)u = f :

In particular because of the embeddings

Hp� ,! H�;�(Rn) and H��;�(Rn) ,! (Hp� )0

we have a unique weak solution u 2 H�;�(Rn ) of equation (3.7) for any

f 2 H��;�(Rn ).
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4. Regularity of solutions.

Let p(x; �) as in Section 3 and " > 0 such that M � � + " < 1=2.
Our aim is to construct a (left-) parametix to the operator p� (x;D),

that is an inverse modulo a smoothing operator. From the existence

of such parametrix we then easily obtain regularity for the solution of

equation (3.7).

The symbolic calculus for Sm;�

% does not yield expansion series

with remainder terms of arbitrarily small order. But it turns out to be

su�cient to use a �rst order expansion to get a smoothing remainder

term, i.e. an operator which is order improving with respect to the

scale of Sobolev spaces Hs;�(Rn ).

De�ne

q� (x; �) =
1

p� (x; �)
:

Lemma 4.1. We have

q� 2 S�2�+";�
%

:

Proof. We apply Lemma 3.1.iii) to estimate the derivatives of q� (x; �)
and it follows with l = j�j+ j�j

j@�
�
@�
x
q� (x; �)j �

1

p� (x; �)

X
�1+���+�l=�

�1+���+�l=�

cf�i;�ig

lY
i=1

����@
�i

�
@�ix p� (x; �)

p� (x; �)

���� :

By (3.4) we have

����@
�i

�
@�i
x
p� (x; �)

p� (x; �)

���� � c�i�i" �
�%(j�ij)+"(�) ;

for any " > 0 and therefore by (3.1)

j@�
�
@�
x
q� (x; �)j � c��" �

�2�(�)��%(j�j)+"(�) ;

for all " > 0 by the subadditivity of %.

Now the proof of Theorem 1.4 is almost immediate.
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Proof of Theorem 1.4. Let f 2 Hk;�(Rn ) and u be the solution of

(3.7) which is in H�;�(Rn) by Theorem 1.3. Then Proposition 2.1 gives

(4.1) q� (x;D) � p� (x;D) = id + r(x;D) ;

where r 2 S�t;�0 for

�t = (�2�+ ") + (2M + ")� 1 = 2
�
M � �+ "�

1

2

�
< 0 :

We apply (4.1) to u and obtain

u = q� (x;D) � p� (x;D)u� r(x;D)u = q� (x;D) f � r(x;D)u :

We have q� (x;D) f 2 Hk+2��";�(Rn) and r(x;D) is order improv-

ing, that is u 2 H�;�(Rn) implies r(x;D)u 2 H�+t;�(Rn) and hence

u 2 H(�+t)^(k+2��");�(Rn ). Applying this argument recursively �nally

gives u 2 Hk+2��";�(Rn).

In order to �nd solutions of (3.7) also in C1(Rn) we need a Sobolev

embedding for Hs;�(Rn) in C1(Rn ). Recall that for the reference func-

tion a2 we have imposed the assumption (1.7)

a2(�) � c j�jr ; j�j large ;

which was not used up to now. In fact it is easy to see that under (1.7)

Hs;�(Rn) is continuously embedded into the ordinary Sobolev space

Hrs=2(Rn) and it follows (see [8, Section 2])

Hs;�(Rn ) ,! C1(Rn) ; if s >
n

r
:

Let us give the

Proof of Theorem 1.1. Let again " > 0 satisfy M � � + " < 1=2.

We know that p 2 S2M+";�
% . Choose k > 0 such that k > n=r. Then

Hk+2M+";�(Rn) and Hk;�(Rn) can be considered as dense subspaces of

C1(Rn ) and it follows

i) that

�p(x;D) : Hk+2M+";�(Rn) �! Hk;�(Rn )
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is a densely de�ned operator in C1(Rn).

Moreover p is a continuous negative de�nite symbol. Hence by the

result of Courr�ege, [4, Th�eor�eme 3.5], we know that �p(x;D) satis�es

the positive maximum principle as an operator with domain C1

0 (Rn ).

By an approximation argument, see Jacob [13, Theorem 9.3], we see

that

ii) �p(x;D) satis�es the positive maximum principle also on

Hk+2M+";�(Rn).

Finally let � > 0 be su�ciently large and f 2 Hk+2(M��+");�(Rn ).

Then by Theorem 1.3 and Theorem 1.4 we know that there is a u 2

Hk+2(M��+")+2��";�(Rn) = Hk+2M+";�(Rn ) such that

p� (x;D)u = f :

In other words

iii) The range of the operator p� (x;D) = � � (�p(x;D)) with

domain Hk+2M+";�(Rn) contains Hk+2(M��+");�(Rn) and is therefore

dense in C1(Rn ).

By the theorem of Hille-Yosida, see [5, Theorem 4.2.2], the condi-

tions i)-iii) imply that the closure of (�p(x;D); Hk+2M+";�(Rn )) gen-

erates a Feller semigroup (Tt).

But C1

0 (Rn ) is dense in Hk+2M+";�(Rn ), �p(x;D) maps

Hk+2M+";�(Rn) continuously into Hk;�(Rn ) and both Hk+2M+";�(Rn)

and Hk;�(Rn) are continuously embedded in C1(Rn ). Therefore this

closure coincides with the closure of (�p(x;D); C1

0 (Rn)).

Remark. By Lemma 3.5 we know that the bilinear form B� with

domain Hp� is a closed coercive form in L2(Rn) in the sense of Ma,

R�ockner [24]. We deduce that therefore (Tt) is also a strongly continu-

ous semigroup on L2(Rn). The sub-Markovian property of (Tt) hence
implies that B� has the contraction property in [24, I.4.4], and is a

semi-Dirichlet form.

5. Localization by the martingale problem.

The restriction (1.12) for the oscillation of the exponent function

m(x) implies in particular that the bilinear form B� is continuous with

respect to its symmetric part, i.e. sectorial and therefore is necessary
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in the above approach. We can avoid this condition as well as the

boundedness of the derivatives of m(x) if we use an approach via the

martingale problem. This is mainly due to the fact that well-posedness

of the martingale problem is closely related to the property that the

operator generates a Feller semigroup, see [30].

By a solution of the martingale problem for the operator �p(x;D)

we denote a probability measure P 2 M1(DRn) on the path space DRn

of all c�adl�ag-functions ! : [0;1) �! R
n such that for all ' 2 C1

0 (Rn)

(5.1) '(Xt)�

Z
t

0

(�p(x;D)')(Xs) ds ; t � 0 ;

is an fFtg-martingale, where Xt(!) = !(t) and Ft = �(Xs : s � t).

The martingale problem is called well-posed if for every given initial

distribution PX0
2 M1(R

n) there is a unique solution.

In particular the following result of van Casteren [30, Proposi-

tion 2.6], holds true.

Theorem 5.1. Let �p(x;D) be a densely de�ned linear operator in

C1(Rn ) for which the martingale problem is well-posed. Then �p(x;D)

has a unique extension that generates a Feller semigroup.

Remark. Let us �rst note that we may restrict to the conservative case,

that is we may consider the symbol ep(x; �) := p(x; �) � p(x; 0). Both

p(x; �) and ep(x; �) are negative de�nite symbols and x 7! p(x; 0) is a

bounded continuous function. Therefore both �p(x;D) and �ep(x;D)

satisfy the positive maximum principle and their di�erence is a bounded

operator in C1(Rn). By a standard perturbation result for generators

of (Feller-) semigroups hence �ep(x;D) generates a Feller semigroup if

and only if �p(x;D) does.

The key result we need in this section is ([7, Theorem 7.1], see also

[5, Chapter 4.6]).

Theorem 5.2. Let p, pk : Rn � R
n
�! R, k 2 N, be continuous

negative de�nite symbols such that p(x;D), pk(x;D) : C1

0 (Rn ) �!

Cb(R
n) and let fUkgk2N be an open covering of Rn such that

(5.2) p(x; �) = pk(x; �) ; for all x 2 Uk, � 2 R
n :

If the martingale problem for �p(x;D) has a solution for all initial

distributions and the martingale problem for �pk(x;D) is well-posed
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for all k 2 N, then the martingale problem for �p(x;D) is well-posed,

too.

Proof of Theorem 1.2. Let p(x; �) be as in Theorem 1.2, i.e.

p(x; �) = s(x; �)m(x), where s 2 S2;�
%

is a negative de�nite symbol which

is elliptic in the sense of (1.11) and m is a C1-function on R
n with val-

ues in (0; 1]. Then

ep(x; �) := p(x; �)� p(x; 0)

is a negative de�nite symbol such that ep(x; 0) = 0 and for a suitable

c � 0 ep(x; �) � c (1 + j�j2) :

Thus by [8, Theorem 3.2], there is a solution to the martingale problem

for �ep(x;D) for any initial condition.

Next �x x0 2 R
n and choose open relatively compact neighbour-

hoods Ux0 ; Vx0 of x0 such that x0 2 Ux0 � Ux0 � Vx0 and

jm(x)�m(x0)j <
1

5
; for all x 2 Vx0 :

Let 'x0 2 C1

0 (Rn) such that 0 � 'x0 � 1, 'x0 = 1 in Ux0 and

supp'x0 � Vx0 and de�ne

mx0
(x) = 'x0(x)m(x) + (1� 'x0(x))m(x0) :

Then

mx0
2 C1

b
(Rn) ;

inf
x2Rn

mx0
(x) > 0 ;

sup
x2Rn

mx0
(x)� inf

x2Rn
mx0

(x) <
1

2
;

and therefore the symbol

px0(x; �) = s(x; �)mx0
(x)

satis�es the conditions of Theorem 1.1 and �px0(x;D) has an extension

that generates a Feller semigroup. By the above remark the same holds

true for �epx0(x;D), where

epx0(x; �) = epx0(x; �)� epx0(x; 0) :
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It is well-known that for a given initial distribution generators of Feller

semigroups have at most one solution to the martingale problem (see

for example [5, Corollary 4.4.4]). Thus again by the above existence

result the martingale problem for �epx0(x;D) is well-posed.

To proceed with the proof of Theorem 1.2 we choose a sequenceepk(x; �) = epxk(x; �), k 2 N , out of the family fepx(x; �)gx2Rn such thatS
k2N

Uxk = R
n . Since epk(x; �) coincides with ep(x; �) for x 2 Uxk ,

Theorem 5.1 implies that the martingale problem for �ep(x;D) is well-

posed.

The statement of Theorem 1.2 for �p(x;D) or equivalently

�ep(x;D) is therefore implied by Theorem 5.1, once we know that

�ep(x;D) is an operator in C1(Rn), that is

�ep(x;D) : C1

0 (Rn) �! C1(Rn) :

But this follows immediately by [11, Theorem 3.3], since by our as-

sumptions supx2Rn ep(x; �) �! 0 as � �! 0.
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