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Global orthogonality implies

local almost-orthogonality

J. Michael Wilson

Abstract. We introduce a new stopping-time argument, adapted to

handle linear sums of noncompactly-supported functions that satisfy

fairly weak decay, smoothness, and cancellation conditions. We use the

argument to obtain a new Littlewood-Paley-type result for such sums.

0. Introduction.

First, an apology. The title, though correct, is somewhat mislead-

ing. It should be \Global almost-orthogonality implies local almost-

orthogonality." The present title was chosen for the sake of euphony.

In this paper we present a new Littlewood-Paley type result for

linear sums of almost-orthogonal functions. The functions we consider

have some decay at in�nity and some smoothness. However, neither of

these useful properties is assumed to be present in generous amounts.

The decay we assume is, in typical cases, no more than will ensure that

our functions belong to L1, and we do not assume that their gradients

decay at any faster rate.

Because of our minimal-decay hypothesis, we are not able to exploit

a lemma of Uchiyama [U] which would, in a certain sense, reduce our

problem to one in which our functions had compact support. This con-

straint has required the construction of a new stopping-time argument,

one specially adapted to sums of non-compactly-supported functions.

We believe that this stopping-time argument is the most signi�cant
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achievement of the present paper.

We shall now be more speci�c. Let D denote the usual family of

dyadic cubes I � R
d . We recall that D has the property that, for any

I and J in D, either I � J , J � I, or I \J = ?. For I 2 D, we let `(I)

denote I's sidelength and we use xI to mean its center. If E � R
d is a

measurable set, we let jEj denote E's Lebesgue measure.

We suppose we are given a family of functions f�(I)gI , indexed

over I 2 D. Each �(I) 2 f�(I)gI is smooth and also satis�es

(0.1) j�(I)(x)j+ `(I) jr�(I)(x)j � jIj�1=2
�
1 +

jx� xI j

`(I)

�
�M

;

for all x 2 Rd , where M is a �xed positive number. We furthermore as-

sume that f�(I)gI is \almost-orthogonal" in the following precise sense:

For every �nite linear combination from f�(I)gI ,

f(x) =
X
I

I �(I)(x) ;

the inequality

(0.2)

Z
jf j2 dx �

X
I

jI j
2

holds.

Families satisfying (0:1) and (0:2) are endemic in harmonic anal-

ysis. Here is a fast way to get such a family on the line. Let  (x) be

equal to sin (2� x) for x 2 [0; 1] and 0 elsewhere. For I 2 D (on R,

mind), set

 (I)(x) = jIj�1=2  
�x� xI

`(I)

�
:

Let H be the Hilbert transform. Then, modulo positive multiplicative

constants, fH( (I))gI satis�es (0:1) (for M = 2) and (0:2). Inequality

(0:1) follows from easy estimates on the Hilbert kernel. Inequality (0:2)

calls for some discussion.

An easy way to see that (0:2) holds for fH( (I))gI is to use the

L2 7�! L2 boundedness of the Hilbert transform. It is well-known (see

[St2, p. 167], or [U, Lemma 3.3]) that f (I)gI satis�es (0:2), modulo a
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multiplicative constant. Thus, for any �nite linear sum
P

I IH(�(I)),

Z ���X
I

I H(�(I))
���2 dx =

Z ���H
�X

I

I �(I)

����2 dx

=

Z ���X
I

I �(I)

���2 dx

� C
X
I

jI j
2 :

There is another way to get (0:2), in this particular case. The indus-

trious reader will have noticed that the collection fH( (I))gI actually

satis�es a stronger condition than (0:1). Indeed

(0.3) `(I) jrH( (I))(x)j � A jIj�1=2
�
1 +

jx� xI j

`(I)

�
�M�1

:

Furthermore, each H( (I)) has \cancellation"

(0.4)

Z
H( (I)) dx = 0 :

It follows from two lemmas of Uchiyama [U] that any family satisfying

(0:1) and (0:3) for some M > d, and which also has (0:4), automat-

ically sati�es (0:2), modulo a constant. A quick proof of this result

depends on a decomposition (due to Uchiyama) that allows one to es-

sentially reduce the problem to one in which the �(I)'s have compact

supports; for the sake of completeness, we present this argument in an

appendix. However, the extra decay in the derivative (0:3) is not nec-

essary for almost-orthogonality: (0:1) and (0:4) su�ce ([FJW, p. 11]).

Now, the process described above is how families like f�(I)gI typically

arise: roughly speaking, if one applies a reasonably regular integral op-

erator to a linear sum of wavelet-like functions
P

I �I  (I), one ends up

with a linear sum from a collection like f�(I)gI . One then commonly

has the problem of relating the size of the new function (in a weighted

space, in Lp, etc.) to the original coe�cients �I . If the operator is

nice enough, then f�(I)gI will have (0:3) and (0:4), and one can apply

Uchiyama's decomposition to get, in some cases, more general results;

such a program is worked out in [W1]. However, if the operator is not

quite regular enough, these properties may be destroyed. Just a little

bit of oscillation in the operator's kernel function can kill (0:3) (think
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of Bochner-Riesz kernels), and we might lose (0:4) if the operator is not

translation-invariant. In such a case, one needs a di�erent approach to

handle arbitrary linear sums; and that is the burden of our paper.

We need one more de�nition before we can state our main result.

If f =
P
�I �(I) is a �nite linear combination from a family f�(I)gI ,

and " > 0, we set

g�(f)(x) =
�X

I

j�I j
2

jIj

�
1 +

jx� xI j

`(I)

�
�(2M�(d+")) �1=2

:

This is the Littlewood-Paley-type object we will use to bound linear

sums from f�(I)gI . The reader will notice that it is nothing but a real-

variable analogue of the familiar g��-function from classical Littlewood-

Paley theory (see [St1, Chapter 4]).

Finally, let us recall that a non-negative � 2 L1
loc is said to be an

A1 weight (written: � 2 A1) if there are positive constants a and b

such that for all cubes Q � R
d and measurable sets E � Q,Z

E

�

Z
Q

�

� a
� jEj
jQj

�b
:

Here is our main theorem.

Theorem A. We suppose that f�(I)gI satis�es (0:1) and (0:2), for

some �xed M > d=2. We also suppose that � 2 A1. Let 0 < " <

2M � d and 0 < p <1. There is a constant C = C(M; p; d; "; �) such

that for every f =
P

I �I �(I), a �nite linear sum from f�(I)gI ,Z
Rd

jf(x)jp � dx � C

Z
Rd

(g�(f)(x))p � dx :

Our hypothesis that f�(I)gI satisfy (0:2) might seem a rather se-

vere requirement. We insist that it is not. First, as noted above, a

slight strengthening of the decay and smoothness conditions on f�(I)gI ,

when combined with (0:4), yields (0:2) for free, and families meeting

these extra conditions pop up fairly often. Second, Theorem A has

the happy property of not caring where f�(I)gI 's almost-orthogonality

comes from: cancellation, Fourier transform tricks, special-functions ar-

cana, etc. This makes Theorem A applicable to the study of operators

that are less regular than, say, the Hilbert transform.



Global orthogonality implies local almost-orthogonality 33

The proof of Theorem A comes by means of a so-called \good-

� inequality," which in turn depends on the stopping-time argument

mentioned above. A few words about this argument are probably in

order here. The method of good-� inequalities requires that we be able

to analyze the behavior of
P

I �I �(I) on arbitrary cubes J . This entails

splitting
P

I �I �(I) into two sums. The �rst of these, which we will callP
1 for the present, reects the \coarse structure" of

P
I �I �(I) on J ,

and is supposed to be almost constant on J . The second sum,
P

2,

has the information about
P

I �I �(I)'s �ne structure. The hard work

in proving the good-� inequality comes in controlling the size of
P

2.

Now, this control is obtained by applying a stopping-time argument

to
P

2, which means splitting
P

2 itself into two new sums,
P
�

1 andP
�

2. One of these new sums gets handled by means of a \global" result

(for us, that will be (0:2)). The other gets treated some other way; in

many stopping-time arguments, such as those for dyadic martingales,

the second sum disappears. Now, here's our problem. The stopping-

time argument works by analyzing the local behavior of
P

I �I �(I); but

the functions in f�(I)gI have global reach. In order to get a good local

estimate, we have to somehow \cut o�" the functions �(I), but if we do

not do this cutting-o� correctly, we will lose the property (0:2), which

gives us our only hope of controlling
P

2.

Our stopping-time argument turns on two main ideas. The �rst is

an appropriate discretization of
P

I �I �(I), which is given in De�nition

2 below. The second is a special splitting of
P

2 into
P
�

1 and
P
�

2. The

splitting occurs in the proof of the Main Lemma. Neither the splitting

nor the discretization seems to have much point without the other;

however, in order for the argument to work, these two parts have to �t

together as tightly as two Lego blocks. Indeed, our problem actually

has three interlocking pieces: one needs to have the right discretization

in order to de�ne the right stopping time, in order to apply the right

splitting. We believe that that was why this theorem was so hard to

prove. We also believe that keeping an image of two (or three) joined

Lego blocks in mind will help the reader understand the proof faster.

The organization of the paper is as follows. In Section 1, we give

(or repeat) our basic de�nitions and conventions. In Section 2, we state

and prove some technical lemmas. In Section 3, we state and prove

our Main Lemma, from which we obtain the good-� inequality as a

corollary. The proof of Theorem A then follows immediately.
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1. Preliminary de�nitions and conventions.

All cubes I � R
d
are assumed to be dyadic. We denote I's side-

length by `(I). We use d(x;E) to mean the distance between a point x

and a set E.

We assume that f�(I)gI , henceforth �xed, is a family of functions

satisfying (0:1) and (0:2). We will consider only �nite linear sumsP
I �I �(I) from f�(I)gI .

We will make frequent use of two simple facts:

a) if a and b are non-negative numbers and a � C b, then (1+a) �

maxf1; Cg (1 + b) � C 0(1 + b);

b) if I � R
d is a cube and � > d then

X
I0:I0�I

�`(I 0)
`(I)

��
� C(�; d) :

De�nition 1. Let I � R
d
be a cube. xI is I's center. S(I) is the

collection of all cubes I 0 such that I 0 6� I (these are the cubes which

\surround " I). N(I) is the collection of cubes I 0 such that I 0 � I and

`(I 0) = 0:5 `(I) (these are the \next generation" of cubes \below " I).

The �rst MAIN IDEA is the de�nition of F (I): this is how we

\discretize" the sum
P

I �I �(I).

De�nition 2. If I is a cube and x 2 I, we set

F (I; x) =
X

I02S(I)

�I0 �(I0)(x) ;

G(I; x) =
� X
I02S(I)

j�I0 j
2

jI 0j

�
1 +

jxI0 � xj

`(I 0)

�
�(2M�(d+"))�1=2

;

where " > 0 is �xed; we do not de�ne F (I; x) or G(I; x) for x =2 I. We

set F (I) = F (I; xI) and G(I) = G(I; xI).
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De�nition 3.

F �(x) = sup
I3x

jF (I)j ;

G�(x) = sup
I3x

G(I) ;

g�(x) =
�X

I

j�I j
2

jIj

�
1 +

jx� xI j

`(I)

�
�(2M�(d+"))�1=2

:

2. A few lemmas.

Lemma 1. jf(x)j � F �(x).

Proof. Trivial.

Lemma 2. G�(x) � c g�(x).

Proof. If x 2 I and I 0 2 S(I), then jx� xI0 j � jx� xI j+ jxI � xI0 j �

c jxI �xI0 j, since jxI �xI0 j � c `(I). Thus, for every I 0 2 S(I), 1+ jx�

xI0 j=`(I
0) � C (1 + jxI0 � xI j=`(I

0)). This implies that G(I) � c g�(x).

Lemma 3. Let 0 < � < 0:1. There is a C = C(�;M; d) such that if

x 2 I and d(x; @I) > � `(I) then C�1G(I) � G(I; x) � C G(I).

Proof. Just note that if x is as described and I 0 2 S(I) then jx �

xI0 j=jxI � xI0 j is bounded between two positive constants.

Lemma 4. Let 0 < � < 0:1. There is a C = C(�;M; d; ") such that if

x 2 I and d(x; @I) > � `(I) then jF (I)� F (I; x)j � C G(I).

Proof. Write

jF (I)� F (I; x)j �
X

I02S(I)

`(I0)�`(I)

j�I0 j j�(I0)(x)� �(I0)(xI)j

+
X

I02S(I)

`(I0)<`(I)

j�I0 j (j�(I0)(x)j+ j�(I0)(xI)j)

= (i) + (ii) :
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Note that (i) has a minus sign where (ii) has a plus sign. We will use

smoothness to bound (i), but only a size estimate to bound (ii). It is

chiey because of this latter fact that we are able to get away with so

little smoothness in the family f�(I)gI .

We deal with (i) �rst. Let I 0 2 S(I) and suppose that `(I 0) � `(I).

By the smoothness condition on �(I0),

j�(I0)(x)� �(I0)(xI)j � Cd

� `(I)
`(I 0)

�
jI 0j�1=2

�
1 +

jxI � xI0 j

`(I 0)

�
�M

;

for every such I 0. Therefore,

(i) � Cd
X

I02S(I)

`(I0)�`(I)

j�I0 j
� `(I)
`(I 0)

�
jI 0j�1=2

�
1 +

jxI � xI0 j

`(I 0)

�
�M

:

Applying Cauchy-Schwarz, we get

(i) � cG(I)
� X

I02S(I)

`(I0)�`(I)

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")� `(I)

`(I 0)

�2�1=2

� cG(I)
� 1X
k=0

2�2k
X

`(I0)=2k`(I)

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")�1=2

:

For each k, the sum

X
`(I0)=2k`(I)

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")

is bounded by C, because, for each n � 1, there are at most c 2nd

cubes I 0 in the sum such that 2n�1 � 1 + jxI � xI0 j=`(I
0) < 2n. Their

contribution to the sum is no greater than c 2�n".

Summing over k now, we get that (i) � cG(I).

To bound (ii), write Rd = I [ ([jIj), where each Ij is congruent

to I and is in S(I). Here is where we use the hypothesis that x 2 I

stays away from @I. Note that, if I 0 � Ij , then jx�xI0 j, jxI �xI0 j, and

jxI � xIj j are comparable: i.e., the ratios

jx� xI0 j

jxI � xIj j
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and
jx� xI0 j

jxI � xI0 j

are both bounded above and below by positive constants that depend

only on d and �. Therefore, proceeding much as we did with (i)

(ii) � cG(I)
� X

I02S(I)

`(I0)<`(I)

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")�1=2

� cG(I)
�X

j

X
I0�Ij

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")�1=2

= cG(I)
�X

j

H(j)
�1=2

;

where

H(j) =
X
I0�Ij

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")

:

Since, for each j,

jxI � xIj j � cd jxI � xI0 j ;

for all I 0 2 Ij , we get

� jxI � xIj j

`(I)

�� `(I)
`(I 0)

�
� cd

jxI � xI0 j

`(I 0)
:

But, clearly,

c
�
1 +

jxI � xIj j

`(I)

�
�
� jxI � xIj j

`(I)

�

(because jxI � xIj j � `(I)) and

jxI � xI0 j

`(I 0)
�
�
1 +

jxI � xI0 j

`(I 0)

�
:

Therefore

�
1 +

jxI � xI0 j

`(I 0)

�
�(d+")

� C
�
1 +

jxI � xIj j

`(I)

�
�(d+")� `(I 0)

`(I)

�d+"
;
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for each I 0 � Ij . Plugging this back into the sum for H(j)

H(j) � c
X
I0�Ij

�
1 +

jxI � xIj j

`(I)

�
�(d+")�`(I 0)

`(I)

�d+"

= c
�
1 +

jxI � xIj j

`(I)

�
�(d+") X

I0�Ij

�`(I 0)
`(I)

�d+"

� c
�
1 +

jxI � xIj j

`(I)

�
�(d+")

:

There are no more than cd 2
kd cubes Ij such that 2(k�1) < jxI �

xIj j=`(I) � 2k. The sum of the corresponding H(j)'s is at most c 2�k".

Thus
P

j H(j) � C, and the lemma is proved.

Remark. In proving our main lemma, � will be chosen so that fx 2

I : d(x; @I) � � `(I)g has negligible measure.

Lemma 5. If I� 2 N(I) then G(I) � C(M;d)G(I�).

Proof. By Lemma 3, G(I) = G(I; xI) � C G(I; xI�). But G(I; xI�) �

G(I�).

Lemma 6. There is a positive constant C such that the following holds :

If I� 2 N(I) then, for all x 2 I, G�(x) � C G(I�).

Proof. Let L � I n I� be a cube. Let J 2 S(I�). By the triangle

inequality, jxL�xJ j � jxL�xI� j+ jxI��xJ j. But jxL�xI� j � c `(I) �

c jxI� � xJ j. Therefore jxL � xJ j � C jxI� � xJ j. Then,

G(I�)2 � C G(L)2 +
X

I0:I0�L

j�I0 j
2

jI 0j

�
1 +

jxI0 � xI� j

`(I 0)

�
�(2M�(d+"))

;

for a �xed constant C. But the sum goes to zero as jLj does.

Lemma 7. There is a C = C(M;d; ") such that if I� 2 N(I) then

jF (I)� F (I�)j � C G(I�).



Global orthogonality implies local almost-orthogonality 39

Proof. Write

jF (I)� F (I�)j � jF (I; xI)� F (I; xI�)j+ jF (I; xI�)� F (I�; xI�)j

� C G(I) + jF (I; xI�)� F (I�; xI�)j

� C G(I�) + jF (I; xI�)� F (I�; xI�)j ;

where the second inequality follows from Lemma 4 and the third is from

Lemma 5. The last term in the third inequality is less than or equal to

X
I02S(I�)nS(I)

j�I0 j jI
0j�1=2

�
1 +

jxI� � xI0 j

`(I 0)

�
�M

;

which, by Cauchy-Schwarz, is less than or equal to

G(I�)
� X

I0:I0�I
I0 6�I�

�
1 +

jxI� � xI0 j

`(I 0)

�
�(d+")�1=2

:

A virtual repetition of the argument used to bound H(j) in the proof of

Lemma 4 shows that the sum in the brackets is bounded by a constant

times �
1 +

jxI� � xI j

`(I)

�
�(d+") X

I0:I0�I
I0 6�I�

�`(I 0)
`(I)

�d+"
;

which is less than or equal to C.

3. The Main Lemma and its corollaries.

Main Lemma. Let I(0) be a �xed dyadic cube and let f=
P

I �I �(I)(x)

be a �nite linear sum from f�(I)gI . We assume that, for all I, either

�I = 0 or I � I(0). (Thus, we are only considering I's contained in

I(0).) For every � > 0 there is a  = (M;d; �; ") > 0 such that

jfx 2 I(0) : F
�(x) > 1; G�(x) � gj � � jI(0)j :

Proof of Main Lemma. This will be rather long.

Let A be a large number, to be chosen shortly. Let fIjgj be the

maximal dyadic subcubes of I(0) such that there is an I 2 N(Ij) for
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which G(I) > A. By Lemma 6, we have G�(x) > CA for all x 2 Ij.

Choose A so that CA > 1. Notice that, by maximality, we must have

G(Ij) � A. Notice also that, if x =2 [jIj , then G
�(x) � A. These

two facts imply that, for any x 2 I(0),

X
I:x2I

for all j(I 6�Ij)

j�I j
2

jIj
� C(M;d) (A)2 :

Now observe that if x 2 fx 2 I(0) : F
�(x) > 1; G�(x) � g then xmust

belong to some cube I such that jF (I)j > 1 and I is not a subset of any

Ij (because G
�(x) >  on [jIj). Let fJkgk be the maximal cubes with

both these properties. Set fQ�jg = fIjgj[fJkgk, the union of these two

sets of cubes (so, fQ�jg is a collection of cubes), and let fQjgj � fQ�jg

be the corresponding subfamily of maximal cubes.

We observe that if x 2 fx 2 I(0) : F
�(x) > 1; G�(x) � g then x

must belong to some cube Qj such that jF (Qj)j > 1. We also note that

G(Qj) � A for all j and that, if x =2 [jQj, then G
�(x) � A.

So far, (almost) everything we have done has consisted of fairly

standard (if somewhat technical) estimates. We now come to the SEC-

OND MAIN IDEA; i.e., the splitting of the sum.

Let F1=fI : for all j (I 6� Qj)g and F2=fI : I � Qj for some jg.

Every I � I(0) belongs to either F1 or F2. Write f = f1 + f2, where

fl =
P

I:I2Fl
�I �(I)(x). We similarly de�ne Fl(I; x), Fl(I), G

�

l (x), etc.,

e.g.

F1(I; x) =
X

I02S(I)

I02F1

�I0 �(I0)(x) ;

F2(I; x) =
X

I02S(I)

I02F2

�I0 �(I0)(x) ;

both de�ned only for x 2 I. Notice that Gl(I) � G(I).

Now, it is clear that

jfx 2 I(0) : F
�(x) > 1; G�(x) � gj

�
X

j0:jF (Qj0)j>1

jQj0 j

�
X

j0:jF1(Qj0 )j>1=2

jQj0 j+
X

j0:jF2(Qj0 )j>1=2

jQj0 j

= (i) + (ii) :
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We need to estimate (i) and (ii). De�ne, for Q a cube, C(Q) = fx : jx�

xQj � 0:1 `(Q)g, the \center portion" of Q. Notice that jQj � cd jC(Q)j.

Thus

(i) � cd
X

j0:jF1(Qj0 )j>1=2

jC(Qj0)j ;

and an analogous estimate holds for (ii).

Let Qj0 be a cube occurring in the sum for (i). By Lemma 4, if

x 2 C(Qj0), jF1(Qj0)� F1(Qj0 ; x)j � C(M;d; ")G(Qj0). But G(Qj0) �

A and jF1(Qj0)j > 1=2. If  is taken small enough, these force

jF1(Qj0 ; x)j > 0:25 for all x 2 C(Qj0). Therefore,

(i) � cd
X
j

jfx 2 C(Qj) : jF1(Qj; x)j > 0:25gj ;

and a similar estimate holds for (ii).

Let us temporarily restrict our attention to (i). We now make a

curious observation: If x 2 Qk then F1(Qk; x) = f1(x). The proof

comes from working it out

f1(x) =
X
I2F1

�I �(I)(x)

=
X

I: for all j (I 6�Qj)

�I �(I)(x)

=
X

I:I2F1
I2S(Qk)

�I �(I)(x)

= F1(Qk; x) :

(It is helpful to recall the de�nition of S(Qk) = fI : I 6� Qkg.)

(This \curious observation" is (sort of) why the proof works: this

is where the two main ideas link up.)

Therefore,

(i) � c jfjf1(x)j > 0:25gj :

However, by our hypothesis (0:2),

Z
jf1j

2 dx � C
X

I:I2F1

j�I j
2 =

Z � X
I:x2I
I2F1

j�I j
2

jIj

�
dx :
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As observed above, the quantity

X
I:x2I
I2F1

j�I j
2

jIj

is less than or equal to C (A)2 everwhere. A good bound on (i) now

follows from Chebyshev's inequality.

Let's look at (ii) now. For each j, let Ej = fI : I � Qjg. Notice

that F2 = [jEj . For � > 1 let � I denote I's � -fold dilate. If � is taken

close enough to 1 (depending only on d), j� I n Ij < (�=3) jIj. Fix such

a � and set D = [j(� Qj nQj). Then jDj < (�=3) jI(0)j. We only need

to show that

cd
X
j

jfx 2 C(Qj) nD : jF2(Qj; x)j > 0:25gj �
�

3
jI(0)j :

Fix a j in the preceding sum and let x 2 C(Qj) n D. The function

jF2(Qj ; x)j is less than or equal to

X
k:k 6=j

X
I:I2Ek

j�I jp
jIj

�
1 +

jx� xI j

`(I)

�
�M

;

which, by Cauchy-Schwarz, is bounded by

� X
k:k 6=j

X
I:I2Ek

j�I j
2

jIj

�
1 +

jx� xI j

`(I)

�
�(2M�(d+")) �1=2

�
� X
k:k 6=j

X
I:I2Ek

�
1 +

jx� xI j

`(I)

�
�(d+") �1=2

:

The �rst factor in the preceding product is less than or equal toG(Qj ; x)

� C G(Qj) � cA . Let us now look at the second factor.

Consider X
k:k 6=j

X
I:I2Ek

�
1 +

jx� xI j

`(I)

�
�(d+")

:

Fix a k 6= j in the sum. Since Qk \ Qj = ? and x =2 D, we must

have jx� xI j � c jx� xQk
j for every I 2 Ek, where the constant c only
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depends on � and d. Therefore

1 +
jx� xI j

`(I)
�
jx� xI j

`(I)

� c
jx� xQk

j

`(Qk)

� `(Qk)

`(I)

�

� c
�
1 +

jx� xQk
j

`(Qk)

��`(Qk)

`(I)

�
;

where the last inequality follows because jx � xQk
j � 0:5 `(Qk) (recall

that x =2 Qk). Thus

�
1 +

jx� xI j

`(I)

�
�(d+")

� C
�
1 +

jx� xQk
j

`(Qk)

�
�(d+")� `(I)

`(Qk)

�d+"
:

Therefore, if x 2 C(Qj) nD,

jF2(Qj ; x)j � cA 
� X
k:k 6=j

�
1 +

jx� xQk
j

`(Qk)

�
�(d+") X

I2Ek

� `(I)

`(Qk)

�d+"�1=2

� CA
�X

k

�
1 +

jx� xQk
j

`(Qk)

�
�(d+")�1=2

:

This implies that

X
j

Z
C(Qj)nD

jF (Qj; x)j
2 dx � (CA)2

Z
I(0)

X
k

�
1 +

jx� xQk
j

`(Qk)

�
�(d+")

� (CA)2
X
k

jQkj

� (CA)2 jI(0)j :

Now the bound on (ii) follows (for  su�ciently small) by Chebyshev's

inequality. The Main Lemma is proved.

Corollary of the Main Lemma. Let � be an A1 weight. For every

� > 0 there is a  > 0 such that for all � > 0 and any �nite sum

f =
P

I �I �(I)(x) (as described in Section 1),

�(fx : F �(x) > 2�; G�(x) �  �g) � � �(fx : F �(x) > �g) :



44 J. M. Wilson

Proof of the corollary. Let fIjgj be the maximal dyadic cubes

such that jF (Ij)j > �. Then fx : F �(x) > �g = [jIj. It will be enough

to show that

�(fx 2 Ij : F
�(x) > 2�; G�(x) �  �g) � � �(Ij) ;

for each j, where  does not depend on j. Because � 2 A1, it will be

enough to show

(3.1) jfx 2 Ij : F
�(x) > 2�; G�(x) �  �gj � � jIjj ;

for some smaller (but �xed) value of �.

Let � > 0 be so small that

jfx 2 Ij : d(x; @Ij) � � `(Ij)gj �
�

3
jIjj :

Let ~Ij be Ij's dyadic double (i.e., Ij 2 N(~Ij)). We have that jF (~Ij)j �

�. By Lemma 7, jF (Ij)�F (~Ij)j � C G(Ij). By Lemma 4, we also have

that jF (Ij) � F (Ij ; x)j � C� G(Ij) for all x 2 Ij such that d(x; @Ij) >

� `(Ij). Thus, by taking  small enough, we can assume that either the

left-hand side of (3:1) is zero or else jF (Ij; x)j � 1:1� for all x such that

d(x; @Ij) > � `(Ij). We henceforth assume we are in the second case.

Write h =
P

I�Ij
�I �(I). We are going to apply the Main Theorem to

h on the cube Ij . Set

H(I; x) =
X

I0:I02S(I)

I0�Ij

�I0�(I0)(x) ;

H(I) = H(I; xI) ;

H�(x) = sup
I3x

jH(I)j :

It is clear that

fx 2 Ij : F
�(x) > 2�; G�(x) �  �g

� fx 2 Ij : H
�(x) > 0:9�; G�(x) �  �g

[ fx 2 Ij : d(x; @Ij) � � `(Ij)g :
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But the second set on the right has measure at most (�=3) jIjj. By

rescaling (dividing by 0:9�) and applying the Main Lemma, so does

the �rst set on the right. This proves the application.

We are now able to prove:

Theorem A. Let 0 < p <1 and let � 2 A1. For every �nite sum

f =
X
I

�I �(I)(x)

as described in the introduction,

Z
Rd

jf jp � dx � C

Z
Rd

(g�(x))p � dx :

In particular,

Z
Rd

jf j2 � dx � C
X
I

j�I j
2

jIj

Z
Rd

�(x)�
1 +

jx� xI j

`(I)

�2M�(d+")
dx :

Proof of Theorem A. If x is large and x 2 I then jxI j � c jxj. Thus,

F �(x) � c jxj�M � cG�(x) � c g�(x)

for large x; so, without loss of generality, we may assume that F � 2

Lp(�). Now the Corollary implies that

Z
R

(F �(x))p � dx � C

Z
Rd

(G�(x))p � dx :

Lemmas 1 and 2 �nish the proof.

Corollary of Theorem A. Let p, �, and f�(I)gI be as in Theorem A,

and let f�IgI2D � R. If fDng is a nested, increasing sequence of �nite

subsets of D such that

f(x) � lim
n!1

X
I2Dn

�I �(I)(x)

exists almost everwhere, then

Z
Rd

jf jp � dx � C

Z
Rd

(g�(x))p � dx ;
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where the constant C is the same as in Theorem A.

Proof. Fatou's Lemma.

The reader should notice that, although we only require M > d=2,

we will almost always want 2M�(d+") > d, which requiresM > d. In

order to get away with nothing stronger than M > d=2 (in practice, as

it were), we would have to raise the exponent of decay in the de�nition

of g�(x) to 2M � ". Alas, this is impossible, at least in the generality

of Theorem A. The reader is referred to [W2] for the counterexample.

4. Appendix.

We remind the reader that this proof's real payo� comes in the

decomposition, and that almost-orthogonality can be obtained under

slightly weaker hypotheses [FJW].

Almost-orthogonality Lemma. If the family f�(I)gI satis�es (0:1),

(0:3), and (0:4), then it satis�es (0:2), modulo a multiplicative constant,

depending only on M and d.

Proof. See [U, Lemmas 3.5 and 3.3] (in that order). By (the proof

of) Lemma 3.5, each of our �(I)'s can be decomposed

�(I) = C(M;d)

1X
j=0

2�Mj �(I);j ;

where each �(I);j is smooth and satis�es

supp �(I);j � 2jI ;

k�(I);jk1 � jIj�1=2 ;

kr�(I);jk1 � (2j `(I))�1 jIj�1=2 ;

Z
�(I);j dx = 0

(2jI is the 2j-fold dilate of I).
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Uchiyama proves his Lemma 3.5 forM = d+1, but it is easy to see

that the proof goes through for any M > d. The reader should notice

that our �(I)'s di�er from Uchiyama's by factors of jIj1=2.

By Lemma 3.3, we have, for each j,

X
I

�I �(I);j


2
� Cd 2

jd
�X

I

j�I j
2
�1=2

:

Therefore, if

h =
X
I

�I �(I)

is a �nite linear sum from f�(I)gI ,

khk2 � C
X
j

2�Mj
X

I

�I �(I);j


2

� C
�X

I

j�I j
2
�1=2X

j

2�Mj 2jd

� C
�X

I

j�I j
2
�1=2

;

since M > d.
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