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of Lie groups

Nick Th. Varopoulos

OV. An overview.

OV.1. The scope of this overview.

This paper is part of a general program that was originally designed

to study the \Heat di�usion kernel on Lie groups". The scope of this

introductory section is the following:

i) Explain in general terms and with emphasis on intuition, what

this program is about, and explain how this program �ts in the general

context of Lie groups.

ii) Explain how the present paper �ts in this program.

iii) This introductory section is addressed to non experts. The only

prerequisite that is needed is the de�nition of a Lie group and its Haar

measure, and the de�nition of the convolution of measure on such a

group. The de�nition of the Lie algebra and of a soluble Lie algebra

will be given in Section OV.3 below. I will not give the de�nition of

the Heat di�usion semigroup Tt = e�t� that appears in Section OV.2,

but the reader could either ignore this and concentrate on convolutions

of measures, or could refer to [17] for a formal de�nition. If any other

unknown words crop up the reader should disregard them and move on.

iv) The price that inevitably had to be paid for making this over-

view accessible to the \general public" is in the precision and even the
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accuracy of the presentation. In fact some of the assertions made in

this overview are, as such incorrect. But these inaccuracies can easily

be corrected, and this is done in the course of the paper.

v) At the end of Part 0 of this paper I shall give a \guide to the

reader" that is quite detailed, and where a serious e�ort is made to help

the reader who wishes to \grind" his way through the proofs.

OV.2. The previous work in the area.

Let G be some locally compact group and let d�(x) = '(x) dx be

some probability measure, where ' 2 C0(G) is continuous with compact

support, where dx is the left Haar measure and where d�(x�1) = d�(x)

(i.e. the mapping x �! x�1 stabilizes �). We shall consider the

convolution powers of �

(OV.1) d��n(x) = 'n(x) dx ; n � 1 :

We shall �x g 2 G, say g = e 2 G, the neutral element, and consider

(OV.2) �(n) = 'n(g) ; n � 1 :

It is a central issue to study the behaviour of �(n) as n �!1. Indeed,

apart from its intrinsic interest, the behaviour of �(n) controls the

analysis and the geometry of G. The reader could think of the Heat or

the Poisson convolution semigroups on G = R
d

Ht(x) = c t�d=2 exp
�
�
jxj2

4 t

�
;

Pt(x) =
c t

(t2 + jxj2)(d+1)=2
;

and refer to the classical literature in Real Analysis (cf. [19]) where

these semigroups are used systematically to prove geometric results,

such as the Sobolev inequalities and such like. The same analysis can

be made on a general Lie group G by considering the generalized Heat

di�usion semigroup Tt = e�t�, where � = ��X2
j is a generalized

Laplacian (cf. [17]). Tt is then, as in the classical case, a convolution

semigroup: Tt1 � Tt2 = Tt1+t2 . From this the importance of �(n) in

(OV.2) becomes amply apparent.
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Much progress on the above problem was made in the decade 1980-

90, and this was reported in the book [17]. The main geometric invarient

used in that approach was the volume growth of the group

(OV.3) 
(n) = Haar measure (
n) ; n � 1 ;

where e 2 
 = 
�1 is some compact neighbourhood of the neutral

element e 2 G. What emerges is that, for unimodular locally compact

groups (i.e. for the groups where the left and the right Haar measures

coinside, e.g. discrete groups), we have the following dichotomy:

D1) If 
(n) � ecn for some c > 0, i.e. if 
(n) grows as fast as an

exponential, then

�(n) = O (e�c1n
1=3

) ;

for some c1 > 0. The above is sharp, and perhaps also, at �rst sight,

surprising.

D2) If 
(n) � nD, then

�(n) � n�D=2 ;

as one would expect from the classical case G = R
d .

The unimodularity is essential for the above dichotomy. Indeed

every non unimodular group can immediately be seen to satisfy 
(n) �

ecn, and yet the simplest non abelian Lie group of a�ne transformations

on R

x 7�! a x+ b ; a > 0 ; b 2 R ;

satis�es �(n) � n�3=2 (cf. [20]). That group is of course not unimodu-

lar.

The scope of the above program can be described by saying that

we want to �nd the analog of the above classi�cation for all Lie groups

and not just the unimodular ones.

OV.3. The Lie algebra.

The dichotomy described in Section OV.2 holds for all locally com-

pact groups and not only Lie groups. If G is a connected Lie group we

can go much further because we have at our disposal the very powerful

tool of the Lie algebra g of G. This is the �nite dimension vector space
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(in 1-1 correspondence with Te(G) the tangent space at e) of all vector

�elds on G that are invariant by the left action of G. g then admits the

natural algebra structure that is induced by the bracket operation on

vector �elds

[X;Y ] f = (X Y � Y X) f ; f 2 C1(G) ; X; Y 2 g :

It is customary and convenient to de�ne then

ad (x) : g �! g ; ad (x) 2 L(g) ;(OV.4)

ad (x) y = [x; y] the algebra multiplication.

One says that g is an R-algebra if all the eigenvalues of ad (x) (x 2 g) are

pure imaginary. One also says that g and G are soluble if it is possible

to �nd a basis in the complexi�ed gc = g
RC , with respect to which all

the ad-mappings (OV.4) become simultaneously upper triangular (cf.

[1], [9])

ad (x) =

0B@�1(x) �

. . .

0 �k(x)

1CA ; k = dim g ; �j 2 g
�

c :

For soluble algebras the following classi�cation is crucial: (cf. Section

0.1, [18], [21]). Let L = (L1; : : : ; Ls), � � g
� the distinct non zero Re�j

(1 � j � k) (if G is an R-group then the above set is empty).

C) We say that G is C if L 6= ? and if there exists �j � 0 such

that
sX

j=1

�j = 1 ;

sX
j=1

�jLj = 0 ; 1 � j � s :

NC) We say that G is NC if it is not C.

OV.4. The Algebraic-Geometric Dichotomy ([22]).

For a connected Lie group if we use the Lie algebra we can com-

plete the classi�cation of Section OV.2 by the following Theorem of Y.

Guivarc'h ([22]).

D1) 
(n) � ecn if and only if g is not an R-algebra.
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D2) 
(n) � nD if and only if g is an R-algebra.

If we restrict ourselves to unimodular connected Lie groups, it fol-

lows (cf. [17]) that they can be classi�ed into two classes and that the

classi�cation is:

i) Geometric: By means of the growth of 
(n).

ii) Algebraic: By means of the R-condition on the Lie algebra.

iii) Analytic: By means of the behaviour at in�nity of �(n) (cf.

OV.2).

OV.5. The General Analytic classi�cation.

The �rst step towards the extension of the classi�cation of Section

OV.4 to a general connected real Lie group was taken in [2], [21]. We

classi�ed these any such Lie group G into two classes, the B-groups and

the NB-groups, and we proved:

B) If G is a B-group and � 2 P(G) is as in Section OV.1, then

there exists � = �(�) � 0 (that depends on �) and Ci, ci > 0, i = 1; 2,

such that the corresponding �(n) (cf. Section OV.2) satis�es

C2 e
��n�c2n

1=3

� �(n) � C1 e
��n�c1n

1=3

; n � 1 :

NB) If G is a NB-group and � 2 P(G) is as in Section OV.1, then

there exists � = �(�) � 0 and � � 0 (that both depend on �) and

Ci > 0, i = 1; 2, such that

C2 e
��n n�� � �(n) � C1 e

��nn�� ; n � 1 :

In both the B and NB case either for all � 2 P(G) we have �(�) = 0,

and then we say that G is amenable, or �(�) > 0, and then we say that

G is non amenable (cf. [23]).

OV.6. The Algebraic classi�cation.

Let G be some connected Lie group, then we can �nd R � G some

closed connected soluble subgroup and K some compact subgroup such

that G = RK: This statement is almost correct but not quite. It is
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essentially an abused form of the Borel decomposition (cf. [24]) { Ignore

this di�culty but observe that unless G is amenable R cannot be chosen

to be a normal subgroup. We have:

B) If G is a B-group then every soluble subgroup R as above is a

C-group.

NB) If G is a NB-group then every subgroup R as above is NC.

This is the main result in [2], [18], cf. [21].

Furthermore it is easy to see that the above classi�cation is purelly

algebraic, i.e. it only depends on g, the Lie algebra of G (cf. [2]).

OV.7. Soluble groups and the Geometric classi�cation.

The basic geometric information that is exploited in this paper is

that every soluble connected and simply connected Lie group is topolog-

ically homeomorphic to Rd (cf. [1]). Furthermore we shall use the fact

that, an essentially unique, left invarient Riemannian structure can be

given on any Lie group. Indeed this amounts to assigning, in any way

whatsoever, some scalar product on Te(G). The Main Theorem of this

paper in Section 0.2 states then:

B) If Q is a soluble simply connected group, then Q is a C-group

if and only if it does not have the \polynomial retract property" of

Section 0.2.

NB) If Q is above, then it is an NC-group if and only if it does

have the \polynomial retract property" of Section 0.2.

If we combine therefore the Main Theorem of this paper with what

was said in section OV.5, OV.6, we see that we have obtained the

required B-NB classi�cation of Lie groups in terms that are:

i) Geometric: The Main Theorem of the present paper.

ii) Algebraic: C-NC classi�cation of Lie algebras of sectins OV.3,

OV.6.

iii) Analytic: The behaviour of �(n) of Section OV.5.

This is therefore, for general (i.e. not necessarily unimodular) Lie

groups, the analogue of the Geometric-Algebraic-Analytic classi�cation

of Section OV.4.
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0. Introduction.

0.1. A Classi�cation of Lie algebras.

Let q be some real soluble Lie algebra, we can then choose a ba-

sis of qc = q 
 C over C for which all the adx : qc �! qc (x 2 q)

are represented as upper triangular matrices (cf. [1]). The diagonal

coe�cients of these matrices are called roots of q and can be iden-

ti�ed with �1; : : : ; �k 2 HomR[q; C ] (k = dim q). We consider then

(L1; : : : ; Ls) = (Re�j ; j = 1; : : : ; k, Re�j 6= 0) � HomR[q;R] = q
� the

set of the distinct non-zero real parts of these roots. We say that q is a

C-algebra if there exist �j � 0 (j = 1; : : : ; k) such that

sX
j=1

�jLj = 0 ;
X

�j = 1 :

Otherwise we say that q is an NC-algebra (Non-C-). If Q is some

Lie group whose algebra is C (respectively: NC), we say that Q is C

(respectively: NC). (cf. [2], [3])

Let now G be some simply connected Lie group. It is easy to prove

then (cf. [4]) that there exists Q � G, some simply connected closed

soluble subgroup, and Z � G, some discrete central subgroup, such

that
~Q = Q � Z �= Q� Z � G

is closed and co-compact, (i.e. there exists C b G some compact subset

such that ~Q �C = C � ~Q = G. If G is amenable or algebraic we can even

take Z = f0g). We then say that the group G, and the corresponding

Lie algebra g, is B- (respectively: NB-), ifQ is a C- (respectively: NC-)

group. It is easy to show (cf. [2]) that the algebra g cannot be simul-

taneously a B- and an NB- algebra. This last fact is also an easy

consequence of our main theorem below.

In my recent work on the area, I have shown that the above

B-NB classi�cation is crucial for the behaviour of the Heat kernel of

the group. In this paper I shall examine some further consequences in

the \global Geometry" of the group.
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0.2. Riemannian Manifolds.

The de�nitions that I shall recall below are variants of notions from

[5], [6].

Let (Mi; di) i = 1; 2 be two metric spaces and let f : M1 �! M2

be some mapping. We set (possibly +1)

kfkLip = sup
nd2(f(x); f(y))

d1(x; y)
; x; y 2M; x 6= y

o
:

This is a quasinorm (with kfk = 0 if and only if f = cont.). We say

that f 2 Lip (R) if and only if kfkLip � R, and we say that f 2 Lip if

and only if f 2 Lip (R) for some R � 0.

We shall consider now M some Riemannian manifold that is topo-

logically homeomorphic with R
n . We shall also assume that M is ho-

mogeneous, i.e. admits some transitive group of isometrics. And �x

some m0 2M and denote by

B(R) = fm 2M : d(m;m0) � Rg ;

the corresponding balls. In our applications M will always be some

simply connected soluble real Lie group Q (thus topologically �= R
n ,

cf. [1]) and m0 = e will be the neutral element, and we will assign Q

with some left invariant Riemannian structure. There are several such

structures, one for each scalar product on the Lie algebra, but they are

all quasi-isometric.

The �lling constants. We shall consider f 2 Lip

(0.1) f : @ [0; 1]n �!M ; f(O) = m0 ;

for the boundary and the distance induced on the unit cube �n =

[0; 1]n�Rn by Rn , and the Riemannian distance onM . (O=(0; 0; : : : )2

�
n). We shall then de�ne

�n(R) = inf
f;F

fR0g ;

where f 2 Lip (R) is as in (0.1), and F : �n �! M is such that

F j@�n = f and F 2 Lip (R0).
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The retract. Let us consider a retract

H :M � [0; 1] �!M ;

H(m; 0) = m0 ; H(m; 1) = m; m 2M ;

and let

 (R) = kHjB(R)�[0;1]kLip :

It is clear that �n(R) � Cn (R)R (R � 1). We say that M admits a

polynomial (respectively: exponential) retract, if there exist C, C0 > 0

and a retract as above, for which

(0.2)  (R) � C RC0 + C ; R � 1 (respectively: � C eC0R) :

It is an easy matter to show that every soluble Lie group Q as above

admits an exponential retract. We have

Main Theorem. Let Q be some simply connected soluble real Lie

group. Then :

C) If Q is a C-group there exists 2 � m � rankQ+ 1 such that

sup
R>1

�m(R)R
�A = +1 ; A � 1 ;

where rankQ = dimQ=N with N = the nilradical of Q.

NC) If Q is an NC-group then Q admits a polynomial retract.

The optimal degree of the retract in the NC-case (i.e. the inf C0

for C0 as in (0.2)) can, in fact, be explicitly computed.

By what has been said, the natural setting of the above theorem is

indeed the setting of real simply connected soluble groups, and there is

no essential restriction there. To be precise let us call two connected real

Lie groupsG1, G2, Quasiisometric, and denote G1 '
q:i
G2, if there exists a

di�eomorphism between G1 and G2 that is a Riemannian quasiisometry

for the corresponding left invariant structures. Let now G be some

connected real Lie group that contains no normal compact torus (�=
T
a ; a � 1), then we have

U �K '
q:i
G ;
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where U is soluble and simply connected, and K is compact. If G is

simply connected this follows from what was said in Section 0.1. The

proof in the general case is quite easy also (cf. [28]).

De�nition. Let G be some connected Lie group and let T � G be its

maximal compact normal torus. We then say that G is a geometrically

C- (respectively : NC-) group, if we can �nd a quasiisometry as above,

such that

U �K '
q:i
G=T ;

where U satis�es the condition C) (respectively : NC)) of the Main

Theorem.

It is then an elementary and easy exercise to deduce from the Main

Theorem the following:

Geometric Classi�cation Theorem. Let G be some connected real

Lie group, then the Lie algebra of G is a B- (respectively : NB-) algebra

if and only if G is a geometrically C- (respectively : NC-) group.

One can also prove that a general connected Lie group G is NB if

and only if it has the following:

Homotopy Property. For all n � 1 there exists C > 1, such that if

R > 0 and if F : Sn �! G is a map from the n-sphere Sn into G that

satis�es :

(0.3) 0 = [F ] 2 �n(G) ; F 2 Lip (R) ;

then there exists a homotopy H = [0; 1]�Sn �! G such that H(0; Sn) =

g0 2 G is a �xed point, H(1; �)jSn = F , and such that H 2 Lip (C RC +

C).

[F ] in (0.3) denotes the homotopy class of F in the nth Homotopy

group of G. Indeed the Main Theorem and the �bration G �! G=T '

U �K easily reduces the proof of the above assertion to the case where

G is compact (and as such an NB-group with an abelian �1(G)). The

case G = T
a is obvious because the universal covering space Ra �! T

a

is very simple. The proof for the general case is quite involved and I

must confess that at this point I have not written the details down fully.
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This means that unpleasant surprises in a �nal writting are not to be

excluded (especially since my knowledge of Topology is very limited).

The following easy corollary of the Main Theorem is also perhaps

worth noting (cf. [8] for a special case).

Corollary. Let � be a polycyclic group that is a uniform latice in some

connected soluble Lie group Q (this can be taken as the de�nition of

a polycyclic group, cf. [7]). Let us assume that � admits \polynomial

�lling" in dimensions 2; 3; : : : ; dimQ� 1. (The reader should interpret

this \polynomial �lling" in terms of the de�nitions in [5]. There is only

one possible such interpretation that is reasonable). Then � is virtually

nilpotent. (The converse is trivially correct).

0.3. The Homological classi�cation.

Let G be an arbitrary connected real Lie group and let jgj = d(g; e)

(g 2 G) be the distance from the neutral element with respect to some

�xed left invariant Riemannian structure.

I shall denote by J(G) the space of currents \representable by in-

tegration" (cf. [13, 4.1.7]) together with the boundary operator b �

(or @�) (cf. [12], [13]). For the reader not familiar with the formalism

of currents let me say that J(G) can be identi�ed to the space of dif-

ferential forms on G with coe�cients that are Radon measures. The

boundary operator is then identi�ed with the exterior di�erential taken

in the distribution sence. This is simply done by identifying such a form

to a linear functional on the space of compactly supported C1-forms.

For all 
 2 J(G) and for a �xed left invarient Riemannian struc-

ture, if the coe�cients of 
 are L1loc, we can de�ne j
(x)j 2 L1loc the

Riemannian norm at almost every x 2 G, and this can be identi�ed to

a Radon measure on G if we specify the reference measure to be the

left Haar measure on G. By passage to the limit (among other things)

j
( � )j can be de�ned and is a positive Radon measure for all 
 2 J(G).

We can also consider the seminorms

pm(
) =

Z
G

(1 + jxjm) dj
(x)j � +1 ; 
 2 J(G) ; m � 0 :

Dually, let P (G) be the space of di�erential forms on G with continuous

coe�cients where the di�erential d� is taken in the distribution sense
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(i.e. Z
d! ^ � = �

Z
! ^ d� ; ! 2 P (G) ;

and � an arbitrarily compactly supported smooth di�erential form).

Let us then consider the seminorms

qm(!) = sup
x

j!(x)j (1 + jxj)�m � +1 ; m � 0 ; ! 2 P (G) :

We have the following:

Theorem (The Homological classi�cation). Let G be some real con-

nected Lie group assigned with some left invariant Riemannian struc-

ture. Then G is an NB-group if and only if one or both of the following

two equivalent conditions hold :

Homology. Let 
 2 J(G) be such that @
 = 0 and pj(
) < +1 (j � 0).

Then there exists � 2 J(G) such that :

@�� 
 2 J(G) ; supp (@�� 
) is compact ; pj(�) < +1 ; j � 0 :

Cohomology. Let ! 2 P (G) be such that d! = 0, qC(!) < +1 for some

C � 0, then there exists � 2 P (G) such that

qN (�) < +1 ; d� � ! 2 E ;

where N � 0 only depends on G and C, and where E � P (G) is a �nite

dimensional subspace that only depends on G and satis�es qn (�) < +1

(� 2 E) for some n = n(G) > 0. Furthermore we can chose E so that

it is spanned by a set of representatives of a basis of the cohomology

classes of G.

The current @��
 can even be assumed to be supported in some

maximal compact subgroup of G. In the critical case of simply con-

nected soluble groups E can be chosen to be the space of constant

functions, i.e. the space is then 1-dimensional and so is the unreduced

cohomology over R.

The proof of the above Homological classi�cation is implicit in

the methods of this paper, it will nonetheless be postponed to a later

publication (cf. Remark at the end of Section 4).
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0.4. The Quadratic �lling and further results.

Some further results will be described in this �nal subsection in

a \sketchy manner". Precise statements and proofs will be given else-

where.

We shall say that the connected real Lie group admits quadratic

�lling if for every closed path 
 = '(@�2) � G that is homotopic to

zero in G we can extend ' to �2, with D = '(�2), so that Vol2(D) =

O (j
j2), where j
j = Vol1(
) is the length of the path. (The volumes

have to be counted with multiplicity, cf. the remark at the end of

Section 4.5 below and [29].)

Easy examples of such groups, apart from the Euclidean spaces, are

supplied by the semisimple groups (because of the negative curvature

of the non compact symmetric spaces), cf. [5] for a number of examples

that do not admit quadratic �lling. Using the standard methods of

Morse theory we can also prove that if G does not admit quadratic

�lling then we can �nd a sequence 
j � G (j � 1) of periodic geodesics

such that diam(
j) �!1.

The above notions generalize to discrete �netely generated groups

(cf. [5], or use your imagination). An interesting class of groups that

do not admit quadratic �lling are the groups with unsolvable word

problem. We have also the following analogue of our geodesics on a Lie

group:

LetM be some compact connected Riemannian manifold such that

�1(M) does not admit quadratic �lling. Then M contains 
j � M

(j � 1) periodic geodesics with prime periods j
jj ! 1 (prime period

= the time it takes to go round the geodesic once).

So these notions seem to �t in the subject of closed geodesics, cf.

[30].

0.5. A Guide to the reader and acknowledgements.

It is the part C) of the main theorem that is di�cult. It takes

sections 1-4 of this paper to do that. The proof of part NC) relies on

easy structure theorems from [1], [2] and is given in Section 5 of this

paper.

In Section 1 we develop the necessary algebraic structure theorems

for Lie algebras. This part, I feel, presents an independent interest.

Section 2 is routine and reinterprets geometrically the algebraic
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theorems of Section 1 at the group level.

Section 3 was lengthy and tedious to write out, especially at the

notational level, and my own inexperience in presenting geometric ideas

did not help matters. But there is nothing either di�cult or deep in

this part. All we do is to exploit the algebraic structure theorems of

Section 1 (and their geometric consequences Section 2) to embed some

special spheres in a C-group Q. And that these spheres are \twisted" in

such a way that they can not be \�lled in" with polynomial estimates.

The denouement lies in Section 4 where the impossibility of that

\polynomial �lling" is brought into light.

This paper owes a lot to M. Gromov's previous work in the area.

Indeed I learned about the problem in [5]. In [5, sections 2.B, 5.B3] one

�nds a qualitative description in some important examples, of the �rst

geometric construction that I give in sections 3.1, 3.2. In [5, sections

5.B1, 5.B3] one �nds various proofs of special cases of our main theorem

C). These examples were a great inspiration to me.

In fact I feel that one way for the reader to get in this paper, is

to pick up the above sections of M. Gromov's [5] and try to see how

they �t in the present paper in sections 3.1, 3.2 and 4.5. The reader

will then see how to prove the C-part of the main theorem for the

simplest possible cases of the group semidirect products R2 ./ R and

(Heizenberg) ./ R which are the cases contained in [5].

The other point that the reader has to look for, if he wants to

capture the global geometric idea of the proof, is to discover the exact

role that the C-condition plays in the �rst basic geometric construction.

This appears for the �rst time towards the end of Section 3.2.3 (cf. also

the case R2 ./ R cf. Section 3.1.1, Remark), and is crucial and non-

trivial already in very simple cases like R3 ./ R2 .

It is di�cult to read the proof of the C-part of our theorem from

beginning to end in a linear fashion. Here are some suggestions of an

alternative way to go about it.

1) Read Section 3.1.1 and then 4.5. This will give the special

group D2 = R
2 ./ R with two real non zero roots of opposite sign.

This is Gromov's special case and the original reference [5] could also

be consulted.

2) Read Section 3.2, where the generalization Dr = R
r ./ Rr�1 is

given, and then 4.5. It could be argued that the idea of the construction

in Dr is also implicit (at least at the topological level) in [5]. We thus

have a proof for Dr.
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The problem now is to embed Dr (as a Riemannian submanifold,

but not necessarily as a subgroup) in any C-group so as to obtain a

general proof.

3) Read Section 1. There we perform the above embedding at the

Lie algebra level. This part may not be easy reading but it is just

linear algebra and a�ne geometry and, as such, at least, it is clean. It

becomes in particular apparent that the above embedding is not always

possible and that we have to consider in addition the groups of rank 1

(cf. 2.4.ii), 3.1.2). In Section 4.5 these groups can be treated exactly

as the group D2. (cf. also [5]). The reader should check this point.

4) Read Section 2 and assume that the subspace V1 = 0. In a �rst

reading assume also that we are in the split case. Under the above re-

strictions Section 2.3 simpli�es considerably. Then read Section 3.2.4.

The assumption that V1 = 0 makes the second basic construction un-

necessary (at this point the Remark i) at the end of Section 3.3.1 is

relevant). Then use Section 4.5 to �nish the proof when V1 = 0 as

before.

5) At this point it might be a good idea to study Section 4 where

we present a systematic way of how to put things together with the

use of the metric properties of current, rather than Transverality and

Sard's theorem (from Di�erential topology). We see, in particular, how

the smoothing and the Whitney theorem can be avoided.

6) Read Section 3.3 to be able to deal with the general case V1 6= 0.

In doing so, in a �rst reading, the reader should absolutely start with

the split case, which is simpler and yet already contains the main idea

of the construction. It is here that a good understanding of Section 2

(�rst for the split case and then for the general case) is essential.

Convention. I use throughout the convention that, in a formula,

the letters C or c, possibly with su�xes, indicate, possibly di�erent,

positive constants that are independent of the important parameters of

the formula.



64 N. Th. Varopoulos

1. Algebra and Combinatorics.

1.1. Combinatorial considerations.

1.1.1. Simplexes.

Let V be some �nite dimensional real vector space and let E =

(e1; : : : ; ek) � V be a �nite subset where the ej 's are assumed to be

distinct. We shall denote

CH(E) = Convex Hull (E) =
n kX
j=1

�j ej : �j � 0
X

�j = 1
o
:

If the topological dimension of CH(E) is k� 1 we shall say that E are

the vertices of a simplex and denote

� = [E] = CH(E) = simplex spanned by E ;

Int� =
n kX
j=1

�j ej : �j > 0 ;
X

�j = 1
o
:

Int� is not to be confused with
�

� � � the topological interior of � � V .

We say that � is not degenerate if Int� =
�

�, i.e. if and only if k =

dimV + 1.

Let � = [x0; x1; : : : ; xk] � R
k be some simplex and let A0 be the

a�ne hyperplane containing the face [x1; : : : ; xk] � �. Let us assume

that

(1.1.1)
0 =2 A0 =

n kX
j=1

�j xj :
X

�j = 1
o

= x1 + Vec (xj � x1; 1 � j � k) :

If we assume � to be nondegenerate, the vectors xj�x1 2 V (2 � j � k)

are linearly independent and dimV = k. (1.1.1) implies then that

x1; x2; : : : ; xk is a basis of V .

Let us also recall the general fact that if x 2 CH(E) � V then we

can choose E0 � E such that

(1.1.2) x 2 CH(E0) ; Card (E0) � dimV + 1 :
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Indeed we can assume without loss of generality that E are the extreme

points of some convex polyhedron P � V and that x 2
�

P .

Let e1 2 E and let

y = @P \ fa�ne line through e1 and xg :

y then lies in some boundary convex polyhedron of lower dimension.

This by induction on dimV proves our assertion.

We shall adopt the standard notation of covering with a \^" any

symbol that we want to delete. We have then

Lemma. Let P = CH(p1; : : : ; pn) � V = R
k be some convex polyhe-

dron with non-empty interior :
�

P 6= ?. Let us assume that P is not a

simplex and let

Pj = CH(p1; p2; : : : ; p̂j; : : : ; pn) ; j = 1; : : : ; n :

Then

P = [[Pj ; j = 1; � � � ; n;
�

Pj 6= ?] :

Proof. Let �1;�2; : : : be the �nitely many convex polyhedra that we

obtain by

�J = CH(pj ; j 2 J) ; J � (1; : : : ; n) ; jJ j = k + 1 :

Let x 2 P . By (1.1.2) it follows that one of the above polyhedra, say

�1, has positive Lebesgue density at x and therefore

x 2 �1 ;
�

�1 6= ? ;

and, since by our hypothesis n > k + 1, there exists 1 � j � n such

that Pj � �1. This proves the Lemma.

1.1.2. The abstract A-condition.

Let V be some �nite dimensional vector space over R, and let us

decompose the class of all �nite subsets E � V into two classes, A and

� A (i.e. A is some property that E may or may not have). We shall

suppose that
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i) ? =2 A,

ii) E � V , E 2 A if and only if Enf0g 2 A,

iii) E1 � E � V , E1 2 A implies E 2 A,

iv) E1 � E � V , CC(E) = CC(E1), E 2 A implies E1 2 A,

where

CC(X) = Convex Cone (X) = CH(�X; � � 0) ; X � V ;

ii) and iv) say that we can delete from some E 2 A any \positive" linear

combination of the remaining elements without spoiling the property

A.

It is clear that if A and A0 are two such properties, the property

A \ A0 also satis�es the same conditions. In the following sections we

shall deal with the following special cases: V 6= f0g and

E 2 A1 if and only if E spans V ;

E 2 A2 if and only if 0 2 CH(Enf0g) :

If and only if E 2 A2 we say that E satis�es the C- condition. If and

only if E =2 A2 we say that it is NC.

1.1.3. Minimal A-sets.

We say that E � V is a minimal A-set if

E 2 A ; Enfeg =2 A ; for all 0 6= e 2 E :

If A = A1 then clearly E is a minimal A1 set if Enf0g is a basis of

V . In this section we shall examine the minimal A sets with A = A2,

A1 \ A2.

By de�nition, E � V is a minimalA2 set if and only if the following

two conditions hold

0 =
X

e2Enf0g

�e e ; �e > 0 ;(C)

0 =
X

e2Enf0g

�e e ; �e � 0 ;
X

�e = 1

implies �e > 0 ; e 2 Enf0g :

(1.1.3)
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Let us consider

(R)

0 =
X

e2Enf0g

�e e ; �e 2 R ;

there exists e 2 Enf0g such that �e 6= 0 :

Then by rescaling the ej 's (i.e. replacing ej by e
0

j = "j ej , "j > 0), by

giving an appropriate order to Enf0g, and by multiplying (R) and (C)

by scalars we can assume that

1 = �1 � �2 � � � �

we can assume that there exists � > 0 such that

j�j j = 0; � ; j = 1; 2; : : :

and we can also assume that for the �rst j = 1; 2; : : : for which �j 6= 0

we have �j = ��j .

But then the relation (R)+(C) is a positive relation on Enf0g of

length strictly less than jEnf0gj. This by (1.1.3) implies that (R)� �

(C). In other words, (C) is up to multiplicative constant the only linear

relation on Enf0g. It follows therefore that E � V is a minimal A2 set

if and only if E are the vertices of some simplex of V and

0 2 Int [E] :

Let now E � V and

X = Enf0g = (x1; : : : ; xn) � V :

Let also Xj = Xnfxjg. Then by de�nition, E is a minimalA1\A2

set if and only if:

a) Vec E = V .

b) There exists �j � 0, j = 1; : : : ; n, such that
Pn

j=1 �j = 1,Pn

j=1 �j xj = 0.

c) For k = 1; 2; : : : ; n one of the conditions i) or ii) below (or both)

hold:

i) Xk is NC.

ii) VecXk 6= V .
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We have:

Proposition. Let E � V be some minimal A1 \ A2 set. Then � =

[Enf0g] is a non-degenerate simplex and 0 2 �.

Proof. By b), by reordering if necessary the set X, we have:

(1.1.4) �x1 2 
 = CC (x2; : : : ; xn) :

But this together with a) implies that

Vec (X1) = V ;

which together with c) implies that X1 � V is an NC-set. It follows

that if we slice 
 by some appropriate a�ne hyperplane 0 =2 H � V

the convex polyhedron

P = H \ 
 = CH(p2; : : : ; pn) � H ;

pj = [�xj ; � > 0] \H ; j = 2; : : : ; n ;

will satisfy ? 6=
�

P � H. Let


k = CC(x̂1; x2; : : : ; x̂k; : : : ; xn) ; Pk = 
k \H � P � H :

Clearly, for each k = 2; : : : ; n, the relative interior of Pk is non empty

(? 6=
�

P k � H) if and only if

(1.1.5) Vec (Xnfx1; xkg) = V :

If for some k = 2; : : : ; n (1.1.5) holds, we must have

(1.1.6) x1 =2 �
k :

Indeed, if not and x1 2 �
k, the set Xk satis�es the C-condition, but

this together with (1.1.5) contradicts c).

If we combine (1.1.4), (1.1.5) and (1.1.6), we see that

P 6= [[Pk ; k = 2; : : : ; n ;
�

Pk 6= ?] :

It follows by the Lemma in 1.1.1 that P is a non degenerate simplex.And

from the choice of H and the remark at the beginning of Section 1.1.1
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it follows that x2; x3; : : : ; xn is a basis of V . This together with (1.1.4)

completes the proof of our proposition. To see how this is done, we can

assume without loss of generality that x2; : : : ; xn are the coordinate

unit vectors Ij = (0; 0; : : : ; 1; 0; : : : ; 0); (1.1.4) simply says then that x1
lies in the negative quadrant. � = [x1 ; Ij ; j = 1; : : : ; n � 1] is then

clearly a non degenerate simplex and 0 2 �.

Remarks.

i) One should observe that we can reformulate the above proposi-

tion and say: E � V is a minimal A1 \ A2 if and only if there exists

V = V1 � V2 a direct decomposition of the space such that

E = (E \ V1) [ (E \ V2) = E1 [E2 ; V2 6= f0g ;

and:

a) Either V1 = f0g or E1nf0g is a basis of V1.

b) � = [E2nf0g] is a non-degenerate simplex in V2 and 0 2 Int�.

ii) It is an interesting exercise (but of no use to us) to work out

the minimal A3 sets where E 2 A3 if and only if CH(Enf0g) = C � V

contains 0 in its interior 0 2
�

C. Such a set need not necessarily be a

simplex.

1.1.4. The minimal A-couple.

Let V be some �nite dimensional vector space and let A � E � V

be two �nite subsets. We shall say that A � E is a minimal A-couple

if

i) A 2 A.

ii) E � A + A + � � � = f�1 + �2 + � � �+ �p; �j 2 A, j = 1; : : : ; p,

p � 1g.

iii) 0 6= � 2 A implies Enf�g =2 A.

It is clear that then A is a minimal A-set. Note also that because

of ii) we can replace i) by:

i)0 E 2 A.
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Example. A = A1. It is then clear that A � E a minimal couple if

and only if Anf0g is a basis of V and

(1.1.7) B = EnA � f0g ; i.e. B = f0g;? :

Let now A � E be some minimal A2 couple, then by 1.1.3 the

points of A are the vertices of some simplex

� = [A] = [�1; : : : ; �k] ; 0 2 Int� :

Let

�j = [0; �1; : : : ; �̂j; : : : ; �k] ; j = 1; 2; : : : ; k ;

be the simplex that we obtain by replacing �j by 0 (1 � j � k).

It is clear that

(1.1.8)
[
j

�j ;
[
j

(��j) � V 0 = Vec (�1; : : : ; �k) � V ;

are neighbourhoods of 0 in V 0. The condition iii) (and the de�nition of

the C-condition) implies on the other hand that if B 6= ?, then

(1.1.9) ��j \ CC(B) = f0g ; j = 1; 2; : : : ; k :

(1.1.8), (1.1.9) together imply that

V 0 \ CC(B) = f0g :

Therefore (1.1.7) holds again. We have:

Proposition. Let A � E � V be some A1 \A2 minimal couple. Then

(1.1.10) B = EnA = ?; f0g :

Furthermore there exists some direct decomposition V = V1 � V2 with

V2 6= f0g such that

A = (A \ V1) [ (A \ V2) = A1 [ A2 ;(1.1.11)

either V1 = f0g or A1nf0g is a basis of V1 ;(1.1.12)

A2nf0g are the vertices of some

non-degenerate simplex in V2 ;
(1.1.13)
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and

(1.1.14) 0 2 Int [A2nf0g] :

Proof. Let

Anf0g = (�1; : : : ; �n) ; � = CH(Anf0g) ;

V i = Vec (�1; : : : ; �̂i; : : : ; �n) ; �i = [�1; : : : ; �̂i; : : : ; �n] :

By the proposition in 1.1.3 and the fact that A is a minimal A1 \ A2

set it follows that

0 2 � ; � is a non-degenerate simplex � V :

This in turn implies that

(1.1.15) dimV i
� dimVec (A)� 1 = dimV � 1 ; i = 1; 2; : : : ; n :

We can distinguish two cases:

Case i) 0 2
�

� = Int�.

Case ii) There exists 1 � m < n such that

0 2 �j ; 1 � j � m; 0 =2 �j ; m < j � n ;

where we suppose that we have, if necessary, reordered the set (�1; : : : ;

�n).

In case i) our proposition follows by repeating verbatim the proof

of (1.1.7) for the previous case A = A1. We shall assume therefore that

we are in case ii). We then claim that

(1.1.16) B � V i ; i = 1; 2; : : : ;m :

Indeed, if not, there exists

Vec (A) 3 � =2 V i ; for some, say i = 1; 1 � i � m:

But then (1.1.15) implies that

Vec (Enf�1g) = V :
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On the other hand, since 0 2 �1 the set Anf0; �1g and, a fortiori,

the set Enf�1g satis�es the C-condition and Enf�1g 2 A1 \ A2 in

contradiction with iii). This proves (1.1.16).

We shall set now

V1 = Vec (�1; : : : ; �m) ; V2 = Vec (�m+1; : : : ; �n) ;

~� = [�m+1; : : : ; �n] :

It follows by the conditions of case ii) that �1; : : : ; �m is a basis of V1
and ~� is a non-degenerate simplex of V2 such that

0 2 Int ~� ; ~� =

m\
j=1

�j :

Observe that if A = a�ne subspace spaned by �1; : : : �m, then e�\A =

? and therefore 0 62 A, then use the argument of (1.1.1).

This proves the conditions (1.1.11), (1.1.12), (1.1.13) and (1.1.14)

of the proposition and that V = V1 � V2. It follows from (1.1.16) that

B �
Tm

i=1 V
i = V2. The condition (1.1.10) follows because what we

have shown implies that

(A \ V2) � (E \ V2) � V2

is a minimal couple in V2 that falls under our previous case i).

This completes the proof of the proposition.

1.1.5. Inner product spaces.

We shall now assume that the vector space V is assigned with an

inner product h�; �i. Let then E = (e1; : : : ; en) � V be some NC set (cf.

1.1.2) such that ej 6= 0, 1 � j � n. By Hahn-Banach this is equivalent

to the fact that there exists u 2 V such that

(1.1.17) hu; eji > 0 ; 1 � j � n :

We shall show that it is possible to choose the u in (1.1.17) to satisfy

in addition the condition

(1.1.18) u 2 CH(E) :
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Indeed let u 2 V be as in (1.1.17) and let

ej = hu; ejiu+ e0j ; hu; e0ji = 0 ; j = 1; : : : ; n :

We can now distinguish a number of cases:

1) u = � ej for some � > 0, 1 � j � n. Then (1.1.18) holds.

2) The set E0 = (e01; : : : ; e
0

n) is NC and e0j 6= 0, 1 � j � n. By

induction on the dimension of V there exist then

u0 = ��j e
0

j ; ��j = 1 ; �j � 0 ; he0j; u
0
i > 0 ; 1 � j � n :

Then u1 = ��j ej satis�es (1.1.17), (1.1.18).

3) There exist �j � 0, ��j = 1 such that ��j e
0

j = 0. But then

u1 = ��j ej = (��j hu; eji)u

satis�es (1.1.17), (1.1.18).

By a slight perturbation, we can even guarantee that the u 2 V

that satis�es (1.1.17) and (1.1.18) is of the form

u =

nX
j=1

�j ej ; �j > 0 ; 1 � j � n :

1.2. Algebraic considerations.

In this section, we shall recall some standard facts and de�nitions

and also introduce some new notions. All the Lie algebras in this sec-

tion, unless otherwise stated, will be �nite dimensional and de�ned over

R.

i) Subnormal subalgebras. Let g1 � g be a Lie algebra and a

subalgebra. We say that g1 is a subnormal subalgebra and denote

g1/ / g if there exist subalgebras

g1 � g2 � � � � � gp = g ; p � 1 ;

such that gj / gj+1 (i.e. gj is an ideal of gj+1) for j = 1; : : : ; p� 1.
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If g is assumed soluble it follows (without extra cost) that we can

assume that dim (gj+1=gj) = 1, 1 � j � p�1. It is clear that the above

relation is transitive, i.e.

g1/ / g2/ / g3 implies g1/ / g3 :

Quite generally for any Lie algebra q, we shall denote by z(q) it center.

Observe also that if a � n is any subalgebra of the nilpotent algebra n,

then a is subnormal. To see that one has to distinguish the two cases

z(n) � a ; z(n) 6� a

and use induction.

ii) Nilpotent g-algebras. Let n be some nilpotent Lie algebra and

let g � @(n) be some Lie subalgebra of the Lie algebra of derivations

of n (i.e. g acts on n by derivations). We shall then denote by [x; y] =

�[y; x] 2 n, x 2 g; y 2 n the action of g on n and consider n1 � n the g

subalgebras of n, i.e. the subalgebras for which [g; n1] � n1.

iii) Abstract root algebras. Let n be some nilpotent g algebra (g �

@(n)) as above. Let V be some �nite dimensional vector space which we

shall call the space of roots. Let E � V be a �nite subset of elements

which will be called roots. For every e 2 E we shall consider ne � n

a subspace which we shall call the root space of e 2 E. We shall say

that n; g; V; E; ne (or simply n or n; g), are an abstract root algebra if

the following conditions are veri�ed:

a) [ne; g] � ne 6= f0g, e 2 E.

b) For e1; e2 2 E

[ne1 ; ne2 ] �

(
f0g ; if e1 + e2 =2 E ;

ne1+e2 ; if e1 + e2 2 E :

c) For every g-subalgebra ~n � n (and in particular for ~n = n) we

have a direct sum decomposition

~n =
M
e2E

(~n \ ne) :

The trivial case n = f0g, E = ? shall, for convenience, be admitted in

the above de�nition.
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It is clear that if (n; g; V; E; ne) is a root algebra and ~V � V then

(n; g; ~V ;E; ne) is also a root algebra in a natural way. And if ~n � n

is g-subalgebra of n then (~n; g; V; ~E; ~ne = ne \ ~n) is also a root algebra

with
~E = fe 2 E ; ~n \ ne 6= f0gg :

If a propertyA has been assigned on the �nite subsets of V as in Section

1.1.2, we shall say that the root algebra (n; g; V; E; ne) is an A-algebra

if E 2 A.

Examples.

iv) The Zassenhaus decomposition. Let n be some nilpotent com-

plex algebra and let us assume that g is also nilpotent. We can consider

then

n =
M
e

ne ; e 2 E � HomR[g; C ] ;

where e are the roots of the Zassenhaus root space decomposition of the

g action on the complex vector space n. We obtain thus a root algebra

(cf. [9]).

The nilpotency of g is essential for the above to work for otherwise

we do not have root space decomposition. Even in the case when n is

abelian, i.e. is just a complex vector space, and g is soluble, where we

can de�ne the roots of the action { by Lie's theorem cf. [9] {, we cannot

in general de�ne root spaces.

v) The real root space Zassenhaus decomposition. The following

modi�cation of the above example is a forerunner of things to come.

n is a real nilpotent algebra and g is nilpotent. We have then the

corresponding Zassenhaus decomposition

n
 C =
M
e

ne ; e 2 E :

We can write then e = Re e+i Im e where Re e, Im e 2 g
� = HomR[g;R].

It is then very easy to see thatM
e2E

Re e=L

ne = nL = ~nL 
 C ; L 2 g
� ;
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where I use the notations of [2, Section 1.2], and where ~nL � n. When
~nL 6= 0 we call this the real root space with real root L 2 g

�, and we

have the corresponding \real root space decomposition"

n =
M
L2�

~nL ; � = fRe e; e 2 Eg � g
� ;

the elements of � will be called the \real roots". This gives again an

abstract root algebra in the sense of iii).

vi) The basic example of a soluble Lie algebra. The set up will be

the same as in [2, sections 1.1{1.3] the notations there will be preserved:

q � n is a soluble real Lie algebra together with its nilradical, h will be

some nilpotent almost complement of n (e.g. a Cartan subalgebra { so

that [2, (1.1.9)] q = n+ h). We have then

(1.2.1) n = n0 � n1 � � � � � nk ;

the real root space decomposition of [2, (1.3.4)] where n0 corresponds

to the real root 0, and abusively n0 could be n0 = f0g. We shall set

g = n0+h (equal to qR with the notations of the proposition of [2, 1.3])

which is now a soluble algebra (but not in general nilpotent).

The above set up gives us an abstract root algebra (n; g) where

the root space decomposition is given by (1.2.1). The set of the roots

E can be identi�ed to a subset of any one of the following spaces

q
�; g�; (g=n0)

� = (h=h \ n0)
� = (q=n)� by the obvious identi�cations.

Any of these spaces could thus be taken as the space of roots.

vii) Subalgebra of the abelian and Heizenberg type. In this

section n is a general root g-algebra.

vii)a Let a � n be an abelian g-subalgebra of n. We have then

(1.2.2) a =

kM
i=0

ai ; ai = ni \ a ; i = 0; : : : ; k ;

where, for convenience, I use the notations of (1.2.1). If we erase the

zero components we obtain the corresponding root space decomposition

of that subalgebra.

vii)h We shall also consider subalgebras of n of Heizenberg type.

This is what we mean:
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We shall assume that

(1.2.3) �1;��1; �2;��2; : : : ; �p;��p � E

are non-zero distinct roots among the roots of n, and we shall assume

that

(1.2.4) f0g 6= H�j � n��j ; j = 1; 2; : : : ; p

are non-trivial g-subspaces such that among all the brackets,

[x1; [x2; : : : ]; xk]; : : : ] ; xj 2 H� =
nX

Hi ; i 6= 0 ; �p � i � p
o
;

where 1 � j � k, the only ones that may not be zero come from

[Hi; H�i] ; i = 1; 2; : : : ; p :

It is clear then that

(1.2.5) H = H� �H0 = H� �

pX
i=1

[Hi; H�i] ;

is a g-subalgebra of n and that

(1.2.6) H0 � n0 \ z(H)

(z is the center). The root space decomposition ofH is of course implicit

in (1.2.5).

One should observe that quite generally, if we are given

H�j ; j = 0; : : : ; p ;

arbitrary vector spaces such that Hj 6= 0, j 6= 0 and

�j : Hj �H�j �! H0 ; j = 1; : : : ; p ;

arbitrary bilinear mappings, we can construct a unique Lie algebra on

the direct sum by the conditions

(1.2.7) H =

pX
j=�p

Hj ; [x; y] = �[y; x] = �j(x; y) 2 H0 ;



78 N. Th. Varopoulos

when x 2 Hj , y 2 H�j , j = 1; 2; : : : ; p, and demand that all the other

brackets are 0. We shall call such an algebra an algebra of Heizenberg

type. The algebra (1.2.7) is abelian if �j = 0, j = 1; 2; : : : ; p. The

integer p � 1, which may not be uniquely determined, will be called

the order of H.

The following facts are easy to verify:

Let f0g 6= ~Hj � Hj , j = �1; : : : ;�p, ~H0 = H0 be as abovr, then
~H =

Pp

j=�p
~Hj / H is an ideal. If

pX
j=1

[ ~Hj; ~H�j ] � H�

0 � H0 ;

where H�

0 is an arbitrary subspace, then

(1.2.8) H� =

pX
j 6=0

j=�p

~Hj +H�

0

is an ideal of ~H because of (1.2.6) (but not necessarily an ideal of H).

If the spaces Hj , H0; : : : are g spaces as in (1.2.4), (1.2.5), then the

above algebras are of course g-root algebras. In the above de�nition

(1.2.8) the algebra H� could be the sum of an abelian algebra with

an algebra of Heizenberg type of possibly lower order. It follows in

particular that in the Heizenberg algebra (1.2.8) we can either �nd an

abelian Heizenberg subalgebra of order 1

(1.2.9) H� �H�� ; H�� 6= 0 ; [H�; H��] = 0 ;

or a \purely non-abelian" subalgebra of Heizenberg type of order 1

(1.2.10) H� �H�� �H0 ; H�� 6= 0 ; H0 = [H�; H��] 6= 0 :

Furthermore, if H is as in (1.2.4), (1.2.5) then we have H�� � n��.

viii) Eigenvectors of a soluble action. Let g be some soluble real

Lie algebra that acts on the real vector space V and therefore also on

the complexi�ed space Vc = V 
 C (I use the notation ad for that

action). By Lie's theorem we can then �nd

(1.2.11) 0 6= � = � + i � 2 Vc ; ad (x)� = �(x) � ; x 2 g ;
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where �; � 2 V and � 2 HomR[g; C ]. If �(x) 2 R then both �; � are

common eigenvectors of the g action, as long as they do not vanish.

In general VecR(�; �) � V is a one or two dimensional g subspace and

the action of g on VecR(�; �) is semisimple. Furthermore the action of

Exp (g) � GL(V ) is given, in real terms, by the composition of a dilation

and a rotation (provided that the basis, and the the corresponding

Euclidean structure, on that, one or two dimensional, subspace has

been properly chosen). The above two operations of course commute

with each other.

The �nal conclusion is that in both cases we can �nd in V a one

or two dimensional g-subspace on which the g action is as above. We

shall call such a subspace an eigenvalue subspace.

ix) The eigenvalue subalgebras. I shall specialize now the set up

vii) in the case where n � q and g = n0 + h are as in vi) and I shall

apply the considerations of viii) to the g-action on the g subspaces of

n.

It follows in particular that in each non zero subspace ai = ni \ a,

i = 0; : : : ; k of (1.2.2) we can �nd a one or two dimensional eigenvalue

subspace ~ai � ai. We shall call the corresponding abelian algebra

(1.2.12) ~a =
X

~ai � a

an eigenvalue abelian algebra.

Similarly if 0 6= H�� � n��, as in (1.2.9), (1.2.10) we can �nd
~H�� � H�� two eingenvalue subspaces with dim ~H�� = 1; 2. We can

then consider

(1.2.13) ~H� �
~H�� � [ ~H�; ~H��] ;

where now 0 � dim[ ~H�; ~H��] � 4. We shall call that algebra an

eigenvalue algebra of Heizenberg type. This algebra could, of course,

be abelian. The dimension of the algebra in (1.2.13) could be anything

between 2 and 8.

Observe �nally that the action of g on W = [ ~H�; ~H��] is semisim-

ple. Indeed the complexi�ed space W 
 C is generated over C by com-

mon eigenvectors of g. The eigenvalues of these vectors with respect to

the action of G = Exp (g) � GL(W ) are all unimodular, therefore the

action of G on W is bounded and thus semisimple. In fact W admits

a direct g-decomposition W = W1 � � � � such on each W1; : : : the G

action is an orthogonal transformation.
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In both the above cases, the action of g on the corresponding

eigenvalue algebra is semisimple and abelian (i.e. it factors through

g 7�! g=[g; g]). Furthermore the action of g \ n (which incidentally is

equal to n0) on the above eigenvalue algebra is both semisimple and

nilpotent, it is therefore trivial.

1.3. The Heart of the Matter: The algebraic reduction.

The set up here will be the set up of a general (n; g) abstract root

algebra

n =
M
e2E

ne ; e 2 E :

1.3.1. Bracket reduced algebras.

We shall decompose the set of roots E = A [B by

A = fe 2 E : ne \ [n; n] = f0gg ; B = fe 2 E : ne \ [n; n] 6= f0gg ;

and adopt throughout the notation

(1.3.1) n = nA + nB =
M
�2A

n� �
M
�2B

n� :

It is then clear that B = ? if and only if n is abelian. If 0 2 E we have

[n�; n0] � n� \ [n; n] = f0g ; � 2 A ;

[nA; n0] = f0g :(1.3.2)

We shall say that n is a bracket reduced algebra if

[n; n] = nB

(Alternatively: for all e 2 E, [n; n]\ ne is either zero or ne). Let n be a

bracket reduced algebra then

nA(mod [n; n]) = n(mod [n; n])
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and this, by the nilpotency of n, implies that nA generates n. In par-

ticular

(1.3.3)

[n; n] = nB =
X

[nA; [nA; [: : : ; nA]; : : : ] ;

B �
X
j�2

(A+A+ � � �+ A) ;

where j under the summation indicates the length of the summation

A + � � � + A. By (1.3.2) and (1.3.3) it follows that if 0 2 E and n is

bracket reduced, then we have

(1.3.4) n0 � z(n) :

We also have:

Proposition. A bracket reduced algebra for which B = f0g is the

direct sum of an abelian algebra and an algebra of Heizenberg type (cf.

1.2.vii)).

Indeed by (1.3.4) and the hypothesis it follows that

(1.3.5) [n; n] � z(n) :

But this together with (1.3.3) and the hypothesis implies that n =

[n; n] and that

(1.3.6) [n; n] =
X

f[n�; n��] ; �;�� 2 Ag :

Clearly the proposition is but a reformulation of (1.3.5), (1.3.6).

1.3.2. The bracket reduction.

Let n = nA + nB be an arbitrary root algebra as in 1.3.1, and let

n1 = nA + [n; n] ;

which is an ideal in n and also a g-root algebra with the same root set

E1 = E, i.e. in the process of passing from n to n1, n ! n1 we \have
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not lost any roots". We clearly have for n1 the analog of the (1.3.1)

decomposition

n1 = nA1
� nB1

;

and clearly

A � A1 ; B � B1 ; E = A [B = A1 [ B1 = E1 :

Furthermore, n = n1 if and only if n is bracket reduced.

The operation n 7�! n1 can clearly be iterated n �! n1 �!

(n1)1 = n2 �! � � � until we stop n . n1 . � � � . np = np+1 = n
�. We

obtain thus n� � n a subnormal bracket reduced subalgebra

n . .n� = nA� + nB� ; A � A� ; B � B� ; A� [B� = E :

1.3.3. The A-reduction.

We shall now consider n = nA + nB (E = A [ B) some bracket

reduced root algebra as in (1.3.1) that is assumed to be an A-algebra,

i.e. E 2 A where A is as in Section 1.1.2.

We shall consider the couple of subsets

A � E � V

and we shall distinguish two mutually exclusive possibilities.

Case i) A � E is a minimal A-couple.

Case ii) There exists 0 6= � 2 A such that Enf�g 2 A.

The fact that E � A+A+ � � � (cf. (1.3.3) shows that n falls either

under case i) or case ii). Let us assume that n is as in case ii) and that

Enf�g 2 A. We can consider then

n
� = n	 n� = nAnf�g + nB / n ;

which is an ideal of n and also an A-algebra where the set of roots

is Enf�g. In general n
� is not bracket reduced. We shall consider

therefore the subalgebra

n
1 = (n�)� / / n :
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This is a bracket reduced A-algebra.

If n is as in case i) we set n
1 = n so that n = n

1 if and only if we

are in case i).

This operation n 7�! n
1 �! (n1)1 = n

2 �! � � � can be iterated

until it becomes stationary: n
p = n

p+1 = n̂. We have thus proved the

following.

Proposition. Let n be some A root algebra, we can then �nd

n̂ = n̂
Â
+ n̂

B̂
/ / n ;

some subnormal bracket reduced A-subalgebra, such that Â � Â[B̂ = Ê

is a minimal A-couple.

In the special case when A = A1 \A2 as in Section 1.1.4 we know

that there are exactly two possibilities:

i) B̂ = ?: the subalgebra n̂ is then abelian.

ii) B̂ = f0g: the algebra n̂ contains a subalgebra (possibly abelian)

of Heizenberg type as in (1.2.9) or (1.2.10).

1.3.4. The eigenvalue subalgebra.

Let us specialize further and consider the case n � q and g = n0+h

as in 1.2.vi). If by the above reduction (i.e. as in the proposition of

Section 1.3.3) we are in case 1.2.vii)a we can proceed as in (1.2.12)

and �nd a possibly smaller subnormal subalgebra that is an eigenvalue

algebra and whose roots
^̂
A � Â are the vertices of a simplex in (h=h\

n)� such that 0 2 Int [
^̂
A ] (in particular none of the roots is 0).

If by the above reduction we are in case 1.2.vii)h we can proceed

as in (1.2.13) and �nd a possibly smaller eigenvalue subalgebra that is

of Heizenberg type.

The above eigenvalue subalgebras are of course not uniquely de-

termined. We shall �x e � n, once and for all, one such algebra and

we shall denote by r the number of its distinct roots (i.e. with our

previous notations, r = card (
^̂
A ) in the abelian case, and r = 2 in the

Heizenberg case). We shall also �x some basis e1; : : : ; eq of e where

q � m = dim n � n = dim q :
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That basis will be chosen and �xed once and for all so as to have the

following additional properties:

i) If e is abelian as in (1.2.12): For each 1 � i � r we can �nd

1 � j � q such that

(1.3.7) ej or (ej ; ej+1) � ~ai ;

depending on whether dim~ai = 1 or 2, and ej or (ej ; ej+1) is a basis of

that subspace.

ii) If e is a Heizenberg algebra as in (1.2.13): For each of the two

subspaces H�, H�� we can �nd 1 � j � q such that

(1.3.8) ej or (ej ; ej+1) � H�� ;

and such that ej or (ej ; ej+1) is a basis of that subspace. This will dis-

pose of at most e1; e2; e3; e4 and at last e1; e2. The remaining elements

of the basis lie in [ ~H��; ~H�] and form a basis of that space.

When

dim~ai ; dimH�� = 2 ;

in (1.3.7) or (1.3.8), we shall further impose on the pair ej ; ej+1 the

condition that with respect to that basis the action of Exp g on ~ai
or H�� is a composition of a dilation and a euclidean rotation as in

1.2.viii). It is also possible to choose that basis so that the action of

Exp g on [ ~H��; ~H�] can be split into a number of rotations. This last

point is however not vital for what follows.

The above notations of e of r; q;m; n and of the above basis will be

�xed for the rest of the paper.

2. Lie Group Considerations.

2.1. The Exponential basis.

Let q be some soluble real Lie algebra and let e1; : : : ; en 2 q be

a basis of q such that the subspaces Ij = Vec [e1; : : : ; ej ] satisfy the

condition

[Ij+1; Ij] � Ij ; j = 1; 2; : : :

We shall call such a basis an exponential bases of q.
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Let now e � n; h � q be as in 1.2.vi) and 1.3.4. We shall consider

in what follows special exponential basis and denote them

(2.1.1) he1; : : : ; em; u1; : : : ; usi � q ;

where with the notations of 1.3.4 we have:

i) e1; : : : ; eq is a basis of e as in 1.3.4.

ii) e1; : : : ; em is an exponential basis of n and m � q.

iii) u1; : : : ; us 2 h and m+ s = n.

To guarantee iii), recall that n + h = q and that [h; h] � n and

therefore any set u1; : : : ; us 2 h, s = n � m, such that e1; : : : ; em,

u1; : : : ; us is a basis of q will give an exponential basis.

A special choice of u1; � � � ; us will be made in what follows. To-

wards that let us consider the space V = h=h \ n and identify V = V �,

once and for all, by some �xed scalar product. We shall choose appro-

priately u1; : : : ; us some basis of V and then lift it in anyway whatsoever

so as to form the basis (2.1.1). To do that, we consider L1; � � � ; Lk 2 V
�

the distinct non-zero real roots of the action of h on n and consider the

subset L1; : : : ; Lr of these roots that was constructed in 1.3.4 and which

gives the distinct roots of the eigenvalue algebra e.

If e is abelian as in (1.2.12) we can assume that L1; : : : ; Lr are the

vertices of a simplex (equal to [
^̂
A ] with the notations of 1.3.4) and

(2.1.2) 0 2 Int [L1; : : : ; Lr] :

If e is of Heizenberg type as in (1.2.13) we can assume that r = 2,

L1 = �L2 6= 0.

With the identi�cation of V =V � we shall identify L1; : : : ; Lr with

elements of V and we shall set

V2 = Vec [L1; : : : ; Lr] ; V1 = V ?2 = [u 2 V ; Lj(u) = 0 ; 1 � j � r] ;

V = V1 � V2 ; 0 � dimV1 = � � s ;

s� � = dimV2 = r � 1 if e is abelian as in (1.2.12) ;

s� � = dimV2 = 1 if e is of Heizenberg type as in (1.2.13) :

In both cases we choose u1; : : : ; u� to be a basis of V1 and u�+1 � � �us
to be a basis of V2 = V ?1 . The notations �, s for these two dimensions

will be mentioned throughout.
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A special case: Split algebras. We say that q is a split algebra if

it is possible to choose h as above to be an abelian algebra. This is for

instance the case when q is the Lie algebra of a real algebraic group.

In that case, the basis elements u1; � � � ; us chosen above, commute and

span an abelian subalgebra V � q that gives a semidirect product

decomposition:

q = n ./ V :

Remark. The notation for semidirect product in [2] is h and in [1] it

is X�.

The use of the above extraneous scalar products on V can be

avoided. cf. Section 3.2.3 for C-graphs.

2.2. The Exponential Coordinates.

If e1; e2; : : : ; en 2 q are exponential coordinates of q as in Section

2.1 we can use them to identify Q, the simply connected soluble group

that corresponds to q, with Rn by the identi�cation (cf. [1])

(2.2.1) R
n
3 (t1; : : : ; tn) �! Exp (t1 e1) � � �Exp (tn en) 2 Q :

If we use the special exponential basis constructed in Section 2.1 we

obtain a number of important identi�cations. Let N;H;NE � Q be

the subgroups that correspond to n; h; e � q. Let V; V1; V2 � Q be the

submanifolds that correspond to V; V1; V2 identi�ed to subspaces of Rn

by the identi�cation (2.2.1). We have

(2.2.2) V1; V2 � V � H ; N � V = N � V1 � V2 = Q ;

where \ � " indicates group multiplication. When q is a split algebra we

have a semidirect product decomposition

Q = N ./ V = (N ./ V1) ./ V2 ;

Q � NE ./ V = (NE ./ V1) ./ V2 = QE ;

where in this special case V1; V2 � V � Q are subgroups (�= to vector

spaces).

In the general case we have C1-manifold identi�cations

(2.2.3) Q �= N � V �= N � V1 � V2 � NE � V1 � V2 = QE ;
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but of course in general QE cannot be identi�ed to a subgroup of Q.

Observe however, that in the case of the Heizenberg eigenvalue

algebra (1.2.13), dim V2 = 1 and then V2 � Q is a subgroup and so is

NE ./ V2.

Observe �nally that the fact that h \ n � n0 in 2.2.v) implies that

if we are in the abelian case (1.2.12) we have

NE \H = feg :

If we denote by Gp(V ) � H the subgroup generated by V, this implies

that we have

NE \Gp(V ) = feg

and that these two groups form a semidirect product in Q

(2.2.4) NE ./ Gp(V ) � Q :

Observe also that by the �nal remark of 1.2.ix), whether NE is abelian

or not, the action of Gp(V ) on NE factors through Q �! Q=N . Also,

by the de�nition of V1, Ade(v1), v1 2 V1, lie in some compact subgroup

of GL(e).

2.3. Riemannian structures on Lie groups.

On every connected Lie group we can assign a unique, up to quasi-

isometry, left invariant Riemannian structure by assigning some �xed

scalar product on the Lie algebra of G. I shall denote by d(�; �) = dG(�; �)

the corresponding distance and by jxj = d(x; e).

It is of course clear that if ' : G1 �! G2 is a group homomorphism

then d' is bounded and if ' identi�es G1 to a closed subgroup of G2

then d' is quasiisometric. When G = G1 ./ G2 is a semidirect product

(G 3 g = g1g2), by identifying G = G1 � G2, we clearly have TG �=
TG1�TG2 canonically. That identi�cation induces an isometry on TG2

(but in general not on TG1) and TG1?TG2 in TG. The above hold,

of course, for an appropriate choice of the corresponding left invariant

Riemannian structures.

If G is soluble and simply connected, we can identify it to Rn as

in (2.2.1) and assign on G the corresponding Euclidean Riemannian

structure and the corresponding distance de(�; �). It is an immediate
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consequence of the Baker-Campbell-Hausdor� formula [1] that we have

A�1dG(x; y) � de(x; y) � AdG(x; y) ;(2.3.1)

A = C + jxjC + jyjC ; x; y 2 G ;(2.3.2)

provided that G is nilpotent and where C > 0 is independent of x; y.

If we identify V � G with Rs as in (2.2.2) we deduce from the fact

that V � H and the fact that G=N �= V �= R
s (this implies that for x 2

V , jxj is equivalent to the Euclidean norm) that the analogous estimate

(2.3.1), (2.3.2) holds for x; y 2 V , and that we can even take A = C

independent of x; y in the split case G = N ./ V . A consequence of the

above is that the Euclidean Riemannian structure and the Riemannian

structure induced on V; V1; V2 by the identi�cations (2.2.3)

V �! n� V � G ; n 2 N ;

are \polynomially distorted" (uniformly in n 2 N , i.e. the ratio of the

two Riemannian norms on the tangent space at x 2 V can be bounded

by C jxjC + C) in general, and quasiisometric in the split case.

Let the notations be as in (2.2.2), (2.2.3). When V2 � Q is a

subgroup, we can give on NE � V2 �= NE ./ V2 two Riemannian scalar

products h�; �i./ and h�; �iu1, u1 2 V1 on the tangent space. h�; �i./ is

the left invariant structure of the group NE ./ V2. The de�nition of

h�; �iu1 does not depend on the fact that V2 � Q is a subgroup and is

the Riemannian structure induced by the embedding

(2.3.3) NE � V2 3 (n; u2)�!
Iu1

(n; u1; u2) 2 NE � V1 � V2 � Q ;

and by the left invariant Riemannian structure of Q. Even when V2 is

not a subgroup we can still de�ne h�; �i./ on NE � V2 as follows. The

embedding of Rs �= V = Q=N � Q de�ned in (2.2.2) induces, by the

�nal remark of Section 2.2, an action of Q=N on NE . That action can

be used to de�ne a group NE ./ (Q=N). That group can, in turn,

be used to de�ne a left invariant Riemannian structure and therefore

the corresponding h�; �i./ on T (NE � V ) and T (NE � V2). Although

it is not essential for what follows, one can observe at this point that

the group structure NE ./ (Q=N) does not depend on the particular

embedding (2.2.2) and that the above Riemannian structure on NE�V

is intrinsically de�ned. To see this it su�ces to use the �nal remark of
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Section 1.2 (ix) and the fact that h\ n acts on e nilpotently. These two

facts put together show that the h \ n acts trivially on e.

We shall denote by j � j./ and j � ju1 the corresponding norms on

T (NE � V2). We have then

Lemma 2.3.1. At every point (n; u2) 2 NE�V2 and for every u1 2 V1,

we have

(2.3.4) A�1 j � ju1 � j � j./ � A j � ju1 ;

where

(2.3.5) A = C ju2j
C + C ;

where C > 0 is independent of n; u1; u2. Furthermore, in the split case

Q = N ./ V we can take A = C.

Proof. With the notations (2.3.3) and the identi�cations (2.2.3) we

have

Iu1(n; u2) = n � u1 � u2 = u1 � n
u1 � u2 2 Q ;

where \ � " denotes the group product and nu1 = u�11 nu1 denotes the

inner action of u1 on NE . It follows that

Iu0
1
= Left multiplication by u01 u

�1
1 � Iu1 � [(n 7�! nu

0

1 u
�1

1 )� Identity] :

We conclude therefore from the left invariance of the Riemannian struc-

tures on Q, that it su�ces to prove (2.3.4) with u1 = 0 (cf. �nal remark

of Section 2.2).

When u1 = 0, I0 identi�es NE � V2 to a submanifold of NE ./

Gp(V2) (cf. (2.2.4)). This means that for both Riemannian structures

h�; �i./ and h�; �i0, with the canonical identi�cations, we have

TNE?TV2 :

By the de�nition of the action of V2 on NE in the group NE ./ V2 which

is identical to the action of V2 � Q on NE we see that

j�j./ = j�j0 ; � 2 TNE :

The polynomial distortion in (2.3.5) in the Lemma is therefore a con-

sequence of (2.3.1), (2.3.2) and the few lines that follow.
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Let us denote by

� : X = (NE � V2)� V1 �! Q

[(n; u2); u1] 7�! n � u1 � u2 (group product) :

Let us assign NE � V2 with the h�; �i./ Riemannian structure, V1 with

the Euclidean Riemannian structure, X with the product structure and

Q with the left invariant Riemannian structure. With these notations

we have proved the �rst part (i.e. (2.3.6)), of the following

Lemma 2.3.2. The di�erential of � satis�es at x = [(n; u2); u1] 2 X

kd�jT (NE�V2)k � C (ju2j
c + C) ;(2.3.6)

kd�jTV1k � C (ju1j
c + ju2j

c + C) ;(2.3.7)

where C > 0, c � 0 are independent of x. Furthermore, when Q = N ./

V is a split group, we can take c = 0.

The assertion (2.3.7) is once more a consequence of the few lines

that follow (2.3.1), (2.3.2).

2.4. A special class of groups and explicit coordinates.

In this section we shall consider two important classes of groups

i) G = R
r ./ V = R

r ./ Rs where the action of V on R
r is given

by

AdRr(y) =

0B@ exp(L1(y)) 0

. . .

0 exp(Lr(y))

1CA ; y 2 V ;

where L1; : : : ; Lr 2 V
�. This group, after the identi�cation with R

r+s

with the obvious exponential coordinates, gives a Riemannian structure

on Rr+s with an orthonormal basis at (x1; : : : ; xr; y1 : : : ; ys)

(2.4.1)
�
exp (L1(y))

@

@x1
; : : : ; exp (Lr(y))

@

@xr
;
@

@y1
; : : : ;

@

@ys

�
� TG :
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The left invariant Riemannian structure h�; �i./ induced on NE ./ V2, as

we have considered in the previous section, is clearly of this kind when

NE is abelian (as in (1.2.12)). The imaginary part of the roots play

no role as far as the Riemannian structure is concerned (they just give

rise to orthogonal rotations in the 2-dimensional root spaces if there are

any).

ii) It is a little less simple to write down the orthonormal basis of

G = NE ./ V2 � Q when NE is an eignevalue algebra of Heizenberg

type as in (1.2.13). We shall not need to do this, we shall only need

a simple geometric estimate. In fact, here we might as well consider a

group of the form N ./ V = N ./ R where N is an arbitrary simply

connected nilpotent group, and not just a group of Heizenberg type,

and dimV = 1 (such groups are called of \rank 1"). We shall then �x

e 2 n (the Lie algebra of N) and assume that

jAd(y) ejn � exp (�� y) ; y � 0 ;

for some � > 0, where R has been identi�ed with V . This will certainly

be the case for NE ./ V2 in Section 2.2 and e the basis vectors in H�� of

(1.3.8) (provided that in the identi�cation of V2 with R we have chosen

the right orientation. These orientations are, of course, opposite for H�

and H��).

Let us now consider the \path"

' : R 3 � �! (nExp (�e); y) 2 N ./ V = G ;

for �xed n 2 N , y > 0. We then clearly have

'(�) = (n; y) Exp (� Ad(y) e) ;

and therefore

(2.4.2) j _'(�)j =
���d'� @

@�

���� � exp (�� y) ;

for the Riemannian norm j � j on TG.



92 N. Th. Varopoulos

3. Geometric Considerations.

3.0. Notations and De�nitions.

I found it very di�cult to describe the Geometric and Topological

constructions that are presented in this part of the paper without hav-

ing to resort to informal language, and without constantly abusing the

notations that I had already established. The aim of this �rst section is

to codify as far as possible, some of the notations and the notions that

will be needed and used in the rest of this paper.

I shall use the notation

(3.0.1) �
r
d = [(x1; : : : ; xr) 2 R

r ; jxj j � d; 1 � j � r] � R
r ;

with r = 1; 2; : : : , for the d-cube. This d � 1010 will be the free pa-

rameter in this paper and none of the constants C > 0 that will appear

will depend on d. I will also denote by �r
1 the above cube for d = 1010.

(Which is the \unit" cube for you if you happen to be 1 � 8� 1010 me-

ters tall.) Together with the above cube I shall also consider anisotropic

cubes of the form

(3.0.2) �
r
1 � [�A;A]t ;

where A � C (log d)C . I shall denote by @�r
d for the topological bound-

ary of (3.0.1) in Rr , with an analogous de�nition for (3.0.2).

Let now M be some Riemannian manifold and let

(3.0.3) � : �r
d �!M ;

be some Lip(C`) mapping de�ned in some neighbourhood of �r
d in R

r ,

where here and throughout, the subsets of Rr are assigned with the

Euclidean distance. One should think here of ` > 1 as a free parameter

that may be allowed to �!1. When we have (3.0.3) we shall say that

E, the image of �r
d by �, is

(3.0.4) E = �(�r
d) is a Lip(`)��

r
d �M :

The notation (3.0.4) to describe (3.0.3) is already abusive but conve-

nient. We shall use an analogous de�nition for

(3.0.5) �(X) is a Lip(`)�X �M ;
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where X is as (3.0.2) or X = @�r
d or X = @ (�r

d � [�A;A]t), etc.

In this context we shall use the following obvious scaling property:

If

(3.0.6) E is a Lip(`)��r
1 � [�A;A]t �M ;

then automatically

(3.0.7) E is a Lip (` (A+ 1))��r+t
1 �M :

The analogous property for any X as in (3.0.5) holds.

I shall use throughout the notation LL(d) to indicate mappings

from one metric space to another that are Lip(C (log d)C) for some

C > 0.

One of the basic de�nitions given in the introduction (Section 0)

will be reformulated as follows. We shall say that the Riemannian

manifoldM has property Fr, r � 2 (we shall also denote F =
T
p�2 Fp)

if for every

(3.0.8) E = �(@�r
1) is a LL(d)� @�r

1 �M ;

we can �nd some Ê

(3.0.9) Ê = �̂(�r
1) is a LL(d)��

r
1 �M

that \�lls in" E. The meaning of \�lls in" is the following

(F.I.) �̂j@�r
1
= � ;

we have in particular E � Ê.

I shall not make systematic use of the notations from the Theory of

currents (cf. [12], [13]), because it is not necessary for our constructions

or for the proof of our theorem to introduce an orientation in R
r . But

if we do orient Rr then (3.0.8) and (3.0.9) de�ne currents E and Ê in

M , and (F.I.) says among other things that

(3.0.10) @Ê = E ;

for the @-operator (cf. [13]; sometimes denoted by b-operator cf. [12])

of the currents, provided of course that the orientations of E and Ê are

compatible.
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3.1. The One Dimensional Construction.

3.1.1. The abelian case.

This construction will be made in the group G = R
2 ./ R of 2.4.i)

(with r = 2, s = 1) where L1 = �L2 6= 0, (� 2 R).

The issue is to give a speci�c embedding of @�2
d in G that will

have a number of properties.

1) The four vertices (�d;�d) 2 @�2
d) will be mapped on the cor-

responding points (�d;�d; 0) 2 G, where the exponential coordinates

(x1; x2; y) of 2.4.i) are used throughout for the group G.

2) The four sides fi, 1 � i � 4 (i.e. 1-dimensional faces of �2
d)

will be mapped into four C1 curves 
i � G, (1 � i � 4) that join the

corresponding vertices. Say the side f1 of �
2
d that joins (d; d) to (�d; d),

is mapped on 
1 � G that joins (d; d; 0), (�d; d; 0). The curve 
i lies in

the a�ne hyperplane Ai that is parallel to the y-axis and which goes

through fi � R
2 � G (with the above identi�cation). The above 
1 lies

in the a�ne hyperplane [x2 = d] = A1 and joins (d; d; 0) to (�d; d; 0).

For each 1 � i � 4 the side fi is parallel to the axis xj(i) j(i) = 1; 2

(1 � i � 4), which is one of the two x-axis. The f1 just above, is

parallel to the x1-axis. We shall demand that 
i lies on the \side" of

the a�ne hyperplane determined by

Ai \ [Lj(i)(y) � 0] = A+
i :

In the case of 
1 we have thus


1 � [x2 = d] \ [L1(y) � 0] = A+
1 :

We shall join the four pieces 
1 [ 
2 [ 
3 [ 
4 = 
 and obtain thus the

required mapping of �2
d in G. This mapping is piecewise smooth.

Observe that the above mapping is not a priori (1-1) and 
 is

not necessarily an embedding. But that if � < 0, i.e. if L1; L2 have

opposite signs then the above construction gives a Lip-embedding (i.e.

an embedding by a bi-Lip mapping).

We shall further demand:

i) 
 is an LL(d)��2
1 � G for the left invariant Riemannian struc-

ture of G.

ii) For each arc 
i the set

��1(jyj < C) \ 
i = 
Ci ;
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where � : R2 ./ V �! V is the canonical projection, consists of exactly

two straight line segments parallel to the y-axis emmunating from the

two vertices. In the case of 
1 we have 

C
1 = 
+1 [ 


�

1 where


�1 = (�d; d; y) ; 0 < L1(y) < C

(not the same C > 0).

Remark. For typographical reasons, I did not draw a picture. But a

nice picture can be drawn and the reader should do so for himself (cf.

[5, Section 2.B]).

The only point that is not obvious in the construction is i). This

will be veri�ed by an explicit parametrization for the curve 
1. The

other pieces 
2; 
3; 
4 can be treated analogously. To do that we identify

A1 with P
+, the upper half plane y > 0, in the obvious way, and we set


(t) = (x(t) � d; y(t)) 2 P+ ; �1 � t � 1 ;

�1 � x(t) � 1 ; 0 � y(t) � C log d ;(3.1.1)

x(�1) = �1 ; y(�1) = 0 ;

where we impose the following additional conditions

(3.1.2) x(�t) = �1 ; jtj 2 [1� 2 c0; 1] ;

i.e. x is constant near the end points of [�1; 1]. In between i.e. t 2

[�1+2 c0; 1�2 c0] the function x(t) is C
1 and is close to being linear.

We shall also assume c0 � 1.

(3.1.3) y(t) = C log d ; t 2 [�1 + c0; 1� c0] ;

for some large C and the same c0 as in (3.1.2). In the intervals [�1;�1+

c0] [ [1 � c0; 1], y(t) is C
1 and is monotone and almost linear. The

constancy of x near the end points guarantees that the condition ii) is

veri�ed. If the choice of C in (3.1.3) is large enough then the condition i)

will be veri�ed. This is the only point where we have to make a (trivial)

estimate. But this point is actually obvious and can be veri�ed with

the use of the orthonormal basis (2.4.1) of TG constructed in 2.4.i).

The details will be left to the reader who is strongly advised to do this
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and to compare it with the higher dimensional analogue (3.2.18) and

with the Lip property in Section 3.2.3.

Remark. When � < 0, i.e. when the group G is a C-group (cf. Section

0), the above construction actually gives 
 = 
1 [ 
2 [ 
3 [ 
4 which is

a C1 embedded 1-dimensional sphere S1 which, near the four vertices

(�d;�d; 0) 2 
 reduces to the following four line segments, that are

perpendicular to the 0x1; x2 coordinate plane

[� 2 
; dist (�; (�d;�d; 0) � C] = (�d;�d; 0)+[(0; 0; y); �C � y � C] :

3.1.2. A generalization: Groups of rank 1.

Let Q = N ./ V , where V �= R is the real line and N some simply

connected nilpotent group (cf. 2.4.ii)). We shall assume that g; h 2 n

(the Lie algebra of N) are two vectors that satisfy

(3.1.4)
jAd(y)gj � C exp (�� y) ; y > 0 ;

jAd(y)hj � C exp (�� y) ; y < 0 ;

where

(3.1.5) � > 0 ; � < 0 ;

i.e. we shall assume that Q is a C-group (cf. Section 0), and that the

action of V on N has two roots with real parts of opposite sign.

The nilpotency of N implies that a high enough group commutator

[: : : ; [X;Y ]; Y ]; : : : ; Y ] = e = Neutral element of N ; X; Y 2 N :

If we multiply out that commutator, we obtain (a \universal relation

in N")

(3.1.6) Xp1 Y q1Xp2 � � �Xpr Y qr = e ; X; Y 2 N ;

where r � 1, p1; p2; : : : ; q1; q2; � � � 2 Z are �xed. This relation will allow

us to embed in N a polygonal (i.e. piecewise smooth) curve whose
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vertices will be

P0 = e ;

P1 = Xp1 ;

P2 = Xp1Y q1 ; : : :(3.1.7)

P2j = Xp1 Y q1 � � �Xpj Y qj ;

P2j+1 = Xp1 Y q1 � � �Xpj+1 ; j � 1 :

The above pattern is clearly periodic no matter what X;Y 2 N is. We

shall set

X = Exp (dg) ; Y = Exp (d h) ; d > 1010 ;

with g; h 2 n as in (3.1.4), and shall join the successive vertices with

pieces of one parameter subgroups:

� We join P2j with P2j+1 with

P2jExp (pj+1 g t) ; 0 < t < d :

� We join P2j+1 with P2j+2 with

P2j+1Exp (qj+1 h t) ; 0 < t < d :

One should observe that this construction is a direct generalization of

the construction of the standard square �2
d in R

2 , where the relation

(3.1.6) is just the �rst commutator

X Y X�1 Y �1 = 0 :

When N = H is the Heizenberg group (cf. 1.2.viih)) an easy application

of the Baker-Campbell-Hausdor� formula (cf. [1]) shows that we can

take

(3.1.8) X Y 2X Y �1X�2 Y �1 = e ;

for a universal relation (cf. [5, Section 5.B3]).

We can now generalize the construction of 3.1.1 with �2
d � R

2

replaced by the above 2 r-sided polygon P (d) � N . Each side f of

P (d) will be replaced by some smooth curve 
i � Q = N ./ V exactly
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as in (3.1.1). We start from the initial vertex of f and while keeping

the N -coordinates �xed, we dip in to depth - C log d in V (i.e. the y-

coordinate), and in the correct direction that is determined by (3.1.4),

(3.1.5). Then we keep �xed the V -coordinate and cover the distance

along f in the N -coordinates. We then �nally come back to y = 0, in

the V coordinate, and to the second vertex of f on N .

The estimate (2.4.2), (3.1.4), (3.1.5) allows us then to make sure

that the new polygon P �(d) � N ./ V � Q is an LL(d) � @�2
1 � Q.

This is the analog of the condition 3.1.1.i). The (C)-condition (3.1.5),

together with the way we made the construction allows us to guarantee

that the analog of the Remark 3.1.1 holds for this polygonal curve.

The above P �(d) can be chosen, just as in Remark 3.1.1, to be a

C1-embedding of a 1-dimensional sphere.

Observe that in certain cases the 2 r points of (3.1.7) may not be

distinct. The above construction should then be made on a shorter

periodic subpatern of (3.1.7). At any rate the only case where we shall

use the above construction is when N is a group of \Heizenberg type",

i.e. for the relation (3.1.8). In that case the description of the above

construction simpli�es (cf. [5]).

3.2. The First Basic Construction.

3.2.1. Notations and de�nitions.

i) We shall consider here the group G = R
r ./ V = R

r ./ Rs of

2.4.i) and we shall use the exponential coordinates (x1; � � �xr; y1; � � �ys)

2 R
r+s and the orthonormal basis (2.4.1) of TG de�ned in 2.4.i).

It will be convenient to use these coordinates to identify G with

R
r+s , and to use \+" to indicate the Euclidean addition in R

r+s . Ob-

serve, however, that then

x+ g = x � g 2 G ; x 2 R
r ; g 2 G ;

where \ � " indicates the multiplication in G. We shall denote by

(3.2.1) �V : G �! V ; �R : G �! R
r ;

the canonical Euclidean projections induced by the identi�cation of

G = R
r � V . This identi�cation induces an identi�cation

TG = TRr � TV ;
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where the sum is orthogonal for the left invariant Riemannian structure

on TG. Furthermore, on TV the Riemannian scalar product coincides

with the Euclidean one. On TRr the Riemannian and the Euclidean

norms

j�jG ; j�jEuc ; � 2 TRr � T(x;y)G ;

can be negotiated with the help of the basis (2.4.1). In particular, it is

clear that if

(3.2.2) � 2 Vec
� @

@xi1
; : : : ;

@

@xia

�
lies in some coordinate subspace of Rr we have

(3.2.3) j�jG � C j�jEuc sup
1�j�a

(exp (�Lij (y)) :

ii) Let

�
r
d = f(x1; : : : xr) 2 R

r : jxjj � d; j = 1; : : : rg ;

be as in Section 3.0. Let I = (i1; : : : ; is) � (1; : : : ; r) be a subset and

let J = (1; : : : ; r)nI, (jIj = s, jJ j = r � s). Let further " = f"jg
r
j=1 be

such that

"j = �d ; j 2 J ; "i = 0 ; i 2 I :

We shall denote then

F = F (I; ") = fx 2 R
r : jxij � d; i 2 I; xj = "j ; j 2 Jg � �

r
d ;

which is one of the 2r�s s-dimensional faces of �r
d. If we de�ne the

slices of �r
d by

FI = fx 2 R
r : jxij � d; i 2 I; xj = 0; j 2 Jg ;

we clearly have with obvious notations

F = F (I; ") = FI + " :

For F as above we shall denote by �F 2 F the center of that face.
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The 0-dimensional faces are the vertices of �r
d. More generally, we

denote by @s�
r
d the union of all the above s-dimensional faces so that

@0�
r
d � @1�

r
d � � � �@r�1�

r
d = @�r

d :

For every face F = F (I; ") as above we shall denote as usual

@F = [[F (J ; "0); J � I; I 6= J; F (J ; "0) � F ] :

The slice FI with jIj = s can be identi�ed with �s
d, the boundary @FI

is then the @�s
d that corresponds in that identi�cation.

iii) We shall assume that the L1; : : : ; Lr 2 V
� that we used in the

de�nition of the group G = R
r ./ V (cf. 2.4.i)) are all non zero and

satisfy the following condition:

For every I � [1; : : : ; r], jIj � r� 1 the set (Li; i 2 I) � V � is NC

(cf. Section 1.1.2).

We shall identify, once and for all, V ' V � by some �xed scalar

product on V . We shall also �x for each ? 6= I � [1; : : : ; r], jIj � r � 1

(cf. 1.1.5)

(3.2.4) �I =
X
i2I

�i Li ; j�I jV � C log d ; Li(�I) � C log d ;

and �i > 0, i 2 I. It is important to observe that with the above

de�nition, for any choice of I1; : : : ; Ia (a � 1) as in (3.2.4), we have

(3.2.5)
Lj(�) � C log d ; j 2

a\
k=1

Ik ;

� 2 Convex Hull [�Ik ; 1 � k � a] :

3.2.2. The Auxilliary Construction.

We shall consider now F = F (I; "), jIj = r � 1 some r � 1 dimen-

sional face of �r
d and we shall �x a decreasing sequence of subfaces

F = Fr�1 � Fr�2 � � � � � F0 ;

such that dimFj = j = jIjj, where

I = Ir�1 � Ir�2 � � � �
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is the decreasing sequence of multiindices that correspond to these sub-

faces. We shall denote also (cf. Section 3.2.1)

�j = �Fj ; 0 � j � r � 1 ; F0 = f�0g ;

�j = �Ij ; 1 � j � r � 1 :

We shall �x

0 � �j ; �j � 1 ; 1 � j � r � 1 ;

and we shall de�ne inductively

(3.2.6) x0 = �0 ; xj+1 = (1� �j+1) �j+1 + �j+1 xj 2 Fj+1 ;

where j = 0; 1; : : : ; r � 2, and

(3.2.7) y0 = 0 ; yj+1 = (1� �j+1) �j+1 + �j+1 yj 2 V ;

where j = 0; 1; : : : ; r � 2. We shall also de�ne

�j = (xj; yj) 2 Fj � V � �
r
d � V � R

r
� V = G ; j = 0; : : : ; r� 1 :

Let us now de�ne the following functions of 0 � � � 1

(3.2.8)

�(�) =

8><>:
0 ; � 2 [0; c] ;

1 ; � 2 [1� 3 c; 1] ;

C1 ; increasing, and almost linear in between :

�(�) =

8><>:
0 ; � 2 [0; 1� 2 c] ;

1 ; � 2 [1� c; 1] ;

C1 ; and increasing in between :

The choice of 0 < c � 1 is irrelevant as long as it is small enough.

What counts in the above de�nition are the following facts

(3.2.9)
jd�j ; jd�j � C ; and �(�) 6= 0 ; � 2 [0; 1] ;

implies �(�0) = 1 ; �0 2 [� � c; � + c] :

In the inductive construction (3.2.6), (3.2.7), I shall then set

�j = �(�j) ; �j = �(�j) ; j = 1; : : : ; r � 1 ;
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where � = (�1; : : : ; �r�1) 2 [0; 1]r�1. We obtain thus

(3.2.10)

�r�1 : [0; 1]
r�1

�! G ;

�r�1(�1; : : : ; �r�1)

= (xr�1(�1; : : : ; �r�1); yr�1(�1; : : : ; �r�1)) :

We clearly have (cf. (3.2.1))

dxr�1 = d�R � d�r�1 : T [0; 1]
r�1

�! TRr ;(3.2.11)

dyr�1 = d�V � d�r�1 : T [0; 1]
r�1

�! TV :(3.2.12)

If we norm TRr in (3.2.11) with the Euclidean norm (cf. 3.2.1.i)) we

obtain by the de�nition (3.2.6) that

(3.2.13) kd�R � d�r�1kEuc. � C d ;

and we obtain also (cf. (3.2.4))

(3.2.14) kd�V � d�r�1k � C (log d) ;

where on TV in (3.2.14) we can assign either the Euclidean or the

Riemannian norm because these two norms coincide. Both (3.2.13)

(3.2.14) can trivially be veri�ed by induction. In fact we can improve

upon (3.2.13). Towards that we distinguish two cases:

Case 1. � 2 [0; 1]r�1 is such that �j(�) 6= 0, j = 1; : : : ; r� 1. By (3.2.9)

it follows then that

(3.2.15) dxr�1 = 0 :

Case 2. � 2 [0; 1]r�1 is such that there exists some 1 � p � r � 1 such

that �p = 0. From the de�nition (3.2.7) it follows then that

(3:2:16) yr�1 2 Convex Hull [�r�1; : : : ; �p] :

We shall choose the largest possible p so that � = 0 and either

i) p = r � 1.

ii) p < r � 1, �p+1 6= 0; : : : ; �r�1 6= 0.
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In both cases the de�nition (3.2.6) together with (2.2.9) implies

that

dxr�1(T [0; 1]
r�1) �

n @

@xi
: i 2 Ip

o
:

But this together with (3.2.2), (3.2.3), (3.2.5), (3.2.13), (3.2.16) implies

that if the C in (3.2.4) is large enough, the norm satis�es:

(3:2:17) kdxr�1kG � C d exp (�C log d) � C ;

where k � kG means that we assign now TRr in (3.2.11) with the left

invariant Riemannian norm of G. Putting together (3.2.15), (3.2.17),

(3.2.14) and 3.2.1.i). We conclude, that for an appropriate choice of the

constants C > 0 in (3.2.4), we have

(3:2:18) �r�1 : [0; 1]
r�1

�! G ; kd�r�1k � C log d ;

where, of course, we put the Euclidean norms on T [0; 1]r�1 and the left

invariant Riemannian norm on TG.

3.2.3. The Extension Operator and the Construction.

The notation FI , I � [1; 2; : : : ; r] for the various slices of the cube

�
r that were introduced in 3.2.1.ii) will be preserved here, with the

additional convention that I shall use the same notation

FI � �
r
1 ; FI � �

r
d ;

to indicate the corresponding slice, for some �xed I (i.e. xj = 0, j =2 I)

for the unit cube and the d-cube.

I shall consider throughout in this section and in the next, map-

pings

(3:2:19) � : �r
1 �! �

r
d � V ;

where Dom(�) � �
r
1 is some subset of �r

1. More precisely, we shall

consider

f : @FI �! FI � V � G ;(3.2.20)

Ef : FI �! FI � V � G ;(3.2.21)
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whereG in (3.2.20), (3.2.21) is as in 3.2.1.i). @FI , FI in (3.2.20), (3.2.21)

on the left hand side refer to the unit cube �r
1 while on the right hand

side refer to the same slices in �r
d.

In this section I shall explain �rst how, given a Lip-mapping as in

(3.2.20) for some I, we can extend it to a Lip-mapping Ef as in (3.2.21)

by some speci�c extension operator E = EI , such that

Ef j@FI = f :

This is done as follows:

Let x 2 FI � �
r
1, I 6= ?, then we can write (essentially) uniquely

x = (1� �) �I + �y ; 0 � � � 1 ; y 2 @FI ;

where �I = (Center of FI) = 0. We shall then de�ne

Ef(x) = ((1��I(�)) �I+�I(�) fF (y) ; (1��I (�)) �I+�I(�) fV (y)) ;

where

f = (fF ; fV ) 2 FI � V ;

are the two coordinate functions, and where

(3.2.22)

0 � �I(�) ; �I(�) � 1 ;

�I(0) = �I(0) = 0 ;

�I(1) = �I(1) = 1 ;

are nondecreasing functions that satisfy the additional properties

(3.2.8) (and which in fact can be taken to be independent of I).

The �I 2 V will be chosen to be as in (3.2.4).

The inductive construction. We shall now construct Lip mappings

'I , I � [1; 2; : : : ; r], jIj � r� 1 and 's, s = 0; 1; : : : ; r� 1 that have the

following properties:

i) 'I : FI �! FI � V � G as in (3.2.19).

ii) '? � e 2 G (the neutral element).

iii) 's : @s�
r
1 ! @s�

r
d�V � G, s = 0; : : : ; r�1, with the notations

of 3.2.1.ii) and '0 is the identity mapping scaled by d.

iv) If I � [1; 2; : : : ; r], jIj = s, " = ("1; : : : ; "r), "j = 0;�1 and

"+ FI = F (I; ") as in 3.2.1.ii) then, 's("+ x) = "d+ 'I(x), x 2 FI .
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The construction is done by induction as follows: ii), iii) and iv)

determine '0 inambiguously. Assume that for some 0 � s � r � 1, 's
and 'I , jIj � s have been de�ned and satisfy i)-iv). Let I � [1; 2; : : : ; r]

be such that jIj = s+1 < r. Then FI can be identi�ed to F � @s+1�
r
1

some face of �r
1. The choice of that F is in general not unique. This

identi�cation identi�es @FI to @F and de�nes

f = �" d+ 'sj@F : @FI �! FI � V (for the appropriate ") :

This de�nition is inambiguously because of the inductive hypothesis.

We shall de�ne then 'I = EIf by applying the extension operator.

We shall then de�ne 's+1 by demanding that iv) should hold. This is

clearly possible and 's+1j@s�r = 's is an extension of 's.

The �nal step of this construction is a mapping

(3:2:23) ' = 'r�1 : @�
r
1 �! @�r

d � V � G :

Let

(3:2:24) S = '(@�r) � R
r ./ V � G :

We shall show that it is possible to make the above constructions in such

a way that ' and S in (3.2.23), (3.2.24) have the following properties:

(Lip) Lipschitz property. In (3.2.23) we have ' 2 LL(d) and S is

an LL(d)� @�r
1 � G.

(Trans) Transversality properties.

Trans i). There exists 0 < c� 1 such that for every vertex P 2 @�r
1,

Bc(P ), the c-neighbourhood of P , is mapped into fPg � V � @�r
d �

V � G, where P is identi�ed to the corresponding vertex of @�r
d.

Furthermore, if F = F (I; ") � @�r
1 is some (r� 1)-dimensional face of

�
r
1 such that @0�

r
1 3 P 2 F , then 'jF\Bc(P ) = 'P;F satis�es

(3:2:25) fPg � CI � Image ('P;F ) � fPg � (CI \ VC) ;

for some C > 0, where

VC = [u 2 V ; juj � C] ; CI =
�X
i2I

�i Li ; �i � 0; i 2 I
�
:
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What the above says in words is simply this: The vertices of �r
1 go

to the vertices of �r
d, and near each vertex P of �r

1, the various faces

F (I; ") that contain P , go \nicely" to the tips of the corresponding cones

CI that stick out of '(P ).

Trans ii). For appropriate C; c > 0, we have

(3:2:26)
� 2 @�r

1 ; j� � '(�)jV � C

implies that there exists P 2 @0�
r
1 such that � 2 Bc(P ) ;

where � = G �! V is the canonical projection. In words: Unless � is

near a vertex P 2 @o�
r
1, its image '(�) in G lies far away from R

r .

With the \additive" notations of 3.2.1.i) and the notations of

Trans.i) and, an abusive but clear meaning of �, we can summarize

'(F \Bc(P )) � '(P ) + (CI \ VC) ; P 2 @0�
r
1 ;(3.2.27)

S \ ��1[u 2 V : juj � C] � '(@0�
r
1) + VC :(3.2.28)

At this point, we should observe that once P 2 @0�
r
1 has been �xed,

for every I � [1; 2; : : : ; r] with jIj = r � 1, there is exactly one face

F = F (I; ") such that P 2 F . It follows that the above gives a nice

description of how the neighbourhood of every vertex in �r
1 is mapped

into G.

The special case of the C-condition. Let us go back to 3.2.1.iii)

and let us denote by V2 = Vec (L1; : : : ; Lr) � V . Let us also assume

that the vectors L1; : : : ; Lr are the vertices of some simplex and 0 2

Int [L1; : : : ; Lr] = Int�. In this case just by looking at the simplex �

\around 0" we see

(3.2.29) [CI � V2 : I � [1; 2; : : : ; r] : jIj = r � 1] ;

is a tacelation of V2 (i.e.
�

CI \
�

CJ = ?, I 6= J , [CI = V2). From this,

and the Transversality conditions that S satis�es, we see that under

the C-condition we have

(3.2.30) '(@�r
1 \ Bc(P )) � '(P ) + [u 2 V2 : juj � C] ; P 2 @0�

r
1 ;

with the obvious use (or rather abuse) of the notations.
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In fact, under the above C-condition for the set L1; : : : ; Lr 2 V �,

we can avoid altogether the use of the extraneous scalar product on V

which was essential in the above construction (cf. (3.2.4)). Indeed we

can consider then V2 � V some (linear) direct complement of V1 = fx :

Lj(x) = 0; 1 � j � rg � V and �x � = [x1; : : : ; xr] � V2 some simplex

such that 0 2 Int (�) and Li(xj) > 0 (i; j = 1; : : : ; n, i 6= j). Instead of

using 1.1.5 we can then de�ne the �I 's in (3.2.4) by

�I = log d
�X
i=2I

xi

�
:

The rest of the argument works as before, and the only di�erence is that

the simplex � = [x1; : : : ; xr] is not necessarily the simplex [L1; : : : ; Lr]

that we used in (3.2.29).

It is of some interest to observe that in the above case we can even

make the set S of (3.3.24) homeomorphic to an r�1 sphere. Indeed the

only thing that stops the mapping ' that de�nes S from being (1-1), is

the fact that the functions �(�) and �(�) that were used have common

intervals of constancy (cf. (3.2.8)). This point can easily be recti�ed,

and yet preserve all the other properties of �; � (especially (3.2.18))

that are needed for the construction.

Proof of the Lipschitz properties. The proof of the property ' 2

LL(d) depends on a �nite decomposition

(3:2:31)

A[
�=1


� = @�r
1 ;

where 
� is a relative open set. The sets 
� are constructed as follows.

Let x 2 @�r
1. Then as long as x lies outside the union of �nitely many

a�ne subspaces we can write uniquely

x = xr�1 = (1� �r�1) �Fr�1 + �r�1 xr�2 ;

Fr�1 � @r�1�
r
1 ; 0 < �r�1 < 1 ; xr�2 2 @r�2�

r
1 ;

where Fr�1 is an (r � 1)-dimensional face uniquely determined by x.

Furthermore, the mapping

xr�1 �! (�r�1; xr�2) ; �r�1 � c ;
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is LipC for any c > 0 and C = C(c). This process can be iterated, and

if we assume that xr�2 avoids a �nite number of a�ne subspaces we

can write

xr�2 = (1� �r�2) �Fr�2 + �r�2 xr�3 ; Fr�2 � @r�2�
r
1 ;

0 < �r�2 < 1 ; xr�3 2 @r�3�
r
1 ;

and so on.

It follows that with the exception of E , an exceptional subset of

@�r
1 which is the union of �nitely many a�ne pieces of dimension at

most r � 2, we can determine uniquely for every x 2 @�r
1 a sequence

(3.2.32) F(x) : Fr�1 � Fr�2 � � � � � F0

of faces Fj of �
r
1, dimFj = j and a vector

(3:2:33) �(x) = (�r�1(x); : : : ; �1(x)) 2 [0; 1]r�1

such that for every r � 1 � a � 1, the mappings

(3:2:34) x 7�! �j(x) ; r � 1 � j � a ;

are Lip (C) as long as we stay away from �j = 0 (r � 1 � j � a + 1).

The open subsets 
� (3.2.31) are then determined by requiring that

x =2 E ; F(x) is �xed :

By our constructions the mapping ' of (3.2.23), (3.2.24) coincides on

each 
� with the mapping �r�1 constructed in (3.2.10), composed with

the mapping (3.2.33), (3.2.34). If we recall that both �(�) and �(�) are

equal to 0 in some neighbourhood of 0, we see that the Lip property of

' follows immediately from the above and (3.2.18). Indeed, as in the

end of 3.2.2, if for some x 2 
� this is a �rst �r�k (in the succesive

construction �r�1; : : : ) that is small enough, then xr�k lies in some

small neighbourhood of �Fr�k in 
�\Fr�k which is mapped on the �xed

point (�r�k; �r�k) of Section 3.2.2. It follows that in the di�erential d'

at x only the coordinates �r�1; : : : ; �r�k+1 > c are involved.

Proof of the transversality property. To prove the transversal-

ity properties of ' it su�ces to prove that 'j@s�r1 = 's satis�es the

corresponding properties and in particular (3.2.25)-(3.2.28) for s =
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0; 1; : : : ; r � 1. For s = 0 this is evident. The general case s � 0

follows then immediately by induction and the fact that �(�) = 1,

� 2 [1� 3 c; 1] while the �(�) goes through the whole of its variation in

the interval [1 � 3 c; 1]. In words, the above says that near the distin-

guished boundary @r�2�
r
1, and in particular near the vertices, ' does

not start moving in the Rr direction before we are already quite deep

in the appropriate cone CI (and therefore already out of VC).

Additional smoothness properties. When the C condition is ver-

i�ed as in (3.2.29) and (3.2.30) we can guarantee that in the above

construction S = '(@�r) de�ned in (3.2.24) is a C1 embedded (r�1)-

dimensional sphere Sr�1 � G. This condition is not di�cult to build

in the above construction. The only di�culty lies in choosing the cor-

rect notations that tend to get out of hand. This was seen in the

1-dimensional case in Section 3.1.1 where we \negociate the corners" of

the square by the local constancy of � near � � 1. Since no essential use

will be made of this smoothness property the details will be omitted.

It should be noted, however, that there is another way of guaran-

teeing that smoothness by an \a posteriori" argument. What one can

do, is start by the transversality conditions (Trans.) and use convolu-

tion to smooth out ', and yet preserve the transversality conditions.

Any pretence of global injectivity (i.e. the (1-1) property of ') is, of

course, lost with this operation. We can then use the Whitney pertur-

bation technique [14], as explained in Section 4.5 to obtain an S that

is a C1 (r � 1)-dimensional sphere in G, and still has the properties

(Lip.) and (Trans.) described above.

3.2.4. The Embedding of S in the eigenvalue group.

Let NE � N be the eigenvalue group as in Section 2.2 that corre-

sponds to the eigenvalue algebra e as in Section 2.1. All the notations

and de�nitions of Section 2 will be preserved and we shall distinguish

two cases:

NE is abelian. We shall then assume that L1; : : : ; Lr are the vertices

of a simplex as in (2.1.2), and we shall �x the basis e1; : : : ; eq in e, as

in (1.3.7), so that ei1 ; ei2 : : : eir each lies in di�erent root space.

We shall now use the notation of sections 2.1 and 2 and consider the

Riemannian structure induced on NE � V2 by h�; �i./ as in Section 2.3.
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This structure is a Riemannian structure of the kind de�ned in 2.4.i).

The exponential coordinates of Section 2.1 can then be used (by the

subnormality of the generated subalgebra the vectors ei1 ; : : : ; eir can be

taken to be the �rst r vectors of the basis (2.1.1)) to identify Rr�1 with

V2 and R
r = Vec (ei1 ; : : : ; eir ) with a submanifold of NE . This identi�es

R
r � R

r�1 with a submanifold of NE � V2. Even in the split case (cf.

Section 2.2) whenNE�V2 is a subgroup, the above submanifold is not in

general a subgroup (because of the \complex rotations" comming from

the imaginary part of the roots). It is, however, clear from 1.2.viii),

(1.3.4) that this manifold with the induced Riemannian structure is

isometric to the Riemannian manifold de�ned in 2.4.i).

From this it follows that the S = '(@�r
1) de�ned in (3.2.24) can

be embedded and thus be identi�ed to a subset of NE � V2. S is in

particular an LL(d)� @�r
1.

NE is of Heizenberg type. We then shall use the construction of

Section 3.1.2 and the relation (3.1.8) in the group generated by the

algebra (1.2.13), with e 2 H�, h 2 H�� (with the notations of Section

3.1.2 and (1.2.13)). The considerations of 2.4.ii) apply then and we see

that the polygon P �(d) = S constructed in Section 3.1.2 can be made

to have the analogous properties (Lip.) and (Trans.: here we already

are in the C-condition case). The analog of (3.2.30) therefore holds.

This now reads as follows:

Near each of the six vertices Pi (1 � i � 6), S is identical to

Pi � [u 2 V2 : juj � C] ;

where \ � " indicates the group product in NE ./ V2 which is always a

group (cf. end of 2.2). We have thus embedded S � NE � V2, with

dimV2 = 1. The only di�erence with the previous abelian case is that

now, globally, S \lives" (spills out if you prefer) in all the coordinates

of NE ./ V2. S is in particular an LL(d)� @�r
1 where now r = 2.

3.3. The Second Basic Construction.

3.3.1. Filling in a small cylinder.

We shall use throughout the identi�cation and the notations of
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Section 2.2, (2.2.2), (2.2.3)

Q = N � V ; V = V1 � V2 ;(3.3.1)

S � NE � V2 ; NE � V2 � (N � V2)� V1 = Q ;(3.3.2)

where S is the LL(d)�@�r
1 � NE ./ V2 constructed in (3.2.23), (3.2.24)

and Section 3.2.4. NE ./ V2 is the group structure on NE � V2 de�ned

in Section 2.3. When Q is split all the manifold products in (3.3.1),

(3.3.2) are just group skew products. I shall also suppose, as I may,

that the neutral element e 2 G lies on S.

In this section I shall assume throughout that Q admits the prop-

erty F (cf. Section 3.0) or at least the properties Fp for the relevant

p = 2; : : : ; dimQ� 1.

i) The 1-dimensional cylinder. The split case. Let a; b 2 V1, and

` = [a; b] the a�ne segment that joins these two points and let

(3:3:3) S � ` � (NE ./ V2) ./ V1 � Q :

S�` is the lateral boundary of a hollow cylinder (It looks like an empty

food can with top and bottom removed).

1) Filling the top and bottom. By the Lemma 2.3.1 we have

(3:3:4) S � fag ; S � fbg are LL(d)� @�r
1 � Q :

By the property Fr we can \�ll these in" and �nd

Ba; Bb two LL(d)��
r
1 � Q ;(3.3.5)

@Ba = S � fag ; @Bb = S � fbg :(3.3.6)

By Lemma 2.3.2 there exists

(3.3.7)

(
� 2 LL(d) ;

� : @�r
1 � [a; b] �! Q ; Im� = S � [a; b] ;

where we assign on @�r
1 � [a; b] � R

r+1 its natural distance. It follows

that

(3:3:8) Ba [ Bb [ (S � [a; b]) is an LL(d)� @(�r
1 � [a; b]) � Q :
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Therefore if we assume that

j`j = ja� bj � 1 ;

we can rescale and

(3:3:9) Ba [ Bb [ (S � [a; b]) is an LL(d)� @�r+1
1 � Q :

2) Filling the can. By the property Fr+1 we can �nd

B an LL(d)��r+1
1 � Q ;(3.3.10)

@B = Ba [Bb [ (S � [a; b]) :(3.3.11)

It will be abusive but convenient to abbreviate the information con-

tained in (3.3.4)-(3.3.11) by writing

(3:3:12) @B = Rim(S � [a; b]) :

ii) The 1 dimensional cylinder. The general case. We shall adapt

here the previous construction in the general case, i.e. when Q is not

split. The notations of the previous section will be preserved. Clearly

it is only the use of the Lemma 2.3.1 and 2.3.2 that has to be modi�ed.

Observe �rst of all that the fact that

(3:3:13) S is an LL(d)� @�r
1 � NE ./ V2 ;

and the fact that the canonical projection NE�V2 �! V2 is a group ho-

momorphism (for the group structure NE ./ V2), and therefore Lip (1),

implies that

(3:3:14) S � NE � [u 2 V2 ; jujV2 � c (log d)c] � NE � V2 :

It follows that Lemma 2.3.1 can be used (for the non split case), and

(3.3.4)-(3.3.6) of the previous construction are not altered. (3.3.7)-

(3.3.9) on the other hand have to be \handled with care". We shall

denote by

� : @�r
1 �! S ; � 2 LL(d) ;
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for the distance on S induced by S � NE ./ V2, and we shall assume

that

(3:3:15) jb� aj � (jaj+ jbj+ 10)�C ;

for some appropriate C > 0. We shall also use the linear scaling:

(3:3:16) 	 : [0; 1] �! [a; b] :

We can consider then the composition of maps

(3:3:17)

@�r
1 � [0; 1] �!

��Id
S � [0; 1] �!

Id�	
S � [a; b]

�

�!
I

(NE ./ V2)� V1
�

�!
�
Q ;

where in (3.3.17) we denote by NE ./ V2 the direct product NE � V2
with the Riemannian structure induced by the group NE ./ V2 as in

Section 2.3, and on (NE ./ V2) � V1 we give the product distance and

product Riemannian structure. By the Lemma 2.3.2 and (3.3.14) we

see that

(3:3:18)
kd�jT (NE�V2)k = O ((log d)C) ;

kd�jTV1k = O ((log d)C (jaj+ jbj+ 10)C) :

Since on the other hand by (3.3.13), (3.3.16)

�� Id 2 LL(d) ; 	 2 Lip (jb� aj) ; I 2 Lip (1) ;

we conclude from (3.3.15), (3.3.18) that the composition of the maps

in (3.3.17) is a map

(3.3.19) @�r
1 � [0; 1] �! Q in LL(d) ;

with constants that are uniform in a and b. This controls the third

term in (3.3.9) as before and we can thus �ll in the \can" as before and

�nd B that satis�es (3.3.10), (3.3.11), (3.3.12).

The 2-dimensional cylinder. The split case. Let ai;j 2 V1 i; j =

1; 2 be the four vertices of a parallelepiped

(3:3:20) L = [a1;1; a1;2; a2;2; a2;1] � V1 ;
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with sides parallel to the �rst two axes of V1. Let

(3:3:21) [ai;1; ai;2] = `1i ; [a1;i; a2;i] = `2i ;

where we shall assume that

(3:3:22) j`ijj � 1 ; i; j = 1; 2 :

Just as in (3.3.4), by Lemma 2.3.1, we have

(3:3:23) S � fai;jg is an LL(d)� @�r
1 � Q ; i; j = 1; 2 :

These can therefore be �lled in by

Br
i;j is an LL(d)��

r
1 � Q ;(3.3.24)

@Br
i;j = S � fai;jg ; i; j = 1; 2 ;(3.3.25)

because of the property Fr of Q. We can then use the Lemma 2.3.2

and the property Fr+1 to \�ll in" the four \hollow" sides of the square.

We have then (i; j = 1; 2)

Br+1
i;� ; Br+1

�;j are LL(d)��r+1
1 � Q ;(3.3.26)

@Br+1
i;� = Br

i;1 [B
r
i;2 [ (S � `1i ) ;(3.3.27)

@Br+1
�;j = Br

1;j [B
r
2;j [ (S � `2j) :(3.3.28)

Let then

(3:3:29) � =
[
i=1;2

(Br+1
�;i [Br+1

i;� ) [ (S � L) :

If we use the Lemma 2.3.2 to control the last term of (3.3.29) and glue

the pieces together we deduce that

(3:3:30) � is an LL(d)� @�r+2
1 � Q :

Hence by the property Fr+2, � can be �lled in by

Br+2 is some LL(d)��r+2
1 � Q ;(3.3.31)

@Br+2 = � :(3.3.32)
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The above information (3.3.24)-(3.3.32) will be summarized, abusively,

by the single notation

(3:3:33) @Br+2 = Rim(S � L) :

iv) The 2-dimensional cylinder: The general case. The notations

are as in 3.3.1.iii) but we no longer assume that Q is split. We shall

assume as in (3.3.15) that

(3:3:34) j`1i j; j`
2
i j � (sup jaij j+ 10)�C ;

for some appropriate C > 0. We make the construction of Br
i;� and B

r
�;i

as in (3.3.26), (3.3.27), (3.3.28), with the use of (3.3.34) as before and

the same modi�cations for the proof as in 3.3.1.ii). We obtain thus �

as in (3.3.29). To prove (3.3.30) we have to control the term S � L.

This is done by the Lemma 2.3.2 and the analog of the cascade of maps

(3.3.17). Where now

	 : [0; 1]� [0; 1] �! L

is the two dimensional scaling map. The property Fr+2 completes the

construction of Br+2 as in (3.3.31), (3.3.32), (3.3.33), as before.

v) The general cube: The split case. Let

F = [a1; b1]� [a2; b2]� � � � � [at; bt] � V1 ;

jbi � aij � 1 ; 1 � i � t ;

be some parallelepiped of V1 with sides parallel to the �rst t-axes (1 �

t � dimV1) and diameter � 1. We shall then proceed exactly as in

3.3.1.i)-iii) and use property Fr to �rst �ll in the 2t \corner cubes":

S � F0, F0 being the vertices (i.e. 0-faces of F ). Then we use the

previous construction and property Fr+1 to �ll in the Rim (S � F1)

where F1 are the 1-dimensional faces of F . By \�ll in the Rim : : :" we

mean that we perform the construction that is summarized by (3.3.12).

And so on. We obtain at the end

B some LL(d)��r+t
1 � Q ;(3.3.35)

@B = Rim(S � F ) ;(3.3.36)
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where the same abusive notation for the term \Rim" is used to abbre-

viate the above construction. One thing that should be kept in mind is

that (3.3.36) implies that

(3:3:37) S � F � @B :

vi) The general construction. The way one eliminates the condition

that Q is a split group should now be quite clear. One simply uses the

full thrust of Lemma 2.3.2. Scaling maps are considered as before

	 : [0; 1] �! [a1; b1]; : : : ;	 : [0; 1]t �! F ;

with a1; b1; : : : ; F as in 3.3.1.v), and the condition

jbi � aij �
�
sup
i

(jaij; jbij) + 10
�
�C

; i = 1; : : : ; t ;

is imposed on F . The details are as in 3.3.1.ii)-iv) and will be left to

the reader.

The following comments on the constructions that we have made

up to now are in order:

Remarks.

i) The coordinates in V1 and V2 play di�erent roles. The V2
coordinates that admit non-trivial real roots, act on NE and form on

NE � V2 a \hyperbolic structure", i.e. we have r � 1 \Hyperbolic

sections". It is this that allows us to \shrink" metrically @�r
d and

embed it appropriately onto S, which is some LL(d)�@�r
1 � NE ./ V2.

The V1 coordinates that have trivial real roots \act as Euclidean

rotations" on the space NE ./ V2. This fact is vital for the above

construction and comes out through the Lemmas 2.3.1-2.

We use then the property F of Q to �ll in the \prisms" (or \Eu-

clidean" cylinders if you prefer { or \food cans"!) obtained by S and

right translations by the extra coordinates coming from V1.

ii) Questions of uniformity. In the above constructions d was the

free parameter (at the end we will let d �!1). All the constants C > 0

introduced in the above constructions did not therefore depend on d. It

is important to note also that these constants C > 0, in the construction
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in Section 3.3.1, did not depend on a1; b1; a2; b2; : : : ; ai;j; : : : or F of

3.3.1.i)-vi) either.

3.3.2. Filling in a Large Cylinder.

The construction of \�lling in small cylinders" in 3.3.1, can be

carried out for a \large cylinder" also

(3:3:38) S � [�A;A]t � (NE � V2)� V1 :

The problem is the uniformity of Remark 3.3.1.ii). To avoid having to

\drag in" the size, A � 1, of the large cylinder in the Lip-constants,

we have to proceed di�erently.

i) The split case. Once more let us start with the case when Q =

N ./ V is a split group, and let us subdivide [�A;A]t into unit cubes

F1; F2; : : : ; Fp (p � (2A)t; Fj is a �
t
1, 1 � j � p). The idea is to \�ll

in" each S � Fj independently by

Bj is an LL(d)��
r+t
1 � Q ; j = 1; : : : ; p ;

@Bj = Rim(S � Fj) ;

and furthermore do so in such a way that these Bj's �t together like a

\honeycomb" and that their union \�lls" in the Rim (S � [�A;A]t).

Here the notions and the notations from the theory of currents

can be used with pro�t (cf. Section 3.0, [12], [13]. We have to as-

sume then that the appropriate orientations have been assigned to the

corresponding spaces). With these notations we have

B =

pX
j=1

Bj ; @B =

pX
j=1

@Bj ;(3.3.39)

B is an LL(d)��r
1 � [�A;A]t � Q ;(3.3.40)

@B = Rim(S � [�A;A]t) ;(3.3.41)

where, without attempting to give a formal de�nition of (3.3.41) we

insist on the following consequences implied by (3.3.41) (cf. Remark
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3.1.1)

S � [�A;A]t � @B ;(3.3.42)

@B \ ��1[u 2 V1; juj � C]

= (S � [�A;A]t) \ ��1[u 2 V1; juj � C] ;
(3.3.43)

where � : Q = (NE ./ V2) ./ V1 �! V1 is the canonical projection. For

the validity of (3.3.43), as we shall see, we shall need to have A � 1

appropriately large.

To clarify matters we shall consider �rst the two cases t = 1, t = 2.

The case t = 1. We subdivide

[�A;A] =

A�1[
j=�A

Ij ; Ij = [j; j + 1] ; �A � j < A ;

and construct Br
left(j), B

r
right(j), i.e. B

r
a, B

r
b with a = j, b = j + 1 (as

in (3.3.5)) for the \small cylinder" S � Ij as in (3.3.4)-(3.3.6). We also

make the construction, as we may, so that

Br
right(j) = Br

left(j + 1) ; �A � j � A� 1 :

We then construct

Br+1
j is an LL(d)��r+1

1 � Q ;(3.3.44)

@Br+1
j = Br

left(j) [ B
r
right(j) [ (S � Ij) ;(3.3.45)

we take then

Br+1 = [Br+1
j =

X
Br+1
j ;

where the
P

refers to the notations from the theory of currents (cf.

Section 3.0, [12], [13]). It is then clear that

Br+1 is an LL(d)� (�r
� [�A;A]) ;(3.3.46)

@Br+1 = Br
left(�A) [ B

r
right(A� 1) [ (S � [�A;A]) ;(3.3.47)

which is exactly what is meant by (3.3.41). The basic fact (3.3.43) is

here clearly ensured by (3.3.44), (3.3.45), provided that

A � C (log d)C ;
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for some appropriate C > 0. Indeed this implies that the \left" and the

\right" of the \can" (3.3.47) do not reach the central region because

the canonical projection � : Q �! V1 is Lip (1). The uniformity in A

of the construction in (3.3.44) plays a crucial role here (cf. Remark

3.2.1.ii)).

The case t = 2. We subdivide

[�A;A]� [�A;A] =

A�1[
i;j=�A

[i; i+ 1]� [j; j + 1] ;

and start by �lling in each of the four vertices C�(i; j), 1 � � � 4, of

Ii;j = [i; i+ 1]� [j; j + 1]

@Br
�(i; j) = S � C�(i; j) ; � = 1; 2; 3; 4 :

This is done in a consistent way, i.e. if two neighbouring squares have a

common vertex, we choose the same �lling (e.g. Br
1(i; j) = Br

3(i� 1; j)

with obvious notation).

Having done that, we then �ll in the hollow sides of each S � Ii;j
(as in (3.3.26)-(3.3.29)) using the already constructed Br

�(i; j). This is

again done in a consistent way, i.e. two S � Ii;j that are side by side

(or one on top of the other) must have their common side �lled in an

identical way. The �nal step is to construct Br+2(i; j) such that

(3.3.48)
Br+2(i; j) is an LL(d)��r+2

1 � Q ;

@Br+2(i; j) = Rim(S � Ii;j) ; i; j = �A; : : : ; A� 1 :

Then, using again the notations from the theory of currents, we set

(3.3.49) B =
X
i;j

Br+2(i; j) ;

which is

B is an LL(d)��r
1 � [�A;A]2 � Q :

The boundary @B consists of exactly two parts

(@B)1 = S � [�A;A]2 ; (@B)2 = @Bn(@B)1 ;

and clearly if x 2 (@B)2, then x 2 @Br+2(i; j) where either i or j (or

both) are equal to �A, or A� 1. This, together with (3.3.48) and the
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uniformity in A of the constants in (3.3.48), implies for the same reason

as in the case t = 1, that (3.3.43) holds if

A � C (log d)C ;

for some appropriate C.

The way one generalizes the above constructions to any t � 1,

by �lling in the unit subcubes S � [�A;A]t in such a way that their

successive @r; @r+1; : : : boundaries coincide, should be clear. We obtain

thus the required B that satis�es (3.3.40)-(3.3.43).

ii) The general case. When Q is not necessarily split we have to

modify the construction of the previous section at only one point:

Instead of subdividing [�A;A]t in (3.3.38) into unit cubes we sub-

divide it into (2A=�)t cubes [a1; b1]� [a2; b2]� � � � of size

� = jbj � aj j � (A+ 10)�C ; j = 1; : : : ; t :

Each of these cubes is then �lled in as in 3.3.1.vi), and this is done

with consistent @r+k-boundaries as before. Taking the union, or more

accurately, summing the corresponding currents, we obtain as before

B =

A=��1X
i1;���=�A=�

B(i1; : : : ; it) ;(3.3.50)

B is an LL(d)��r
1 �

h
�A

�
;
A

�

i
�t

;(3.3.51)

@B = Rim(S � [�A;A]t) ;(3.3.52)

@B \ ��1(u 2 V1; juj � C)

= (S � [�A;A]t) \ ��1(u 2 V1; juj � C) ;
(3.3.53)

where again � : Q �! Q=N �! V1 is the canonical projection. The

size [�A=�;A=�] of the cube in (3.3.51) has been multiplied by 1=�

because of the summation from �A=� to A=�� 1 in (3.3.50).

The key fact (3.3.53) is again guaranteed by a large enough choice

of A

A � C (log d)C ;

and the fact that �, being a group homomorphism, is Lip (1).
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The �nal point of this construction is that the parameters are cho-

sen so that

(3.3.54) A � C (log d)C ; � � C (log d)�C :

By the rescaling (3.0.6), (3.0.7), it follows therefore that B in (3.3.51)

is an LL(d)��r+t
1 .

4. Proof of the Main Theorem (C).

In this section I shall give the proof of the C-part of the main The-

orem. This is the di�cult part of the theorem and it uses the algebraic

and geometric constructions that we have developed in this paper. I

shall give three di�erent ways of making this last step. Basically all

three stem from the same idea and it is only a matter of using a di�er-

ent language and di�erent tools to put things together. That language

and tools can be summarized as follows.

i) Transversality and Sard's theorem from Di�erential Topology.

This is what we do in Section 4.5.

ii) Slicing from the theory of currents. This is what we do in Section

4.3.

iii) We can globalize and avoid the explicit use of either of the

above. We then only use the very simplest de�nitions from the theory

of currents, but the price that we have to pay is that we have to keep

track of the orientations and the signs of the currents involved. This is

what is done in Section 4.2.

4.1. Currents in Riemannian manifolds.

Let M be some Riemannian manifold, we shall recall some of the

standard de�nitions and properties of currents on M . I shall deliber-

ately, but abusively, ignore the questions of orientation. Some of the

statements below are therefore as such, incomplete. The reader will

have to �ll in the details concerning the orientations on his own (cf.

[12]).

i) We denote by �(M) the space of C1 compactly supported forms

on M and by ��(M) the dual space of currents on M . We denote
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k!k = supm j!(m)j� for the Riemannian norm j � j� induced on �T �M .

Let T 2 ��(M), we say that T is an integration current of �nite mass

if M(T ) = kTk = sup fjhT; !ij; ! 2 �; k!k � 1g < +1, (M(T ) is the

notation used in [13]).

ii) Every ' : �r
1 �!M that is Lip (A) induces a unique integration

current

T = ['(�r
1)] ; hT; !i =

Z
�r
1

'�(!) ; ! 2 �(M) ;

of mass kTk � (1 + A)r. This is evident if ' is C1 and de�ned in

some neighbourhood of �r
1. The extension to an arbitrary ' as above

is routine.

iii) Let 
 �M be some open subset. Then the injections 
 �!M ,

�(
) � �(M) de�nes canonically a restriction operator ��(M) �!

��(
). We shall use the notation T ! T j
 for that operator and we

have

(dT )j
 = d(T j
) :

Furthermore, if T is an integration current, then T j
 is also an integra-

tion current and

kT j
k = k�


Tk � kTk ;

where �


is the characteristic function of 
.

4.2. The current interpretation of the Geometric construc-

tions.

For the proof of our main Theorem, we shall consider currents

on the Riemannian manifold Q = M , where Q is a soluble simply

connected group assigned with its left invariant Riemannian structure.

Let � : Q �! Q=N = V be the canonical projection, where N is the

nilradical, and let


 = ��1(y 2 V; jyjV < 1) �M :

We shall then consider the restriction on 
 of the currents of M as

in 4.1.iii). We shall also consider the restriction of the Riemannian

structure of Q on 
 which gives a Riemannian structure that is quasi-

isometric with the product Riemannian structure

(4.2.1) N � Bs = N � fy 2 R
s ; jyj < 1g :
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In (4.2.1) we assign the nilradical N with its left invariant structure

and the Euclidean unit ball Bs with the Euclidean structure. Let now

B be the current de�ned in (3.3.39)-(3.3.43), (3.3.50)-(3.3.53) of Sec-

tion 3.3.2, and where once more we choose to ignore all questions of

orientation and of signs. As we shall see presently, the signs and the

orientation are not essential for the proof of the main Theorem. If,

however, we are prepared to go through the details and work out the

correct signs at every point of the construction in Section 3.3.2, the

proof in Section 4.3, becomes \cleaner" and simpli�es.

We shall consider the integration current [B] that is de�ned as in

4.1.ii) by � : �r
1 � [�A=�;A=�]� �! Q. Here r is as in Section 3.2.4

if NE is abelian, and r = 2 if NE is of Heizenberg type, in both cases

� = dimV1. One must recall that the construction of B in 3.3.2 was

done under the assumption that Q satis�ed Fr;Fr+1; : : : ;Fr+� and the

choice of A; � was such that A=� � C (log d)C (cf. (3.3.54)). It follows

therefore, that

k[B]k � C (log d)C ;

and therefore also that

(4.2.2) k[B]j
k � C (log d)C :

We shall consider T = @([B]j
). By (3.3.43), (3.3.53), (3.2.27)-(3.2.30),

4.1.iii) it follows that if we suppose that Q satis�es the F condition and

is also a C-group (these two actions on Q will presently be shown to be

incompatible!) then

supp T � (S � [�A;A]�) \ ��1[u 2 V; juj < 1] =
[
"=�1

C("1; : : : ; "r) ;

where, with the identi�cation of 
 with (4.2.1) and with the identi�ca-

tion of N with Rm (induced by the exponential coordinates of sections

2.1, 2.2) we set

C("1; : : : ; "r) = [x = ("1 d; : : : ; "r d; 0; : : : ; 0) ; u 2 V ; juj � C] ;

where "1; : : : ; "r = �1 (cf. sections 3.2.3, 3.2.4). In the above notations

we have assumed that NE is abelian. The changes that have to be made

in the notations to deal with the case when NE is of Heizenberg type

will be left to the reader.
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If in Section 3.3.2 we are prepared to go through the signs and the

orientations involved in the \�lling currents" of (3.3.39) and (3.3.50),

we can show that

(4.2.3) T = @[B]j
 =
X
"=�1

�[C("1; : : : ; "r)] ;

where [ � ] indicates the integration on the s-dimensional chain that is

Lip embedded in 
. We can give explicitely the �'s on (4.2.3) but this

is irrelevant, these signes do not depend on d.

At this point we shall stop to point out that without \bothering"

to go through the orientations and signs involved, what we have \for

sure" is

(4.2.4) T = @[B]j
 =
X

f"1;:::;"r [C("1; : : : ; "r)] ;

where for each �xed ("1; : : : ; "r) we have

(4.2.5) jf"1;:::;"r(y)j = 1 ; y 2 Bs :

Indeed the function f"1;:::;"r(�) which \a priori" may depend on d is

what gives the correct sign on the subcubes of size � in (3.3.50). In

particular, in the split case (3.3.39)-(3.3.43) when � = 1, we already

have (4.2.3) without worrying about the orientations.

4.3. The proof of the main theorem C using and keeping track

of the signs of the currents.

From (4.2.2) and (4.2.3) (or (4.2.4)), we shall be able to draw a

contradiction when d �! 1. This will prove the incompatibility of

the C-condition and
Tr+�
j=r Fj and will complete the proof of the main

Theorem (C) because r + � = rankQ + 1 and r � 2. To describe

things in general terms, what will be proved is, that under the condition

(C) for Q we cannot have a polynomial upper bound for �n(R) (n =

r; r + 1; : : : ; r + �) in the main Theorem (C).

The fact that (4.2.2), (4.2.3) (as d �!1) are contradictory is easy

to see. Indeed let

! = f(x1; : : : ; xm) g(y1; : : : ; ys) dy1 ^ � � � ^ dys ;
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for some f 2 C10 (N), g 2 C10 (Bs), then

h!; T i = C
�Z

g dy
�X

�f("1d; "2 d; : : : ; "r d; 0; : : : ; 0) ;(4.3.1)

jh!; T ij = jhd!; [B]j
ij

� kd!k k[B]j
k

� C (log d)C sup


jdf j ;

(4.3.2)

where jdf j stands for the Riemannian norm in 
. Observe now that the

mutual distances in N of the points ("1 d; : : : ; "r d; 0; : : : ; 0) is greater

or equal Cd� for some � > 0 (by the polynomial distortion between the

distances in N and the corresponding Euclidean distance induced by

the exponential coordinates). It follows therefore that we can choose f

and g so that the right hand side of (4.3.1) is greater or equal than 1

(no matter what the choice of the �'s is) and yet

(4.3.3) sup


jdf j � Cd�� :

From this and (4.3.2), by letting d �! 1, we obtain the required

contradiction. This completes the proof of our theorem.

The above proof can easily be modi�ed so as to make (4.2.4) (and

not (4.2.3)) the starting point. The only di�erence is that now

! = f(x1; : : : ; xm; y1; : : : ; ys) dy1 ^ � � � ^ dys ;

where the dependence of the coe�cient f 2 C0(
) on y 2 V is designed

to compensate for the sign of f"1;:::;"r in (4.2.4). We can again choose

f so that in (4.3.1) we have

jhT; !ij � 1

and yet

(4:3:4) sup


jd!j � Cd�� :

Observe that now (4.3.4) is not obtained though the control (4.3.3) of

df . What allows us to assert (4.3.4) is the fact that d! only involves

the partial derivatives @=@xj of f .
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4.4. The proof of the main Theorem (C) using the slicing.

This is but a variant of the previous proof of the main Theorem of

Section 4.3. It relies on the non trivial notion of the slicing of currents

(cf. [13, Section 4.3]). This slicing operation allows us to de�ne for

almost every x 2 Bs in (4.2.1), a current h[B]; �; xi on N , which is the

\slice" of [B] with ��1(x) � Q. Here we shall identify ��1(x) with N

and use the notations of [13, Section 4.3] and the fact that [B] 2 ��� ,

(i.e. as a current it acts on �-forms) where � = r + � = dimB (with

the notations of Section 3.3.2, cf. (3.3.51)). The construction and the

formalism of this slicing depends on the fact that the dimension of the

current (equal to r + �) is greater or equal than the dimension of the

target space of �, cf. Section 2.1. This formalime is non-trivial and I

shall refer the reader to [13, Section 4.3] for the details.

At any rate, if we are prepared to use this notion of slicing, we

can obtain a contradiction between the conditions (F) and (C) on the

group Q, starting this time from the weaker (4.2.4). The advantage of

this approach lies therefore in the fact that we do not have to \chase

around" orientations and signs of currents.

The contradiction is obtained by a very similar argument as the

one used in Section 4.3, but which is now localized to each individual

N -�ber of (4.2.1). Indeed the polynomial distance distortion in N ,

together with the automatic control of @h[B]; �; xi that we have from

(4.2.4), will give the following lower bound of the total mass

(4:4:1) M [h[B]; �; xi]� Cd� ; almost all x 2 Bs :

The contradiction now is obtained between (4.4.1), (4.2.2) and [13]

Theorem 4.3.2.

The idea of the above variant of the proof is, of course, very simple:

Instead of restricting [B] to the cylinder ��1(juj < 1) we restrict it to

the �ber ��1(u) (fixedu 2 V , juj � 1). This allows us to ignore the

possible variations of sign of f"1;:::;"r (y) = �1 in (4.2.5). The price

we have to pay is that now we have to integrate with respect to u in

(juj � 1). [13, Theorem 4.3.2] allows us to perform the integration and

obtain the contradiction.
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4.5. The smooth �llings and an alternative proof of the main

Theorem (C). An outline.

We have already pointed out at the end of Section 3.2.3 how in the

�rst basic construction of S � R
r ./ Rr�1 , which is an LL(d)� @�r

1 �

R
r ./ V , we can make S to be a C1 embedded (r � 1)-dimensional

sphere. Once this construction was made smoothly, we can proceed

and do all the \�llings" of Section 3.3 in a smooth fashion.

To �x ideas, if we assume that the group Q satis�es the condition

Fr, we can modify the �lling of S and construct

F : Br
�! Q ; F 2 LL(d) \ C1 ;

F (@Br) = S ; F (Br) = B � Q ;

where Br is the unit r-ball and where F induces an embedding of Br.

This can be done by the usual Whitney perturbation technique (that

can easily be adapted to leave the boundary �xed, cf. [14]) provided

that

(4:5:1) dimQ � 2 r + 1 :

The condition (4.5.1) is not, of course, a priori veri�ed and the �rst

thing that has to be done is to replace Q by the direct product group

Q� R
A = QA (for some appropriate A � 0). By spilling out of Q into

QA as little as we like, we can then make sure that F is an embedding.

Observe that the extra factor of QA goes in the nilradical.

Let us also assume for simplicity that in Section 3.3 (with the no-

tations that we used in Section 2.2) V1 = 0, so that in the constructions

of Section 3.3, after we �ll in S, we stop. And we do not have to worry

about the Rim (S � [�A;A]�) (i.e. � = 0). We can then �nish the

proof of our main theorem with an obvious use of Transversality in a

few lines.

Indeed, if we denote by � : QA �! V the canonical projection,

where with our previous notations V = V2 = Q=N , by Sard's theorem,

for almost all y 2 V , ��1(y) \ B is a 1-dimensional @-manifold and

@(��1(y) \ B) = S \ ��1(y) (cf. [16]). The set S \ ��1(y), when

jyj � 1, is completely determined by the construction of S and the

mutual distance of its 2r (r = 2; : : : ) points in the Riemannian manifold

��1(y) (i.e. for the induced Riemannian structure in ��1(y) � QA) is

at least Cd�. This holds for the same reasons as in sections 4.3 and 4.4,
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cf. (4.4.1). The conclusion for the 1-dimensional Hausdor� measure

induced by the Riemannian structure of QA is

(4:5:2) Vol1[�
�1(y) \ B] � Cd� :

From this a lower estimate

(4:5:3) Volr(B) � Cd� ;

follows at once (cf. [13, Section 3.2]. In fact, using elementary di�er-

ential calculus, we can easily see how (4.5.2) implies (4.5.3) directly).

This clearly contradicts (4.2.2) and, once more, gives a proof to our

Main Theorem.

Observe also, that in the above case, dimQ � 2 r � 1, so it is

probably possible to use the \di�cult" Whitney immersion theorem

[14] and avoid the use of QA.

The above proof is very analogous to the proof given in Section

4.4. We can indeed say that here the notion of the slicing is picked up

by Sard's theorem and Transversality, and what replaces [13, 4.3.2] is

the fact that (4.5.2) implies (4.5.3).

This approach, through elementary di�erential topology, can be

generalized in the general case, i.e. when V1 is not necessarily zero.

One then has to carry out the �lling constructions of Section 3.3 and

make sure that the integration currents that we use for the �llings are

@-manifolds. This again is achieved by the Whitney approximation

technique, applied to the manifold QA (A � 1), but is more involved.

I will not give the details. The reader who wishes to carry these details

out for himself should observe the following point:

Already in 3.3.i) the current in (3.3.8) is not the boundary of a

smooth manifold, even though Ba, Bb have been chosen to be generic

C1 @- manifolds. The current in (3.3.8) is the boundary of a manifold

with corners in the sense of [15]. This means that either we have to

make the constructions in Section 3.3 using manifolds with corners,

or do something at every step of the construction of Section 3.3 to

\smooth" out these corners. Both these aproaches work. But I do not

have the stomach to write the details down here.

Remark. There is a varient of the Main Theorem that can be formu-

lated as follows:

Let us say that a Riemannian manifold as in Section 0.2 has the

property (Gp) (cf. Section 3.0), if there exists C > 0, such that for all
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R > 10 and all � : @�
p
1 �!M (�2Lip) and such that Volp�1(�(@�

p
1))

� R there exists �̂ : �
p
1 �!M (�̂ 2 Lip) such that

�̂j@�p
1
= � ; Volp�̂(�

p
1) � RC ; R > 10 :

For a mapping � that is not 1-1, the above de�nition of Volr has to

be done with multiplicity (e.g. [29, p. 58]). The proof that we gave

in this paper can be adapted to prove that the C-condition on the

soluble simply connected Lie group Q and the conditions Gp (2 � p �

rankQ+ 1) are not compatible.

In the above adaptations no new ideas are involved but the details

are tedious and long. These details remain to be written out.

The di�culty in adapting the above proof lies in the Second Basic

Construction of Section 3.3 and especially in the argument that was

needed to supply a proof of (3.3.43). This variant of the Main Theorem

is related to the Homological classi�cation of Section 0.3.

5. The Proof of the NC-Theorem.

5.1. Homotopy retracts on Lie groups.

Let Q be some simply connected soluble Lie group assigned with its

left invariant Riemannian structure. In this section we shall construct

H(g; t) 2 Q (0 � t � 1, g 2 Q) appropriately smooth (C1 or at least

Lip) homotopy retracts

H(g; 0) = e ; H(g; 1) = g ; g 2 Q ;

that have one of the following additional properties (or both)

jdHj � C exp (C jgj) ; g 2 Q ;(Exp.)

jdHj � C (jgj+ C)C ; g 2 Q ;(Pol.)

where jgj = d(e; g) is the Riemannian distance in Q and where [0; 1]�Q

is assigned with the product Riemannian structure. We shall prove:

Theorem. Let Q be as above, then a homotopy retract that satis�es

(Exp.) always exists. A homotopy retract that satis�es (Pol.) exists on

Q if and only if Q is an NC-group.
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Only the \if" part will be proved in this section. The \only if"

part is a consequence of Section 4.

5.2. Exponential coordinates.

Let N be some simply connected nilpotent group. We can de�ne

then the bijective mapping Exp= Exp1 : n �! N that gives on N the

exponential coordinates of the �rst kind (cf. [1]),

Exp (x1X1+ � � �+xnXn) 2 N ; (x1; : : : ; xn) 2 R
n ; n = dimN ;

where n is the Lie algebra of N . When Q is a simply connected soluble

group this mapping is not in general globally bijective and therefore it is

not well suited to give coordinates on the group. We can use then Exp2
the exponential coordinates of the second kind (cf. [1, Section 3.18]).

Using the above bijections, we can transport the radial homotopy

retract of Rn (F (x; t) = t � x, 0 � t � 1, x 2 R
n) to a homotopy retract

(5:2:1) Ri = Expi � F � Exp
�1
i ; i = 1; 2 ;

(this notation is slightly abusive but clear enough) on N or Q as above.

It is also very easy and standard to prove that when N is nilpotent

both R1; R2 satisfy (Pol.) More generally, when all the roots �1; �2; : : :

of Q are pure imaginary (i.e. there are no non-zero real roots and

(L1; L2; : : : ) = ? in [2, Section 1.2]) then R2 satis�es (Pol.). This fact

is less standard but is very easy to verify because only the sin � and

the cos � of the corresponding coordinates � 2 Q=N , crop up in the

multiplication cf. [10].

The construction of a homotopy retract that satis�es (Exp.) for a

general simply connected soluble Lie group Q is also very easy. Indeed,

if the exponential coordinates are chosen as in sections 2.1, 2.2 so that

e1; : : : ; em 2 n, u1; : : : ; us 2 h, the fact that both n and h are nilpotent,

allow us to estimate polynomially both

d(Exp (�1 u1) � � �Exp (�s us)) ; d(Exp (t1 e1) � � �Exp (tm em)) :

We also have (cf. [11])

t = jt1j+ � � �+ jtmj � C (expC jgj+ C) ;

� = j�1j+ � � �+ j�sj � C (jgj+ C) ;

g 2 Q ; g = (t1; : : : ; tm; �1; : : : ; �s) :
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This, if we take into account that the action of Ad (g) on TN has a

norm that is at most C (t+1)C exp (C �), easily completes the proof of

(Exp.). The details will be left as an exercise to the reader.

One should observe, that if M is some C1 manifold, and if �i :

M �! Q (i = 1; 2) are two mappings, then their group product satis�es

d(�1 � �2) = dL�1 � d�2 + dR�2 � d�1 ;

where L and R denote left and right translations on the group. If we

identify TgQ with TeQ = q by left translation, this says that (cf. [26])

d(�1 � �2) = d�2 + dR�2 � dL
�1
�2
� d�1 = d�2 +Ad�2 � d�1 :

5.3. The semidirect product.

Let now Q = Q1 ./ Q2 be a semidirect product, where both Q1; Q2

are simply connected soluble groups, and let Hi be a homotopy retract

of Qi (i = 1; 2). Let

g = q1 � q2 ; qi 2 Qi ; i = 1; 2 ;

so that

q2 = '2(g) ; q1 = g � ('2(g))
�1 = '1(g) ;

jd'2j � 1 ; jd'1(g)j � C exp (C jgj) ;

jq1jQ1
� C exp (C jgj) :

On the other hand, if we denote by

H(g; t) = H1(q1; t) �H2(q2; t) ; 0 � t � 1 ;

and by

Id = �1 � �2 : TQ �! TQ1 � TQ2 ;

the orthogonal decomposition of TQ induced by a basis of q = q1 ./ q2

that consists of a basis of q1 and a basis of q2 (cf. sections 2.3 and 4),

we have

�1 � dH = Adq1(H2) � dH1 � d'1 ;(5.3.1)

�2 � dH = dH2 � d'2 ;(5.3.2)
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with the obvious indenti�cations and obvious notations. It follows, in

particular, that if H2 satis�es the condition (Pol.) of Section 5.1 then

(5:3:3) j�2 � dHj � C jgjC + C :

Similarly, if H1 satis�es (Pol.) of Section 5.1, and if H2 has been con-

structed to satisfy the additional condition

(5:3:4) jH2(g; t)jQ2
� C jgjQ2

+ C ; g 2 Q2 ; 0 � t � 1 ;

then (5.3.1) implies that

j�1 � dHj � C exp (C jgj) :

If Q2 = N is nilpotent it is easy to see (5.3.4). This is because we

can use exponential coordinates of the second kind (x1; : : : ; xn) such

that the ball of radius r in N is equivalent (in the obvious sense) to

fjxjj � raj ; 1 � j � ng where aj � 1 (1 � j � n) are integers. It

follows that the retract R2 of (5.2.1) satis�es (5.3.4). The same type of

argument works if Q2 has polynomial volume growth (cf. [10]), but this

is less easy to see. (Alternatively, there exists T �= T
m and a semidirect

product G = Q2 ./ T such that there exists N � G that is a closed

nilpotent, simply connected normal subgroup and such that G = NT

N \ T = feg, cf. [27]. This allows us to transfer the problem from Q2

to N).

The above facts are not essential and the details will be left as an

exercise to the reader.

5.4. NC-groups.

Let Q be some simply connected NC-group and let

Q = NR ./ QR = Q1 ./ Q2 ;

be the semidirect decomposition induced by the corresponding algebra

decomposition q = nR ./ qR (cf. [2, Section 1.3]). We shall �rst

construct the corresponding H = H1 �H2 that satis�es (5.3.1), (5.3.2).

Let us now �x Y 2 qR such that

(5:4:1) Lj(Y ) � �C0 ; j = 1; 2; : : : ; k ;
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for the real roots L1; : : : ; Lk (I use here the notation of [2, Section 1.3]),

and let us de�ne

�(t) = �(g; t) = Exp (t (jgjC1 + 1)Y ) 2 Q ;(5.4.2)

Hp(g; t) = H(g; '(t)) � �( (t)) ; 0 � t � 1 ; g 2 Q ;

where \ � " indicates group multiplication in Q and where ';  2

C1([0; 1]) satisfy the following conditions:

 (t) =

8><>:
0 ; t = 0; 1 ;

1 ; t 2 [c; 1� c] ;

C1 ; and monotone in between ;

'(t) =

8><>:
0 ; t 2 [0; 2 c] ;

1 ; t 2 [1� 2 c; 1] ;

C1 ; and increasing \almost linearly" in between :

From the above de�nition it is evident that

jdHpj � C (jgjC + C) ; t 2 [0; 2 c] [ [1� 2 c; 1] :

It also follows from Section 5.3 that

jdHpj � jAdqR(�)j (C jgj
C + C) + jAdnR(H2 � �)j exp (C jgj+ C) :

It follows therefore that if C0 > 0 in (5.4.1) and C1 in (5.4.2) (in fact if

you believe (5.3.4), you can take C1 = 1) are chosen appropriately then

the above retract Hp satis�es (Pol.) because

jAdnR(�)j � C exp (�C jgjC1) ; 2 c � t � 1� 2 c

(cf. [2, Section 1.5] and [26]). This completes the proof of our Theorem.

Remarks.

i) The reader who wants to make things even easier could consider

a variant of the above construction which consists in setting

�(t) = Exp (t RC
0 Y )



134 N. Th. Varopoulos

with R0 � 1 and Y 2 qR as before. One can then de�ne

Hp(g; t) = H(g; '(t)) � �( (t))

(0 � t � 1, g 2 Q, jgj � R0) which is a retract of B(R0), the ball of

radius R0 in Q. This is weaker than our original construction but is

good enough for most of our purposes.

ii) In the opposite direction, the proof of the C-part of the main

theorem, if analyzed carefully, shows that the \exponential distortion"

is optimal for the retracts of the R-balls B(R). More precisely, if G is

a C-group, then there exists c > 0 such that if

HR : B(R)� [0; 1] �! B(R) ; R � 1 ;

are retracts, then

sup
1<R<R0

kHRkLip � exp (cR0) ; R0 � 1 :

iii) If we use the fact that NR is of \strict exponential distortion"

in Q (cf. [26]), we can easily construct the above homotopy Hp so that

it satis�es the additional condition

jHp(g; t)jQ � C jgjQ + C ; g 2 Q ; 0 < t < 1 :
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