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A Lieb-Thirring bound for a

magnetic Pauli Hamiltonian, II

Luca Bugliaro, Charles Fe�erman and Gian Michele Graf

Abstract. We establish a Lieb-Thirring type estimate for Pauli Hamil-

tonians with non-homogeneous magnetic �elds. Besides of depending

on the size of the �eld, the bound also takes into account the size of

the �eld gradient. We then apply the inequality to prove stability of

non-relativistic quantum mechanical matter coupled to the quantized

ultraviolet-cuto� electromagnetic �eld for arbitrary values of the �ne

structure constant.

1. Introduction.

We continue here our analysis of Lieb-Thirring type estimates for

Pauli Hamiltonians, which we begun in [1] (henceforth called I) and

present its applications to the stability of matter coupled to the (ultra-

violet-cuto�) quantized electromagnetic �eld. The one-particle Hamil-

tonian we consider describes a spin 1=2 electron and is once more

(1.1) H = D
� 2 � V ;

acting on H = L2(R3) 
 C
2 , where D = p � A and D

�
= D � �. Here,

A(x) is the magnetic vector potential, � is the vector of Pauli matrices,

and V (x) � 0 is a scalar potential. In I, the paradigm was given by

the well-known Lieb-Thirring estimate [11] for the case B = r^A = 0

and our estimate (I.1.2) aimed at estimating the e�ect of B 6= 0 (see
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[4], [9], [17], [18], [5], [15] for other results in this direction). Here, by

contrast, the starting point is the following bound, due to Lieb, Solovej

and Yngvason [10], on the sum of the negative eigenvalues �ei of (1.1),

(1.2)
X

ei � C

Z
V (x)3=2 (V (x) + B) d3x ;

which holds for the case in which the �eld B is constant. Our goal is

to generalize it to the case where B is not constant, or, more precisely,

that of estimating the e�ect of r
B = (@iBj)i;j=1;2;3 6= 0 on (1.2). We

remark that an estimate having the same purpose, but quite di�erent

assumptions on B, has been derived in [5], [6].

In I, the role of B(x) was expressed by means of a length scale

r(x) de�ned through B(x) non-locally (incorporating insight of [4], [17],
[18]). Similarly here, the role ofr
B will be reected in a second length

scale l(x). These two length scales satisfy

Z
r(x)�4 d3x � C

Z
B(x)2 d3x ;(1.3)

Z
l(x)�6 d3x � C

Z
(r
 B(x))2 d3x ;(1.4)

as well as some local variants thereof. We can now state our general-

ization of (1.2).

Theorem 1. For su�ciently small " > 0 there are constants C 0, C 00 >
0 such that for any vector potential A 2 L2loc(R

3 ;R3)

(1.5)

X
ei � C 0

Z
V (x)3=2 (V (x) + bB(x)) d3x

+ C 00
Z
V (x)P (x)1=2 (P (x) + bB(x)) d3x ;

where bB(x) is the average of jB(y)j over a ball of radius " l(x) centered
at x, and

P (x) = l(x)�1 (r(x)�1 + l(x)�1) :

As noticed in [5], (1.5) yields, by the variational principle, a bound

on the density n(x) = E(x; x) of zero modes of D
�
, where E(x; y) is
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the integral kernel of the spectral projection E corresponding to the

possible [13] eigenvalue 0 of D
�
. The bound is

n(x) � C 00 P (x)1=2 (P (x) + bB(x)) ;
and, as it should, it vanishes in the case of a homogeneous magnetic

�eld, where l =1.

In Section 2 we discuss the properties of the two length scales

mentioned above. The main part of the proof of Theorem 1 is given

in Section 3, while some more technical aspects are deferred to Section

4. In order to keep these sections reasonably short we shall be brief on

details which have already been discussed at length in I.

We now turn to the implications of estimate (1.5) regarding sta-

bility of non-relativistic matter coupled to quantum electromagnetic

�eld. We recover a result of [8] establishing stability for any value of

the �ne structure constant �, with a bound depending however on the

ultraviolet cuto� � <1. The details of the model are as follows. The

electromagnetic vector potential is (in appropriate units [2])

(1.6)

A�(x) � A(x) = A�(x) +A+(x) ; A+(x) = A�(x)
� ;

A�(x) =
�1=2

2�

Z
�(k) jkj�1=2

X
�=�

a�(k) e�(k) e
ikx d3k :

The cuto� function �(k) satis�es j�(k)j � 1 and supp � � fk 2 R
3 :

jkj � �g; the operators a�(k)� and a�(k) are creation and annihilation

operators on the bosonic Fock space F over L2(R3) 
 C
2 (with C

2

accounting for the helicity states of the photon) and satisfy canonical

commutation relations

[a�(k)
#; a�0(k

0)#] = 0 ; [a�(k); a�0(k
0)�] = ���0 �(k � k0) :

Moreover, for each k, the direction of propagation k̂ = k=jkj and the po-
larizations e�(k) 2 C

3 are orthonormal. The free photon Hamiltonian

is

Hf = ��1
Z
jkj

X
�=�

a�(k)
� a�(k) d

3k :

Matter consists of K nuclei of charge Z > 0 with arbitrary positions

Rk, (k = 1; : : : ; K) and N electrons obeying the Pauli principle. The

Hamiltonian for both matter and �eld, acting on (^NH)
F , is

H = Hm +Hf ;
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where

Hm =

NX
i=1

D
� 2

i
+ VC ;

VC =

NX
i;j=1

i<j

1

jxi � xj j
�

N;KX
i;k=1

Z

jxi �Rkj
+

KX
k;l=1

k<l

Z2

jRk �Rlj
:

The energy per particle is bounded below as shown by the following

result, previously established in [8].

Theorem 2. The Hamiltonian H satis�es

H � �C (Z; �;�) (N +K) ;

where

C(Z; �;�) = const z�5 log (1 + z�)Z� (� + z��2Z�) ;

with z� = 1 + Z��2 and Z� = Z + 1.

The proof, given in Section 6, rests on a stability result [7] for

matter coupled to a classical magnetic �eld, which is here established

in Section 5. This is actually where estimate (1.5) enters.

2. The basic length scales.

We de�ne the length scales we mentioned in the introduction as

the solutions r = r(x) > 0 respectively l = l(x) > 0 of the equations

r

Z
'
�y � x

r

�
B(y)2 d3y = 1 ;(2.1)

l3
Z
'
�y � x

l

�
(r
 B(y))2 d3y = 1 :(2.2)

The function ' : R3 �! R, '(z) = (1+ z2=2)�2 is the same as in I and

satis�es

z � r'(z) � 0 ;(2.3)

jD1 � � �Dn'j . ' ; n 2 N ;(2.4)
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where Dj = @i, (i = 1; 2; 3) or Dj = z � r. Here and in the following

X . Y means X � C Y for some constant C independent of the data,

i.e., of A, V .
The solutions of (2.1) and (2.2) exist and are unique, except for

the case B � 0 (almost everywhere), respectively r 
 B � 0 (almost

everywhere), where we set r � 1, respectively l � 1. They are smooth

as a function of x 2 R
3 (see Section I.2).

We �rst discuss how these length scales are semi-locally controlled

by the original quantities B and r 
 B. To this end let 
R = fx :

dist (x;
) < Rg for R > 0 and 
 � R
3 .

Lemma 3. The length scales r(x) and l(x) satisfy (1:3), (1:4). More-

over, for any R > 0 and 
 � R
3 there is a function �
;R(x) � 0

satisfying k�
;Rk1 . 1 and k�
;Rk1 . j
Rj, uniformly in 
; R, such
that Z


R

r(x)�4 d3x .

Z
�
;R(x)B(x)

2 d3x+ j
RjR�4 ;(2.5)

Z

R

l(x)�6d3x .

Z
�
;R(x) (r
B(x))2 d3x+ j
RjR�6 :(2.6)

Proof. Estimates (1.3) and (2.5) were proven in Lemmas I.2 and I.12.

The same proofs are valid for the remaining two estimates once the

following remark about the proof of Lemma I.2 has been made: We

replace there r(x) by l(x). Because of g+(jxj) � 1, (I.2.6) implies

g+(jxj)3 '
� z � x
g+(jxj)

�
� '(z) ;

which after integration against (r
B(z))2 d3z implies l(x) � g+(jxj).
Then the proof continues as before.

The length scales r(x) and l(x) are tempered in the following sense:

Lemma 4.

j@�l(x)j . l(x)�(j�j�1) ; j�j � 0 ;(2.7)

j@�r(x)j . r(x)�(j�j�1)min
n
1;
�r(x)
l(x)

�3=2o
; j�j � 1 ;(2.8)
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where � 2 N
3 is a multiindex.

Proof. We omit the proof of (2.7) since it consists of a minor adapta-

tion of that of (I.2.9). For r(x) > l(x) (2.8) reduces to (I.2.9), so that

we may assume r(x) < l(x). We discuss this case using a variant of the

argument given in I. We recall that it was based on the equation

(2.9) (1�m(x)) @ir(x) = mi(x) ;

where

m(x) = r(x)

Z
z �r'(z)U(y) d3y ; mi(x) = r(x)

Z
(@i')(z)U(y) d

3y ;

with z = (y � x)=r(x). Moreover, we denoted by Vn, n 2 N , the space

of �nite sums of functions of the form

f(x) = r(x)�(n�1) P (f@�rg)
Z
 (z)B(y)2 d3y ;

where  is of the formD1 � � �Dk' and P is a monomial in the derivatives

f@�rgj�j�n of order 0 in the sense that it contains as many powers of

@ as of r. In addition we consider here the subspace eVn � Vn obtained

by restricting f to satisfy: i) some @�r with 1 � j�j � n occurs among

the factors of P ; or else ii) D1 = @i, i.e.,  = @i e with e of the form

previously stated for  . One veri�es that @iVn � eVn+1 and r�1 eVn �eVn+1.
The induction assumption states that (2.8) holds for 1 � j�j � n.

(It is empty for n = 0). We now prove it for n+ 1 instead of n. First,

we claim that f 2 eVn satis�es

jf(x)j . r(x)�n
�r(x)
l(x)

�3=2
:

In case i) this follows directly from the induction assumption; in case

ii) by integration by partsZ
@i e (z)B(y)2 d3y = 2 r(x)

Z e (z)B(y) � @iB(y) d3y ;
which by (2.4) and the Cauchy-Schwarz inequality is bounded in abso-

lute value by

2 r(x)
�Z

'(z)B(y)2 d3y
�1=2�Z

'(z) (r
 B(y))2 d3y
�1=2

. r(x)�1
�r(x)
l(x)

�3=2
:
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In the last estimate we used that the �rst integral equals r(x)�1, where-
as the second may be estimated by replacing z by (y � x)=l(x), since
r(x)�1 > l(x)�1 and '(z) is radially decreasing. Hence that integral is

bounded by l(x)�3. We can turn to (2.8): Applying @�; (j�j = n) to

(2.9) and using m 2 V0 we obtain (1 �m(x)) @�@ir(x) 2 @�mi + eVn.
The last set is eVn (even for j�j = n = 0), since mi 2 eV0. The result

follows with m � 0.

We remark that (2.7) implies (see (I.2.13))

(2.10) jx� yj � " l(x) implies
1

2
�
l(y)

l(x)
� 2

for " > 0 small enough. A partition of unity based on the length scale

l(x) is

jy(x) = (" l(x))�3=2 �

�
x� y
" l(x)

�
; y 2 R

3 ;

where 0 < " � 1 and � 2 C10 (R3) with supp� � fz : jzj � 1g andR
�(z)2 d3z = 1. Analogously to Lemma I.4 we have

Lemma 5.

Z
jy(x)

2 d3y = 1 ;(2.11)

Z
j@�jy(x) @�jy(x)j d3y . (" l(x))�(j�j+j�j) ;(2.12)

for any �, � 2 N
3 , where @ = @=@x.

The length scale l(x) will be the one most frequently used in the

following sections. At one point however (in the proof of Lemma 8),

we will use the length scale �(x) de�ned by �(x)�1 = r(x)�1 + l(x)�1.
It also satis�es (2.7) and (2.10) (with l replaced by �), and Lemma 5

applies accordingly to the partition based on �(x).
Finally we point out that Lemma 4 (in particular, the improvement

of (2.8) over (I.2.9)) implies

(2.13) jrP (x)j . P (x) l(x)�1 ; j�P (x)j . P (x)2 :
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Combining (2.13) with (2.10) we also �nd that for jx � yj � " l(x) we
have j logP (y)� logP (x)j . ", and hence

(2.14)
1

2
�
P (y)

P (x)
� 2 ;

for " > 0 small enough.

3. The eigenvalue sum.

In this section we present the framework of the proof of (1.5), with

large parts of it deferred to the next section. We begin by applying, as

in I, the Birman-Schwinger principle [14]

(3.1)
X

ei � 2

Z
1

0

n((D
� 2

+ E)�1=2 (V � E)
1=2
+ ; 1) dE ;

where n(X;�) is the number of singular values � � � > 0 of a compact

operator X, i.e., the number of eigenvalues �2 � �2 of X�X. We then

decompose the operator in (3.1) as K>(E) +K<(E) with

K>(E) = (D
� 2

+ "�3P + E)�1=2 (V � E)
1=2
+ ;

K<(E) = ((D
� 2

+E)�1=2 � (D
� 2

+ "�3P + E)�1=2) (V �E)1=2+ ;

for some su�ciently small " > 0, and note that (see e.g. [3], [19])

(3.2) n(K> +K<; s1 + s2) � n(K>; s1) + n(K<; s2) ;

(we take s1 = s2 = 1=2). For the last term we shall prove the bound

(3.3) n
�
K<(E);

1

2

�
. n((D

� 2
+ "�3P )�1 "�3PV 1=2; constE1=2) :

For the purpose of estimating n(K<; 1=2) and n(K>; 1=2) we introduce

some auxiliary objects, starting with the Hilbert space bH =
R
�

R3
H d3y

and the linear map

J : H �! bH ; J =

Z
�

R3

jy d
3y ;
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(see also Section I.3). Next we de�ne

bH : bH �! bH ; bH =

Z
�

R3

eify Hy e
�ify d3y ;

where Hy = H(By) + "�3P (y), H(B) = ((p� (1=2)B ^ x) � �)2, fy(x)
is a function to be speci�ed later and By = jKyj�1

R
Ky

B(x) d3x is

the average magnetic �eld in the ball Ky = fx : jx � yj < 2 " l(y)g.
In summary, bH acts on �bers of bH as a Pauli Hamiltonian with con-

stant magnetic �eld. The Pauli operator D
� 2

compares to the above

construction as

(3.4) (D
� 2

+ "�3P )2 & J� bH2J :

This inequality, which is at the center of our analysis, is obtained by

�rst localizing (D
� 2

+ "�3P )2 and then by locally replacing the �elds

B = r^ A by a constant magnetic �eld and P by a constant. Indeed,

(3.4) results from the combination of the following two inequalities.

Lemma 6.

(D
� 2

+ "�3P )2 �
Z
jy

�
D
� 4

+
1

2
"�6P 2

�
jy d

3y ;(3.5)

jy

�
D
� 4

+
1

2
"�6P 2

�
jy & jyH

2
y jy :(3.6)

Let us point out that (3.4) implies the weaker inequality (see

(I.3.4))

(3.7) D
� 2

+ "�3P & J� bHJ :
Proof of (1.5). Let

bH0 : bH �! bH ; bH0 =

Z
�

R3

eify H(By) e
�ify d3y :

Then bH � bH0 and, as in I, we obtain from (3.7)

(3.8) n
�
K>(E);

1

2

�
� n(( bH0 +E)�1=2J(V � E)

1=2
+ ; const)
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by means of (3.7). From now on the computation closely follows the

line given in [10], where the contribution of the lowest Landau band is

split from that of the higher bands. We set

b� : bH �! bH ; b� =

Z
�

R3

eify �(By) e
�ify d3y ;

where �(B) is the projection in L2(R3) 
 C
2 onto the lowest band of

H(B). Its integral kernel is

�(B)(x; x0)

=
jBj
2�

exp
�
i (x? ^ x0?)

B

2
� (x? � x0

?
)2
jBj
4

�
�(x3 � x03)P

# ;

(3.9)

in coordinates x = (x?; x3) where B = (0; jBj), and P# = (1+ �3)=2 is
the projection in C

2 onto the subspace where B � � = jBj. We remark

that b� commutes with bH0. The operator appearing on the right hand

side of (3.8) is then split as ( bH0+E)�1=2J (V �E)1=2+ = K0(E)+K1(E),
with

K0(E) = ( bH0 + E)�1=2 b�J(V � E)
1=2
+ ;

K1(E) = ( bH0 + E)�1=2 (1� b�)J(V �E)1=2+ ;

so that by (3.2) it su�ces to estimate n(Ki(E); const), i = 0; 1, sepa-
rately. The �rst term is bounded by

n(K0(E); const) . trK0(E)
�K0(E)

=

Z
d3y tr (jy (V � E)

1=2
+ �(By) (H(By) + E)�1

��(By) (V � E)
1=2
+ jy)(3.10)

= (4�E1=2)�1
Z
d3y d3x (V (x)�E)+ jy(x)2 jByj

where the last estimate is [10, (2.15)]. Note that the gauge trans-

formation eify disappeared from the trace by cyclicity. For the sec-

ond term we use the inequality before [10, (2.18)], which states that
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3H(By)=2 � D2
y � (p � (1=2)By ^ x)2 on the orthogonal complement

Ran (1��(By)) of the lowest Landau band. We hence get

(3.11) bH0 �
2

3

Z
�

R3

eifyD2
y e

�ify d3y � bHS

on Ran (1� b�), as well as (1� b�) ( bH0 + E)�1 (1� b�) � ( bHS + E)�1,

because b� and bHS commute. Together with n(X; 1) � tr ((X�X)2) this

yields

n(K1(E); const)

. tr ((V � E)
1=2
+ J�( bHS + E)�1J(V � E)+

� J�( bHS + E)�1J(V �E)1=2+ )

=

Z
tr
�
jy jy0 e

i(fy�fy0 ) (V �E)+
�2
3
D2
y +E

�
�1

� jy jy0 e�i(fy�fy0 ) (V � E)+

�2
3
D2
y0 + E

�
�1�

d3y d3y0 :

Using the pointwise diamagnetic inequality [16] for the resolvent kernel

(3.12)
����2
3
D2
y +E

�
�1

(x; x0)
��� � �2

3
p2 + E

�
�1

(x� x0) ;

the trace under the integral is bounded as in (I.3.9) by

3

8�

� 3

2E

�1=2 Z
(V (x)� E)2+ jy(x)

2 jy0(x)
2 d3x :

This leads to n(K1(E); const) . E�1=2
R
(V (x)�E)2+ d3x by (2.11) and,

together with (3.10), to

(3.13)

Z
1

0

n
�
K>(E);

1

2

�
dE

.

Z
d3xV (x)3=2

�
V (x) +

Z
d3y jByj jy(x)2

�
:

We now turn to K<. The inequalityZ
1

0

n
�
K<(E);

1

2

�
dE . "�6 tr (V 1=2PJ� bH�2JPV 1=2)
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follows from (3.3), from
R
1

0
n(X;�1=2) d� = tr X�X, and from (3.4).

We then split bH�2 = b� bH�2b�+ (1� b�) bH�2(1� b�). The contribution
of the �rst term isZ

d3y tr (jy V
1=2P �(By) (H(By) + "�3P (y))�2�(By)P V

1=2 jy)

=
1

8�

Z
("�3P (y))�3=2 jByjP (x)2 V (x) jy(x)2 d3y d3x ;

because of (3.9) and of �(B) (H(B) + E)�2 = �(B) (p23 + E)�2 in

the coordinates used there. For the second term we use (see (3.11))bH2 � ( bHS + bP )2 on Ran (1� b�), since bH and bHS + bP commute, wherebP = "�3
R
�

R3
P (y) d3y. This yields a contribution bounded by

Z
tr
�
jy V

1=2 P
�2
3
D2
y + "�3P (y)

�
�2

P V 1=2 jy

�
d3y

�
3

8�

Z � 3

2 "�3P (y)

�1=2
P (x)2 V (x) jy(x)

2 d3y d3x ;

where we used again (3.12). Taking into account (2.14) and (2.11) we

thus obtainZ
1

0

n
�
K<(E);

1

2

�
dE

.

Z
d3xV (x)

�
"�9=2P (x)3=2 + "�3=2P (x)1=2

Z
d3y jByj jy(x)2

�
:

(3.14)

In order to put the result, i.e., the sum of (3.13) and (3.14), into the

form given in Theorem 1 we estimate

jByj�jKyj�1
Z
Ky

jB(z)j d3z= jKy j�1
Z
jB(z)j �(jz � yj < 2 " l(y)) d3z ;

where �(A) is the characteristic function of the set A, so thatZ
d3y jByj jy(x)2

�
Z
d3z jB(z)j

Z
d3y jKyj�1 �(jz � yj < 2 " l(y)) jy(x)

2 :

(3.15)
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We recall that supp jy � fx : jx� yj � " l(x)g. Using again (2.10) and

the triangle inequality jx� zj � jx� yj+ jz � yj we bound (3.15) by a

constant times

jKxj�1
Z
d3z jB(z)j �(jx� zj < 5 " l(x))

Z
d3y jy(x)

2

= jKxj�1
Z
jx�zj<5"l(x)

d3z jB(z)j ;

i.e., by bB(x) after a rede�nition of ".
At this point Theorem 1 is proven, except for Lemma 6 and (3.3).

4. Proofs.

In this section we give all the proofs we omitted in the previous

one in order to complete the derivation of (1.5).

Lemma 7. Let U 2 L3=2(R3). Then

(4.1) U �
1

3

��
2

�
�4=3

kUk3=2D2 :

For a proof, see Lemma I.7 and subsequent remark.

Lemma 8.

(4.2) Dl�2D . D
� 2
P + PD

� 2
+ "�2P 2 :

Proof. The �rst step towards (4.2) consists in showing

(4.3) Dl�2D . D
� 2
l�2 + l�2D

� 2
+ "�2P 2 :

This statement is closely related to Lemma I.8 and, similarly, its proof

reduces to that of

(4.4) l�2 jBj . "1=2 (Dl�2D + "�2P 2) :

This is again proven as in I, except for the fact that we use here (and

only here) a partition of unity based on the length scale "�(x) as dis-
cussed at the end of Section 2, with �(x)�1 = r(x)�1 + l(x)�1. In
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particular, we now set eKy = fx : jx� yj < "�(x)g with characteristic

function e�y . It then still holds that

kl�2 jBj e�yk3=2 � kl�2 e�yk1 kBe�yk2 ke�yk6
. l(y)�2 r(y)�1=2 (" r(y))1=2

= "1=2 l(y)�2 ;

where: we used �(x) � l(x) in estimating the �rst factor; �(x) � r(x)
and (2.1) in the second; and again �(x) � r(x) in the last one. We

hence obtain, just as in I,

l�2 jBj . "1=2
�
Dl�2D + l�2

Z
(rjy)2 d3y

�

with the integral bounded by (" �(x))�2 due to (2.12). The proof of

(4.4), and hence of (4.3), is completed by noticing that l�2��2 = P 2.

We now come back to (4.2). We have

�(D
� 2
f + fD

� 2 � 2D
�
f D
�
) . "D

�
PD
�
+ "�1P 2 ;

for f = l�2 or f = P . Indeed, the left hand side is

�[D
�
; [D
�
; f ]] = �i [D

�
;rf � �] = �X�X + "D

�
PD
�
+ "�1P�1(rf)2

with X = (" P )1=2D
�
� i (" P )�1=2rf � � and (rf)2 . P 3 due to (2.7)

respectively (2.13). Taking f = l�2 we �rst obtain from (4.3)

Dl�2D . D
�
l�2D

�
+ "D

�
PD
�
+ "�1P 2 + "�2P 2 � 2 (D

�
PD
�
+ "�2P 2) ;

and then, with f = P , we obtain (4.2).

Proof of (3.5). The localization argument begins as that given for

(I.3.2), with b replaced by P , i.e., we have

D
� 4

=

Z �
jy D
� 4
jy +

1

2
([jy; [jy; D

� 2
]]; D
� 2

) + [jy; D
� 2

]2
�
d3y ;

with the estimate

�
Z

1

2
([jy; [jy; D

� 2
]]; D
� 2

) d3y �
1

2
"�3 (D

� 2
P + PD

� 2
) + "�5P 2
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for the �rst localization error. The other one is estimated similarly

�
Z
[jy; D

� 2
]2 d3y � const ("�2Dl�2D + "�4 l�4)

�
1

2
"�3 (D

� 2
P + PD

� 2
) + "�5P 2 ;

by using (4.2). The conclusion then is as in I.

Lemma 9 ([7]). Let K = fx : jxj < 1g be the unit ball, and K� = 2K.

Let B 2 L2(K�;R3) be a vector �eld with r �B = 0 (as a distribution)

and

(4.5)

Z
K

B(x) d3x = 0 :

Then there is a vector �eld A such that

(4.6) r ^A = B ; r �A = 0 ;

and

(4.7) kAk1;K . kr 
 Bk2;K� :

Proof. A solution A to (4.6) is constructed as in I, i.e., as A = r^F ,
where F is the solution of ��F = B with boundary conditions (I.4.11).

By kFk2;K� . kBk2;K� and the elliptic estimate

kr
3Fk2;K . kFk2;K� + k�Fk2;K� + kr 
�Fk2;K�

we have

kr
2Ak2;K . kBk2;K� + kr 
Bk2;K� . kr 
 Bk2;K� :

In establishing the last inequality we used that a Poincar�e inequality

(see e.g. [20, Theorem 4.4.2]) applies to kBk2;K�, due to (4.5). Another

Poincar�e type inequality ([20, Corollary 4.2.3]) yields

kA� �� � xk1;K . kr
2Ak2;K ;

for �i = jKj�1
R
K
Ai(x) d

3x and �ij = jKj�1
R
K
@jAi(x) d

3x. This

proves (4.7) for A� � � � x instead of A. Equation (4.6) is preserved

under this replacement, since it implies �ij � �ji = 0 and tr � = 0.
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Proof of (3.6). Let By = jKyj�1
R
Ky

B(x) d3x be the average mag-

netic �eld over Ky = fx : jx � yj < 2 " l(y)g. It is generated by the

vector potential Ay(x) = (1=2)By ^ (x � y). On the other hand, leteAy(x) be the vector potential of eBy(x) = B(x)� By, which by scaling

corresponds to the one constructed in the previous lemma. It satis�es

(4.8) j eAy(x)j . "1=2 l(y)�1 ;

for x 2 Ky because of (2.2), (4.7). Since B = r ^ (Ay + eAy), we may

assume, upon making a gauge transformation, A = Ay+ eAy. The Pauli
operators corresponding to D

�
y
= (p� Ay) � � and D

�
are related as

D
� 2

y
= (D

�
+ eAy � �)2 = D

� 2
+ ( eAy)2 + f eAy � �;D�g

= D
� 2

+ ( eAy)2 + f eAy; Dg+ eBy � � :

This and r � eAy = 0 yield

D
� 4

y
� 4 (D

� 4
+ ( eAy)4 + 4D ( eAy)2D + ( eBy)

2) :

After multiplying from both sides with jy we may replace eAy by �y eAy
and similarly for eBy, where �y (x) is the characteristic function of Ky.

Note that, besides of (4.8), we have by (2.2) and k�yk3 . " l(y)

k eB2
y �yk3=2 � k eB2

y �yk3 k�yk3 . k(r
 B)2 �yk1 k�yk3 . " l(y)�2 :

We can thus estimate, using (4.1),

jy D
� 4

y
jy . jy (D

� 4
+ "2 l(y)�4 + "Dl(y)�2D) jy

and �nally, using (2.10), (2.14), (4.2),

jy (D
� 2

y
+ "�3P (y))2 jy � 2 jy (D

� 4

y
+ "�6P (y)2) jy

. jy

�
D
� 4

+
1

2
"�6P (x)2 + "Dl(x)�2D

�
jy

� jy (D
� 2

+ "�3P )2 jy :
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Proof of (3.3). The proof can be taken over literally from that of

(I.3.6), after replacing b by P . To be checked however is that f = logP
satis�es (rf)2 . l�2 � P and j�f j . P , as well as D (rf)2D .

D
� 2
P + PD

� 2
+ "�2P 2. This follows from (2.13), (4.2).

5. Stability of matter.

As an application of (1.5), we state and prove a stability estimate

for matter coupled to a classical magnetic �eld. It is essentially iden-

tical to a result of [7], except for exhibiting a somewhat more explicit

dependence of the stability bound on the parameters involved. The

system we consider consists of N spin 1=2 electrons (with Hilbert space
^NH, H = L2(R3)
 C

2) interacting with K static nuclei, having posi-

tions Rk and charges Z > 0, and with a classical magnetic �eld B. The
theorem then reads:

Theorem 10. Let R = fRkgKk=1 and R, Z, �,  > 0. There is

C(Z;�; ) and a function �R(x) � 0 with

(5.1) k�Rk1 . 1 ; k�Rk1 . R3K ;

uniformly in R, Z, such that the N -body Hamiltonian

HN =

NX
i=1

D
� 2

i
+ VC

+ �

Z
�R(x) (B(x)

2 +  R2 (r
 B)(x)2) d3x ;

(5.2)

VC =

NX
i;j=1

i<j

1

jxi � xj j
�

N;KX
i;k=1

Z

jxi �Rkj
+

KX
k;l=1

k<l

Z2

jRk �Rlj
;

acting on ^NH, satis�es

(5.3) HN � �C(Z;�; ) (Z + 1)R�1 (N +K)

for arbitrary R � (Z + 1)�1. For � � Z + 1 and 1 �  � z4 one can

take

(5.4) C(Z;�; ) = const (z3 + z5�1=2 log (z5�1=2))
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with z = 1 + (Z + 1) ��1.

Remark. One may modify the de�nition (2.2) of l(x) by replacing

(r
B)2 by (r
B)2 +R�6 for some R > 0. Theorem 1 continues to

hold. On the right hand side of (2.6) a term R�6 should also be added

to (r
B)2, but it can be absorbed into the last term. The purpose of

this variant is to ensure

(5.5) l(x) . R :

Proof. By monotonicity, it will be enough to prove the theorem for

Z � 1, � � Q and  � z4. We partition [9] R3 into Voronoi cells

�j = fx : jx � Rj j � jx � Rkj for k = 1; : : : ; Kg, j = 1; : : : ; K. Let

Dj = min fjRj � Rkj : j 6= kg=2. For any � > 0 the reduction to a

one-body problem reads [9], [12]

(5.6)

HN �
NX
i=1

hi � � N +
Z2

8

KX
j=1

D�1
j

+ �

Z
�R(x) (B(x)

2 +  R2 (r
 B)(x)2) d3x ;

where h = D
� 2 � (W � �)+ and W is a potential satisfying W (x) �

Q jx� Rjj�1 for x 2 �j , with Q = Z +
p
2Z + 2:2.

We choose � = QR�1 and apply Theorem 1 (in the variant dis-

cussed above) to obtain

(5.7)

NX
i=1

hi & �
Z
V 5=2 d3x�

Z
P 3=2V d3x

�
Z bB V 3=2 d3x�

Z bBP 1=2 V d3x ;

where V = (W � QR�1)+. Comparing with (5.6) it appears to be

enough to show that each of the integrals (5.7), which we shall denote

by i)-iv) below, is bounded by the bound (5.3) or by a small (universal)

constant times

(5.8)
Z2

8

KX
j=1

D�1
j + �

Z
�R(x) (B(x)

2 +  R2 (r
B)(x)2) d3x :
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i) Note that supp V � 
R for 
 = fRj : j = 1; : : : ; Kg. This

integral is thus bounded by constQ5=2R1=2K . QR�1K.

ii) We note that for any �1 > 0

(5.9) P 3=2 �
p
2 l�3=2 (r�3=2+l�3=2) �

p
2
�1
2
r�3+

p
2
�
1+

��11

2

�
l�3

and we estimate the contributions to ii) of the two terms separately.

For the �rst one we use that

Z

R

r(x)�3 V (x) d3x . Q

Z
�R(x)B(x)

2 d3x+Q
KX
j=1

D�1
j +QR�1K ;

as was shown in Section I.5. This is consistent with the bound (5.3)

if �1 � minfQ�1 �; 1g. (By a � b we mean a = const b for some

su�ciently small universal constant). For the last term in (5.9) we use

instead

Z

R

l(x)�3 V (x) d3x

�
�2
2

Z

R

l(x)�6 d3x+
��12

2

Z

R

V (x)2 d3x

. �2

Z
�R(x)(r
 B)(x)2 d3x+ (�2R

�3 + ��12 Q2R)K ;

due to (2.6). The desired bound holds provided we pick z ��2 � �  R2.

iii) We split the integral into K inner integrals over Uj = fx :

jx�Rjj � bDjg, bDj = min fDj ; " l(Rj); Rg for some small " > 0; and one

outer integral over R3 n
SK
j=1 Uj . The inner integrals can be estimated

as

Z
Uj

bB(x)V (x)3=2 d3x . ( sup
x2Uj

bB(x)) bD3=2

j Q3=2

�
�

2
bD3
j ( sup

x2Uj

bB(x)2) + ��1

2
Q3 :
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Because of (2.10) we have l(Rj)=2 � l(x) � 2 l(Rj) for x 2 Uj and thus

(5.10)

bB(x)2 = jKxj�2
�Z

Kx

jB(y)j d3y
�2

� jKxj�1
Z
Kx

B(y)2 d3y

. (" l(Rj))
�3

Z
�(jy � Rj j � 3 " l(Rj))B(y)

2 d3y :

Altogether we �nd for any � > 0Z
[
K
j=1Uj

bB(x)V (x)3=2 d3x . �

Z
�(y)B(y)2 d3y + ��1Q3K ;

�(y) =
KX
j=1

bD3
j (" l(Rj))

�3 �(jy �Rj j � 3 " l(Rj)) :

For � � � this will be bounded as claimed once we show that

� . �
R :

First, supp� � 
R for small " > 0 because of (5.5). It thus su�ces to

show k�k1 . 1: from bDj � " l(Rj), the triangle inequality and (2.10)

we �nd

k�k1 � sup
y

KX
j=1

(" l(Rj))
�3 �(jy � Rj j � 3 " l(Rj))

�
Z
Uj

�(jx�Rj j � " l(Rj)) d
3x

. sup
y

KX
j=1

(" l(y))�3
Z
Uj

�(jx� yj � 8 " l(y)) d3x

. 1 ;

since the Uj are disjoint.
The outer integral can be written and estimated asZ


Rn([
K
j=1

Uj)

d3xV (x)3=2 jKxj�1
Z
d3y jB(y)j �(jx� yj < " l(x))
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�
�1
2

Z

R�R3

d3x d3y jB(y)j2 jKxj�1 �(jx� yj < " l(x))

+
��11

2

Z

Rn([

K
j=1

Uj)�R3
d3x d3y V (x)3 jKxj�1 �(jx� yj < " l(x)) :

(5.11)

By the usual argument (2.10), the �rst integral is bounded by a constant

times
R
�(y) jB(y)j2 d3y for

�(y) = jKyj�1
Z

R

�(jx� yj < 2 " l(y)) d3x . 1 :

Moreover, supp� � 
2R as before. It thus su�ces to take �1 � �. In

the second term on the right hand side of (5.11) the integration over y
is explicit, and the integral is

(5.12)

Z

Rn([

K
j=1

Uj)

V (x)3 d3x .

KX
j=1

Q3 logR bD�1
j

� �2Q
3

KX
j=1

R bD�1
j + (log ��12 )Q3K ;

where we used that log t � �2 t + log ��12 for t, �2 > 0. We shall take

��1 ��2Q2R� 1, so that the last term is of the desired form. The �rst

one reduces to an arbitrarily small constant times Q
PK

j=1
bD�1
j . Note

that

(5.13) bD�1
j . "�2

�Z
Uj

l(x)�6 d3x
�1=3

+D�1
j +R�1 :

In fact, by (2.10), the integral is bounded below by a constant times

(" l(Rj))
�2 bDj , and thus the whole right hand side by

bD�1
j

�� bDj

" l(Rj)

�2
+
bDj

Dj

+
bDj

R

�
� bD�1

j ;

by de�nition of bDj . The contribution of the last two terms of (5.13) are

then controlled by the �rst term (5.8), respectively by (5.3). For the

integral, I, we use I1=3 � 2 �
�1=2
3 =3 + �3 I=3 and choose Q � �3 "�2 �
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� z�4R2. Note that the Uj are disjoint, allowing for the application of

(2.6).

iv) Using

(5.14) P 1=2 � l�1=2 (r�1=2 + l�1=2) �
�1
2
r�1 +

�
1 +

��11

2

�
l�1 ;

we estimate the contributions to iv) of the two terms separately. The

�rst integral isZ

R

d3x r(x)�1 V (x) jKxj�1
Z
d3y jB(y)j �(jx� yj < " l(x))

�
Q

2

Z

R�R3

d3x d3y jB(y)j2 jKxj�1 �(jx� yj < " l(x))

+
Q�1

2

Z
d3x d3y r(x)�2 V (x)2 jKxj�1 �(jx� yj < " l(x)) :

(5.15)

The �rst term on the right hand side is like the corresponding one in

(5.11) and hence acceptable provided �1 �Q� �. The second integral,

Q�1
R
r(x)�2V (x)2d3x, is dealt with by splitting it with respect to eUj =

fx : jx�Rj j < eDjg, eDj = minfDj ; " r(Rj); Rg (see Section I.5). ThenZ
eUj

r(x)�2 V (x)2 d3x . r(Rj)
�2

Z
eUj

V (x)2 d3x . "2Q2 eD�1
j ;

andZ
R3n([K

j=1
eUj)

r(x)�2 V (x)2 d3x

�
"2Q�2

2

Z
R3n([K

j=1
eUj)

V (x)4 d3x+
"�2Q2

2

Z

R

r(x)�4 d3x :

Since the �rst integral is bounded above by constQ4
PK

j=1
eD�1
j we have

that

Q�1
Z
r(x)�2 V (x)2 d3x

. Q
KX
j=1

eD�1
j +Q

Z

R

r(x)�4 d3x

. Q
KX
j=1

D�1
j +Q

Z
�R(x)B(x)

2 d3x+QR�1K
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due (I.5.4) (augmented by R�1) and (2.5). These terms �t (5.3) for our

choice of �1.
The integral corresponding to the last term in (5.14) is estimated

similarly to iii) and is split accordingly. The inner integrals can be

estimated as

(5.16)

Z
Uj

bB(x) l(x)�1 V (x) d3x
. ( sup

x2Uj

bB(x) l(x)�1) bD2
jQ

�
2 �

1=2
2

3
bD3
j ( sup

x2Uj

bB(x) l(x)�1)3=2 + ��12

3
Q3 ;

where

(5.17) ( bB l�1)3=2 � 1

4
�1=4R�1=2 (3 bB2 + R2 l�6) :

The term coming from bB2 will be dealt with by (5.10), the other one

by using bD3
j sup
x2Uj

l(x)�6 .

Z
Uj

l(x)�6 d3x :

Choosing z � �1=22 �1=4R�1=2 � � ensures that both terms (5.17) are

controlled by (5.8) and (5.3). The contribution of the last term (5.16)

is then of order z � ��12 Q3K . z5 �1=2QR�1K. The estimate of the

outer integral follows the line of (5.15)Z

Rn([

K
j=1

Uj)

d3x l(x)�1 V (x) jKxj�1
Z
d3y jB(y)j �(jx� yj < " l(x))

�
�3
2

Z

R�R3

d3x d3y jB(y)j2 jKxj�1 �(jx� yj < " l(x))

+
��13

2

Z

Rn([

K
j=1

Uj)�R3
d3x d3y l(x)�2 V (x)2 jKxj�1

� �(jx� yj < " l(x)) :

The �rst term just requires z�3 � �. The second one isZ
R3n([K

j=1
Uj)

l(x)�2 V (x)2 d3x

�
2

3
�
�1=2
4

Z
R3n([K

j=1
Uj)

V (x)3 d3x+
1

3
�4

Z

R

l(x)�6 d3x :
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To accomodate the last term, after application of (2.6), we require

z2 ��1 � �4 � � z�4R2. The �rst term is dealt as in (5.12), with

�2 � z�7 there.

6. Proof of Theorem 2.

We split the total Hamiltonian into two parts [8], [2]

H = HI +HII ;

with

HI =

NX
i=1

D
� 2

i
+ VC + �

Z
�R(x) (B(x)

2 +  R2 (r
 B)(x)2) d3x ;

HII = Hf � �

Z
�R(x) (B(x)

2 +  R2 (r
 B)(x)2) d3x ;

where B = r^A, and �R is the positive function appearing in Theorem

10. � and  will be chosen later.

All the �elds appearing in HI are multiplication operators in the

same Schr�odinger representation of F [8]. Thus Theorem 10 applies

and yields

(6.1) HI � �C(Z;�; ) (Z + 1)R�1 (N +K) :

We now turn to HII. Let F (x) be either B(x) or r
B(x). As in (1.6),

we may write F (x) = F�(x) + F+(x) and obtain

F (x)2 � F (x)2 + (F�(x)� F+(x))
�(F�(x)� F+(x))

� 2 (2F+(x)F�(x) + [F�(x); F+(x)]) ;

where the commutator is a multiple of the identity, independent of x.
We then integrate against f(x) d3x with f � 0 and bound the �rst term

using f(x) � kfk1 and Parseval's identity. This yieldsZ
f(x)B(x)2 d3x

� 8� � kfk1
Z
d3k jkj j�(k)j2

X
�=�

a�(k)
� a�(k) +

��4

�
kfk1 ;
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respectivelyZ
f(x) (r
 B)(x)2 d3x

� 8� � kfk1
Z
d3k jkj3 j�(k)j2

X
�=�

a�(k)
� a�(k) +

2��6

3�
kfk1 :

Note that the integrals on the right hand side are bounded by �Hf and

��2Hf , respectively. In particular, for f = �R we �nd

�

Z
�R(x) (B(x)

2 +  R2 (r
B)(x)2) d3x

� const ��2 (1 +  (�R)2) (Hf + ��1 �4R3K) :

We may now optimize over �, , R, within the ranges allowed by The-

orem 10, in such a way that the factor in front of Hf is less than 1.

The resulting choice is as follows: We pick � � Z� (1 + Z� �2)�1 and
R = �1=2 (� + Z� (Z� �2)�2)�1. As a result, the factor in front of Hf

is indeed less than 1 and

(6.2) HII & �Z� ��3=2�K :

We �nally choose  = z4 with z as in Theorem 10. Since z � 1+Z� �2

we have R � Z��1, so that (6.1) applies

HI & �z3 (1 + log z)Z�R�1 (N +K)

& �z5 (1 + log z)Z� (� + Z� (Z� �2)�2) (N +K) :

This is also a lower bound to (6.2), because of � � 1 + Z� �2.
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