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1. Introduction.

The objective of our note is to prove that, at least for a convex

domain, the ground state of the p-Laplacian operator

(1.1) �pu = div (jrujp�2ru)

is a superharmonic function, provided that 2 � p � 1. The ground

state of �p is the positive solution with boundary values zero of the

equation

(1.2) div (jrujp�2ru) + � jujp�2 u = 0

in the bounded domain 
 in the n-dimensional Euclidean space. Notice

that for p = 2 we have the ordinary Laplacian � = �2, and in this case

the inequality �u � 0, expressing the superharmonicity, is evident from

the equation �u+ �u = 0, since � > 0 and, by convention, u > 0.

The underlying phenomenon is most clearly visible in the case p =

1, when our operator is to be understood as

(1.3) �1u =

nX
i;j=1

@u

@xi

@u

@xj

@
2
u

@xi @xj

:
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The superharmonicity is a consequence of two ingredients in the proof:

i) �pu � 0 and ii) log u is concave in a convex domain. Our argument

is based on the identity

(1.4) �1 log u+
�1u

jruj3
=

�u

jruj
;

from which we can read o� that, if �1 logu � 0 and �1u � 0, then the

desired inequality �u � 0 holds. Unfortunately, the second derivatives

needed to evaluate (1.4) do not always exist pointwise, making the

identity di�cult to use. The remedy is to interpret inequalities like

�1u � 0 in the viscosity sense.

The important term �1 log u calls for an explanation. The expres-

sion

��1v = � div
rv

jrvj

is the mean curvature of the level surfaces of the function v. In the case

of two independent variables this is the familiar expression

k = �
v
2
y
vxx � 2 vx vy vxy + v

2
x
vyy

(v2
x
+ v2

y
)3=2

for the curvature of the level lines \v(x; y) = constant". The operator1

�1 is \covariant"

(1.5) �1u = �1 logu :

The reason for passing to the logarithm is that, by Sakaguchi's extension

[S] of the celebrated theorem of Brascamp and Lieb, log u is concave,

where u denotes the ground state of �p in a convex domain. This has

the e�ect that �1 logu � 0 in the viscosity sense.

Equations like �pu = �2 (the torsional creep problem) are also

susceptible of our proof. In connexion with the p-harmonic capacitory

function in convex rings similar phenomena have been detected by J.

Lewis, cf. [Le]. See also [Ja, Lemma 2.4].Our proofs do not work

directly for p � 2, but we know that in the one-dimensional case the

ground state is superharmonic for all p � 1. On the other hand the

1
As a matter of fact, the logarithm in (1.5) can be replaced by an arbitrary function.

Instead of log-concave functions we may study so called quasi-concave functions. See [F].
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assumption about convexity can be replaced by local convexity, except

in Corollary 3.14.

The content is organized as follows. Viscosity supersolutions and

the ground states are de�ned in Section 2. The main result is The-

orem 3.12 and Corollary 3.14 in Section 3. Section 4 is a digression

about concave functions and viscosity supersolutions. It can be read

independently of the other sections.

2. Some de�nitions.

The concept of viscosity (super)solutions will be de�ned in this

section. For a general introduction to this topic we refer to [C] and

[CC]. However, we begin with distributional solutions.

We assume that 
 is a bounded domain in the Euclidean n-dimen-

sional space. The problem of minimizing the Rayleigh quotient

(2.1) �p = min
u

Z



jru(x)jp dx
Z



ju(x)jp dx

among all functions u in the Sobolev space W
1;p
0 (
) has the Euler-

Lagrange equation (1.2), when 1 � p < 1. (The right limit equation

as p �!1 is given in [JLM].) This is usually interpreted in the distri-

butional sense, especiall y, when it comes to questions about existence

and regularity.

De�nition 2.2. We say that u 2 C(
) \W 1;p
0 (
) is an eigenfunction

of �p, if

(2.3)

Z



jrujp�2ru � r'dx = �

Z



jujp�2 u' dx ;

for all ' 2 C10 (
). Here 1 < p <1.

The ground state is the eigenfunction corresponding to the small-

est possible value of �, viz. the above mentioned minimum �p of the

Rayleigh quotient. The ground state up exists and the eigenvalue �p is

simple. It does not change sign in 
 and our convention is that up > 0.

On the other hand, an eigenfunction that does not change sign must
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be a ground state. For all this we refer to [Li] and the references given

there.

The case p = 1 is more intricate.The ground state satis�es the

equation

maxf�1 � jr logu(x)j ; �1u(x)g = 0 ;

in the viscosity sense (see the de�nition below). At each point, take the

larger of the quantities. The eigenvalue

�1 = lim
p!1

p
p
�p

is the radius of the largest ball that can be inscribed in 
. The

variational ground state u1 of �1 is obtained as a limit of up's as

p �! 1. Unfortunately, the question of uniqueness has not been set-

tled for p =1. We refer to [JLM] for a detailed discussion.

De�nition 2.2 is not suitable to us. It is crucial that we can work

with inequalities interpreted in the viscosity sense.

De�nition 2.4. Suppose that 2 � p � 1. Let u 2 C(
). We say that

�pu � 0 in 
 in the viscosity sense, if at each given point x 2 
 we

have �p'(x) � 0 for all test-functions ' touching u from below at x.

That is, ' 2 C1(
), '(x) = u(x), and '(y) < u(y) when y 6= x.

A synonymous expression is that u is a viscosity supersolution to

the equation �pu = 0. Notice that �2u � 0 in the viscosity sense

exactly when u is a continuous superharmonic function.2 (The de�ni-

tion, when written for lower semi-continuous functions, characterizes

the whole class of superharmonic functions in the case p = 2.) The

family of test-functions depends on the point x.

Lemma 2.5. Suppose that 2 � p � 1. The ground state up is a

viscosity supersolution to the equation �pu = 0.

Proof. The proof of this simple fact has been written out in [JLM,

Lemma 1.8].

2
As a mnemonic rule, recall that a superharmonic function can be approximated

from below by smooth functions and, accordingly, the test-function should touch from

below.
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3. Superharmonicity and concavity.

Our aim is to prove the superharmonicity of the ground state of

�p, 2 � p � 1. The case p =1 will be based on the identity

(3.1) jr'j3�1'+�1' = jr'j2�2'

and the cases 2 < p <1 on the identity

(3.2) (p� 2) jr'j3�1'+
�p'

jr'jp�4
= (p� 1) jr'j2�2' ;

both valid for smooth functions. At points where r' = 0 we interpret

the expressions so that there is no actual division by zero, for example

�p'

jr'jp�4
= jr'j2�'+ (p� 2)�1' :

We want to establish that �1 logu � 0, when log u is concave. This

has to be done in the viscosity sense. Recall (1.5).

Lemma 3.3. Suppose that 
 is a convex domain. Let u 2 C(
). If

u > 0 and logu is concave in 
, then

(3.4) jruj3�1u � 0

in the viscosity sense. That is, the inequality holds for positive test-

functions touching u from below.

Proof. Fix a point x 2 
. Let ' > 0 be any test-function touching u

from below at x. We have to prove that the expression

jr'j3�1' = jr'j2�'��1'

is less or equal than 0 at the given point x. Now the function  = log'

will do as test-function at x for the concave function v = logu. Because

(3.5) jr'j3�1' = '
3 jr j3�1 

our claim is

(3.6) jr (x)j3�1 (x) � 0 :
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To this end, observe that  must be \concave at the point x", i.e.,

(3.7) h�;D2
 (x) �i � 0 ;

for all vectors � 2 R
n . (See Proposition 4.1 for the notation). Let

A = D2
 (x). The matrix A is negative semi-de�nite and symmetric.

Hence its eigenvalues �1; �2; : : : ; �n are negative or zero. The inequality

jr (x)j2� (x)��1 (x) � 0 ;

which is our claim (3.6), can be written in the form

(3.8) j�j2Trace (A) � h�; A �i ;

where � = r (x). Diagonalizing the symmetric matrix A as

A = U �U�1 ; � = diag [�1; �2; : : : ; �n] ;

where U is a unitary matrix, and denoting � = U
�1
� we can write (3.8)

as

j�j2 (�1 + �2 + � � �+ �n) � �1 �
2
1 + �2 �

2
2 + � � �+ �n �

2
n
:

This inequality is obviously true, because �1 � 0; �2 � 0; : : : ; �n � 0

and j�j2 � �
2
j
. This proves (3.6).

At this stage we had better formulate an auxiliary result about the

right-hand side in (3.1) and (3.2).

Lemma 3.9. Suppose that 
 is a convex domain. If u > 0, logu is

concave, and

(3.10) jruj2�u � 0

in 
 in the viscosity sense, then u is superharmonic in 
.

Proof. Fix x 2 
 and let ' denote a positive test-function touching

u from below at x. By the assumption

(3.11) jr'(x)j2�'(x) � 0 :

We claim that �'(x) � 0. This is clear, if r'(x) 6= 0.
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If r'(x) = 0, then a simple computation yields

'(x)� log'(x) = �'(x)

and hence our claim is that � log'(x) � 0 in this case. The function

log' touches logu from below at x. Since logu is concave, log' must

be \concave at x" and hence � log'(x) � 0. (See Proposition 4.1.)

Thus �'(x) � 0 in both cases. Because u(x) > 0, the restriction

that ' be positive has no in
uence on our conclusion that �u � 0 in

the viscosity sense. Functions that are superharmonic in the viscosity

sense are superharmonic (in the ordinary sense).

Our main result is the following.

Theorem 3.12. Let 
 be a convex domain and suppose that u 2 C(
)
satis�es :

i) u > 0 and logu is concave

ii) �pu � 0 in the viscosity sense for some p, 2 � p � 1,

in 
. Then u is superharmonic in 
.

Proof. Fix a point x 2 
 and let ' be a positive test-function touching

u from below at x. In the case p =1 we use Equation (3.1). According

to Lemma 3.3 the �rst term is less or equal than 0 and so is the second

term according to ii). Thus

jr'(x)j2�'(x) � 0 :

The desired superharmonicity follows from Lemma 3.9. This was the

case p = 1. { The cases 2 < p < 1 are based on Equation (3.2), but

otherwise similar.

Remark. A little more can be proved. If logu is concave and if �pu �
0 for some p � 2, then �qu � 0 for all q in the range 2 � q � p, the

inequalities being interpreted in the viscosity sense. To see this, use the

identity

(3.13) (p� 2)
�q'

jr'jq�4
= (p� q) jr'j2�'+ (q � 2)

�p'

jr'jp�4
:
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Corollary 3.14. In a convex bounded domain 
 the ground state of

the operator �p is a superharmonic function, provided that 2 � p <1.

The same concerns any variational ground state of �1.

Proof. By [S, Theorem 1] logu is concave and by Lemma 2.5 �pu � 0

in the viscosity sense. The result follows from Theorem 3.12.

As we indicated in the Introduction, the solution of the \torsional

creep equation" �pu = �2, 2 � p � 1 is superharmonic in a convex

domain. Indeed, if the solution u has boundary values zero, then the

function u1�1=p is concave a ccording to [S, Theorem 2]. Thus condi-

tion i) holds a fortiori. Condition ii) has been established in [BDM].

{ Needless to say, there are many other interesting situations where

Theorem 3.12 applies.

4. About Concave Functions.

It is well-known that the negative semi-de�niteness of the Hessian

matrix characterizes concave functions with continuous second partial

derivatives. Interpreted in the viscosity sense this characterizes all (lo-

cally) concave functions. This is likely� to be known to the experts in

the �eld.

Proposition 4.1. Let u 2 C(
), where 
 is a convex domain. Then

the function u is concave in 
 if and only if

(4.2) h�;D2
u �i =

nX
i;j=1

@
2
u

@xi @xj

�i �j � 0

in the viscosity sense for all � 2 R
n . That is, whenever x 2 
 and

' 2 C2(
) are such that

i) '(x) = u(x),

ii) '(y) < u(y), when y 6= x,

then

(4.3) h�;D2
'(x) �i � 0 ;

�
Added in proof: See \Hessian Measures II", Annals of Mathematics (to appear),

by N. Trudinger and X.-J. Wang, for reaching extensions of Proposition 4.1.
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for all � 2 R
n .

Notice that, as usual, each point in 
 requires its own family of

test-functions ' touching from below. If (4.3) holds for all such ', it

also holds for all ' with ii) weakened to ' � u.

Proof of the Proposition. Assume that u is concave. Fix a vector

� 6= 0 and let x be a point in 
. Let ' be any test-function touching u

from below at x. Then ' must be \concave at x", that is

d
2
'(x+ t �)

dt2
� 0 ; at t = 0 ;

since otherwise i) and ii) would contradict the concavity of u itself.

After di�erentiation, this inequality is exactly (4.3) and so we have

proved the �rst half of the proposition.

For the other direction of the proof, we assume that u is not con-

cave. We may assume that the ball jxj � 2 is comprised in 
 and, by

adding a linear function and scaling, that

u(�1; 0; : : : ; 0) � 2 ; u(0; 0; : : : ; 0) = 0 :

There is a small � > 0 such that u(x) > 1; when jxj = 1 and x22+ � � �+
x
2
n
< �

2.

We will construct a test-function of the form

(4.4) '(x) = a+ " x
2
1 �

x
2
2 + � � �+ x

2
n

"

touching u from below at some point x with jxj < 1. The touching

point is to be determined later! We assume that a � 0 and 0 < " < 1.

Then

'(0) = a � 0 = u(0) :

Let

m = min
jxj�1

u(x)

and �x " so that

0 < " <
�
2

1�m
;

notice that m � 0. We claim that

(4.5) '(x) < u(x) ; when jxj = 1 :
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This is independent of a � 0. To see this, consider �rst the points

where u(x) > 1. Always

'(x) � a+ " � 1 � 1

and so we have only to check the points where jxj = 1 and x22+� � �+x
2
n
>

�
2. There

'(x) � a+ "�
�
2

"
< 1�

�
2

"
� m � u(x) :

Thus (4.5) is veri�ed.

If a is negative enough, '(x) < u(x) when jxj � 1. Select the

largest a such that '(x) � u(x), when jxj � 1. The corresponding '

must touch u at some point x with jxj < 1, since '(x) < u(x), when

jxj = 1 for all a � 0. At this point ' will do as test-function. However,

the inde�nite quadratic form

h�;D2
'(x) �i = 2 " �21 �

2

"
(�22 + � � �+ �

2
n
)

violates (4.3). This concludes our proof.

In passing, we mention that, usually, classical solutions are viscos-

ity solutions, but this is not the case for the Monge-Amp�ere equation

uxx uyy � u
2
xy

= 0

in two variables. A plain example is

u(x; y) = cos y :

It de�nitely satis�es the equation, though not in the viscosity sense.

The following curious fact seems to have passed unnotized in the liter-

ature.

Proposition 4.6. Let u 2 C(
), where 
 is a convex domain in R
2 .

Then u is concave if and only if

u
2
xy
� uxx uxy � 0

in the viscosity sense, the test-functions touching u from below.
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We skip the proof, because this is far o� from our central theme.

It can be based on Proposition 4.1. A more direct construction is to

determine the touching point of the test-function as in the proof of

Proposition 4.1.
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