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Topological sectors for

Ginzburg-Landau energies

Lu��s Almeida

1. Introduction.

1.1. Ginzburg-Landau functionals.

Let 
 be the annulus fx 2 R2 : 1=4 < jxj < 1g � R
2 . For

maps u 2 H
1(
;R2) = W

1;2(
;R2) we consider the Ginzburg-Landau

functional

(1.1) E
"
(u) =

1

2

Z



jruj2 + 1

4 "2

Z



(1� juj2)2 ;

where " is a small parameter. For � 2 R+ we de�ne the energy level

set E�
"
as

(1.2) E
�
"
:= fu 2 H

1(
;R2) : E
"
(u) < �g :

One of the main purposes of this paper is to show that given � > 0, for "

small enough, E�
"
may be multiply connected. Moreover, the connected

components of E�
"
may be classi�ed by the degree of u (since u is not

S
1-valued, we have to be careful in order to de�ne its degree { this is

the main technical problem of our work).

Functionals like E
"
play an important role in many low temper-

ature physics phenomena like super
uidity. We can also �nd closely

related functionals in the theory of superconductivity and in two-di-

mensional Higgs models. In our work we will consider one of these su-

perconductivity models: the gauge-covariant Ginzburg-Landau model,
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where the energy functional may be written as

F
"
(u;A) =

1

2

Z
R2

jdAj2 + 1

2

Z



jr
A
uj2 + 1

4 "2

Z



(1� juj2)2 ;

where u 2 H
1(
;R2), as before, and A 2 H

1(R2 ;R2) is the gauge

potential one-form,

A = A1 dx
1 + A2 dx

2 �=
�
A1

A2

�
= (A1; A2) :

Here, as we will often do in this paper, we used the natural identi�cation

(given by the R2 scalar product) between the one-form A and the vector

with the same components which we also denote by A. In equation

(1.3) the expression r
A
u denotes the covariant derivative of u, i.e.

r
A
u = ru� {Au.

This model was introduced by Ginzburg and Landau in the 50's

for the study of phase transitions in superconducting materials (see the

remarks on physics below).

The main feature of the functional F
"
is its invariance under gauge

transformations. For a function � 2 W
2;2(R2 ;R), the gauge transfor-

mation associated to � is the map (u;A) 7�! (u
�
; A

�
) given by

(1.4)

�
u
�
= exp ({ �)u ; in 
 ;

A
�
= A+ d� ; in R2 :

In this case we say that (u;A) is gauge-equivalent to (u
�
; A

�
) and we

denote this by (u;A) � (u
�
; A

�
). Saying that F

"
is gauge-invariant

means that

(1.5) F
"
(u

�
; A

�
) = F

"
(u;A) ; for all � 2W

2;2(R2 ;R) :

This gauge-invariance follows easily from the facts that

(u
�
; A

�
) 2 H

1(
;R2)�H
1(R2 ;R2) ; ju

�
j = juj ;

dA
�
= dA+ d d� = dA ;(1.6)

r
A�

u
�
= exp ({ �)r

A
u ; and thus jr

A�
u
�
j = jr

A
uj :(1.7)

The only quantities which are signi�cant from the physics point of view

are those, like juj, r
A
u and the magnetic �eld h = ?dA, which are in-

variant under gauge transformations. Other important gauge-invariant
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quantities are the current J = ({ u;r
A
u) and, the one which we are

more concerned about in this paper, the degree of u along a smooth

closed curve 
, di�eomorphic to S1, such that juj 6= 0 on 
. In integral

form, this degree is given by

(1.8) deg (u; 
) =
1

2�

Z



u

juj � @
�

�
u

juj
�
d� ;

where � denotes the unit tangent to 
.

It is easy to see that gauge-equivalence de�nes an equivalence re-

lation in H
1(
;R2) � H

1(R2 ;R2). A physical state of our system

is associated not with an individual con�guration (u;A), but with a

whole equivalence class [u;A] := f(v;B) 2 H
1(
;R2) � H

1(R2 ;R2) :

(v;B) � (u;A)g. We denote the physical space by H
gi
= [H1(
;R2)�

H
1(R2 ;R2)]= �, and also consider F

"
as a functional de�ned on H

gi
.

As in the case of E
"
, we de�ne the energy level sets of F

"
by

F
�
"
:= f[v;B] 2 H

gi
: F

"
([v;B]) < �g :

Since the functional E
"
does not involve the connection, it is a little

easier to deal with than the functional F
"
. Nevertheless, as we will see in

our work, most of the mathematical di�culties are already encountered

in the study of E
"
. In fact, after some additional technical arguments,

we deduce the classi�cation result for the components of the level sets

of F
"
, from the corresponding result for E

"
. Therefore, we start by

considering the functional E
"
given by (1.1).

1.2. Degree of a map and de�nition of topological sectors.

We consider a �xed number � > 0, and focus our attention on the

level set E�
"
de�ned by (1.2). First, we remark that since the notion of

degree we de�ne is continuous in W 1;2(
)\E�
"
and that smooth maps

are dense in W
1;2(
) = H

1(
), it su�ces to consider the case where

u 2 W
1;2(
) \ C

1. Hence, without loss of generality, we will always

assume that u is smooth in this paper.

Based on the work of B. White [28] (see also the work of F. Bethuel

[6]), for maps u 2 W
1;2(
; S1), i.e. for the case when juj � 1, we can

de�ne the degree of u in 
, deg (u;
), as the degree of the restriction

of u to a one-dimensional skeleton of 
 { for instance, in case u is

continuous, this can be any circle S
r
= fx : jxj = rg, for 1=4 < r < 1
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(if u is not continuous we might need to move the circle slightly in

order to have a \nice" restriction). The degree can then be written, in

integral form, as

(1.9) deg (u;
) = deg (u; S
r
) =

1

2�

Z
Sr

u

juj � @
�

�
u

juj
�
d� :

This de�nition of the degree will always give us an integer, and it clas-

si�es the homotopy classes of W 1;2(
; S1). Our purpose is to extend

this notion to all u 2 E
�
"
for " su�ciently small. In this context, our

�rst result is given by the following Theorem.

Theorem 1. Given � 2 R+ , there exists "0 > 0, depending only on �,

such that for " < "0, we can de�ne a continuous map

(1.10)
� : E�

"
�! Z ;

u 7�! deg (u;
) ;

such that this map coincides with the classical notion of degree men-

tioned above when u has values in S1 (i.e. when u 2W
1;2(
; S1)\E�

"
).

Usually we call the map � the global degree in 
 and, as above,

we denote �(u) = deg (u;
). For each n 2 Z, ��1(n) = fu 2 E
�
"
:

deg (u;
) = ng, is an open and closed subset of E�
"
which we call the

n
th topological sector of E�

"
, and we also denote it by top

n
(E�

"
).

Remark. In fact, what we prove in Theorem 1 is that the degree of u is

constant inside each connected component of E�
"
{ we do not show that

di�erent connected components correspond to di�erent values of the

degree, which would give us a complete classi�cation of the components

by the degree of its members. We will come back to this question later

on.

The asymptotic behavior, when " �! 0 of critical points of the

functionals E
"
and F

"
was extensively studied by many authors. Among

them we would like to single out the work of F. Bethuel, H. Brezis and

F. H�elein [8] regarding the functional E
"
, and those of F. Bethuel and

T. Rivi�ere [9] and [10] which concern the functional F
"
.

We will give a rough description of the proof of Theorem 1 at the

end of the Introduction. This proof is rather technical and will be done

in sections 2 to 8. The Euler-Lagrange equations for the functional E
"

are called the Ginzburg-Landau equations. They can be written as

(1.11) ��u =
1

"2
u (1� juj2) ; in 
 :
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In the context of the gauge invariant model, we can also extend the

de�nition of degree to any con�guration [v;B] 2 F
�
"
provided " is small

enough. In fact, we prove

Theorem 2. Given � 2 R+ , there exists "0 > 0, depending only on �,

such that for " < "0, we can de�ne a continuous map

(1.12)
�̂ : F�

"
�! Z ;

[u;A] 7�! deg ([u;A];
) ;

such that this map coincides with the classical notion of degree men-

tioned above when u has values in S1 (i.e. when u 2W
1;2(
; S1)\F�

"
).

Usually we call the map �̂ the global degree in 
 and, as above, we de-

note �̂(u;A) = deg ([u;A];
).

Minimizing E
"
inside each component of E�

"
(or F

"
inside each

component of F�
"
), we will obtain solutions of (1.11) which are locally

minimizing, i.e. critical points of E
"
(respectively, F

"
) which are lo-

cal minima. These are the solutions that should be associated with

permanent currents.

Moreover, we will show in the next subsection, that as a corollary

of Theorems 1 and 2, we can also prove the existence of mountain-

pass points for E
"
(which correspond to mountain-pass type solutions

of (1.11)). An analogous reasoning gives the existence of mountain-

pass points for F
"
. This result is stated in Theorem 4. Unlike the

solutions obtained minimizing the energy inside each topological sector,

the solutions of (1.11) we obtain in Theorem 4 will not necessarily be

local minimizers of E
"
, and are probably unstable.

1.3. Mountain-pass solutions and threshold energies.

We start by the crucial, although elementary, remark that when

� = 1, we have that E
1

"
= H

1(
), i.e. the whole a�ne space

H
1(
;R2). This space has obviously an unique component and fur-

thermore, given any two elements u0; u1 2 H
1(
;R2) there is a natural

path between them: the straight line segment 
 : [0; 1] �! H
1(
;R2),

de�ned by

(1.13) 
(s) := (1� s)u0 + s u1 ; for s 2 [0; 1] :
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Likewise, F1

"
= H

gi
, which is the projection (continuous image) of

H
1 � H

1, and thus is connected. Given two states [u0]; [u1] 2 H
gi

we may consider the straight line between two of their representatives,

u0; u1 2 H
1(
;R2)�H

1(R2 ;R2) and consider the projection in H
gi
of

the straight line in H
1 �H

1 between u0 and u1.

An important example of a map of degree n 2 Z, in H
1(
; S1) �

H
1(
;R2) (and for which we can thus use the classical de�nition of the

degree), is the map

(1.14) w
n
(r; �) := exp ({ n �) =

z
n

jzjn :

Using (1.9) it is easy to check that deg (w
n
;
) = n and moreover, we

can see that the energy, E
"
(w

n
), of the maps w

n
, n 2 Z, is independent

of " and is given by

(1.15) E
"
(w

n
) =

1

2

Z



jrw
n
j2 = 1

2

Z 1

1=4

r

Z 2�

0

n
2

r2
d� dr = � n

2 log 4 :

Hence, given � 2 R+ , let

n0 :=

�s
�

� log 4

�
;

be the largest integer less than or equal to
p
�=(6� log 4). From equa-

tion (1.15) it follows that, at least for n 2 [�n0; : : : ; n0], the topological
sector top

n
(E�

"
) will be non-empty, and this independently of the value

of " > 0.

Likewise, for F
"
we could take w

n
(r; �) := [(exp ({ n �); 0)]. All the

rest of the discussion also easily extends to the case of F
"
.

Let � 2 R+ be given, and let " < "0 (where "0 is as in Theorem

1). Suppose that for some n 2 Z both top
n
(E�

"
) and top

n+1(E
�
"
) are

non-empty, and consider two maps

u0 2 top
n
(E�

"
) ; u1 2 top

n+1(E
�
"
) :

Let 
 : [0; 1] �! H
1(
) be a path between u0 and u1 (i.e. 
(0) = u0

and 
(1) = u1). Recall that, as we mentioned above, such a path always

exists because H1(
;R2) is an a�ne space. Then, 
 cannot be entirely

contained in E
�
"
{ if this were so, u0 and u1 would be in the same

path component of E�
"
, and hence also in the same component of E�

"
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which contradicts our assumption (since, by Theorem 1, the topological

sectors top
n
(E�

"
) and top

n+1(E
�
"
) are disjoint open and closed subsets

of the energy level set E�
"
). Hence, there exists some s 2 (0; 1) such

that 
(s) 62 E
�
"
, which is equivalent to saying that E

"
(
(s)) � �. A

standard Min-Max argument will then yield the existence of generalized

critical values of E
"
of the form

(1.16) c
n
:= inf


2V

max
s2[0;1]

E
"
(
(s)) :

where V := f
 2 C
0([0; 1]; H1(
;R2)) : 
(0) = u0; and 
(1) = u1g, is

the space of continuous paths in H
1(
) between u0 and u1. The value

c
n
will be a generalized critical value of E

"
. To make sure it is actually

a critical value we use the following

Theorem 3. The functionals E
"
and F

"
satisfy the Palais-Smale con-

dition (in H
1(
;R2) and H

gi
, respectively).

This implies that c
n
is a critical value of E

"
and hence, there exists

a map u 2 H
1(
) such that u is a critical point of E

"
and E

"
(u) = c

n
.

This u is probably not a local minimum of E
"
. All this discussion

extends to the case of F
"
. Thus, we have proved

Theorem 4. Suppose that for some � 2 R+ , we have that for some

" < "0 (where "0 is given Theorem 1) there exists n 2 Z such that

the topological sectors top
n
(E�

"
) and top

n+1(E
�
"
) are both non-empty.

Then, there are mountain-pass type critical points of E
"
or, equiva-

lently, there exist mountain-pass type solutions of the Ginzburg-Landau

equations (1:11).

More precisely, consider two maps

u0 2 top
n
(E�

"
) and u1 2 top

n+1(E
�
"
) ;

and let c
n

be de�ned as in (1:16). Then, there exists a map u 2
H

1(
;R2) such that u is a critical point of E
"
and E

"
(u) = c

n
.

Likewise, if we consider two states �0 2 top
n
(F�

"
) and �1 2

top
n+1(F

�
"
), and let c

n
be de�ned by

(1.17) c
n
:= inf


2V

max
s2[0;1]

F
"
(
(s)) ;

where now V := f
 2 C
0([0; 1]; H

gi
) : 
(0) = �0; and 
(1) = �1g, is

the space of continuous paths in H
gi

between �0 and �1. Then, there
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exists a state � = [(u;A)] 2 H
gi

such that � is a critical point of F
"

and F
"
(�) = c

n
.

Remark 1. The number c
n
de�ned by (1.16) is called the threshold

energy for the transition from the state u0 to the state u1. It will be

the in�mum of the energies for which such a transition is possible. This

concept will play a crucial role in the physical behavior of our system.

We will come back to this point in the remarks on physics (see below).

Remark 2. In Theorem 4, for simplicity, we just considered transitions

from a state u0 2 top
n
(E�

"
) to a state u1 belonging to the adjacent state

top
n+1(E

�
"
). However, both the concept of threshold energy and the

result stated in Theorem 4 are immediately generalizable to the case

where u0 2 top
n
(E�

"
) and u1 2 top

k
(E�

"
), for any two distinct integers

n; k 2 Z. As usual, this remark and the previous one extend to the

setting of the gauge-covariant functional F
"
.

Remark 3. All these results extend to the setting of more general

domains considered in Theorem 6, stated below.

1.4. Remarks on physics.

1.4.1. Ginzburg-Landau theory.

In the Ginzburg-Landau theory of superconductivity, the conduct-

ing electrons are described as a 
uid existing in two phases, the super-

conducting one and the normal one. In the superconducting state the

material has an in�nite electrical conductivity and magnetic �elds are

repelled from the interior of the sample (this is the so called Meissner

e�ect).

On a microscopic scale, the superconducting state is described by

the theory of Bardeen, Cooper and Schrie�er (BCS). In this theory,

the existence of superconductivity is due to a pairing of the conducting

electrons forming the so called Cooper pairs. For small applied forces,

these pairs behave as a single particle (a boson) of twice the charge of

the electron. At a macroscopic scale the behavior of the Cooper pairs is

described by a complex-valued function u, called the condensate wave

function (or order parameter). The density ju(x)j2 is proportional to

the density of pairs of superconducting electrons.
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The Ginzburg-Landau model is a phenomenological model which

extends Landau's theory of second order phase transitions. It was pro-

posed well before the microscopic theory (BCS) existed, but it can be

obtained as an approximation to the macroscopic consequences of this

theory. This model gives us a system of equations which describe the

interaction between the condensate wave function, u, and the electro-

magnetic vector potential, A. In this model the parameter � = "
�1

(which depends on the material we consider and on the temperature)

plays a crucial role in determining the behavior of our system.

If � < 1=
p
2, the material is called a type I superconductor. If

one applies an exterior magnetic �eld to the sample, then there is a

critical value, H
c
, such that when the applied magnetic �eldH increases

beyond H
c
, the sample passes suddenly from the superconducting phase

to the normal phase. On the other hand, if � � 1=
p
2, the behavior

is quite di�erent and the transition between the superconducting and

the normal phase is done gradually. These materials are called type II

superconductors and they are characterized by two critical values of the

applied magnetic �eld: the �rst, H
c1, corresponds to the critical �eld

above which the two phases coexist, and the second, H
c2, corresponds to

the critical �eld above which all the sample will be in the normal phase.

Between these two critical values the normal and superconducting phase

will coexist: the normal state will be con�ned in vortices or �laments

whose number will increase as the applied �eld increases. The 
ux lines

of the magnetic �eld inside the material will be concentrated inside

these vortices (since they are repelled by the part of the sample that is

in the superconducting phase). For a detailed description of the physics

involved in the phenomena of superconductivity and super
uidity see,

for instance, the works of D. Saint-James, G. Sarma and E. J. Thomas

[26], and of D. Tilley and T. Tilley [27]. For a more mathematical

approach see the work of A. Ja�e and C. Taubes [20].

1.4.2. Permanent currents.

A very interesting phenomenon in superconductivity, that moti-

vates our work, is the existence of permanent currents in a supercon-

ducting ring. The experiment is the following: a ring of supercon-

ducting material in the normal state is submitted to a �xed external

magnetic �eld (subcritical), and then the temperature of the system

is decreased until temperatures below the critical temperature corre-
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sponding to the applied �eld are attained. The applied �eld is then

turned o� and there is a current that persists inside the superconduct-

ing ring. Furthermore it was observed that such a current does not dis-

sipate with time { there were experiments where the current persisted

for several years without any dissipation, thus the name permanent

current.

This behavior of the system indicates that we should be in presence

of an energy functional having multiple wells (local minima) separated

by very high barriers. The main purpose of our work is to show that

even in the simple models considered in this paper, the energy func-

tionals E
"
and F

"
have this type of structure.

The big height of the barriers would be associated to the \perma-

nent" character of these currents. In fact, considering the possibility of

the system tunneling through the barrier, thus moving from one energy

well into another (and eventually to the ground state), the associated

probability should be proportional to exp (�h), where h is the height

of the barrier relative to the initial state of the system. Thus, having

very high barriers will yield transition probabilities close to zero and

therefore justify the \permanent" character of our currents.

1.4.3. Transitions between states and threshold energies.

The natural question is then to describe the transitions between

two di�erent sectors { thus, the notion of threshold energy for such

transitions (de�ned in equation (1.16)) is a crucial one for the physical

behavior of our system. We remark that in the setting of the gauge-

invariant model, as we mentioned before, physical states of the system

are represented by gauge-equivalence classes (de�ned by (1.4)) of con-

�gurations of our system { thus the con�guration (u;A) is just a partic-

ular representative of the state [u;A]. Therefore, we shouldn't consider

paths between con�gurations in the space H1(
;R2)�H1(R2 ;R2), but

paths between states in the quotient space of H1(
;R2)�H
1(R2 ;R2)

by the gauge-equivalence relation, which we denote by H
gi
(this is the

physical space).

The threshold energy c
n
for a transition between a state [u0; A0] 2

top
n
(F�

"
) and a state [u1; A1] 2 top

n+1(F
�
"
) will be of the order of

j log "j. It is easy to see that it is at most of this order. Indeed, we can

prove the following upper bound for the transition energy.
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Theorem 5. Let c
n
be the threshold energy for the transition between

the state [u0; A0] 2 top
n
(F�

"
) and the state [u1; A1] 2 top

n+1(F
�
"
),

de�ned as in (1:16). Then,

(1.18) c
n
�M

n
j log "j+ L

n
;

where M
n
and L

n
are constants that depend only on n and our domain


.

We will give an intuitive proof of Theorem 5. Let � > � log (4) (n+

1)2 and suppose that we want to describe a path from the con�g-

uration (u
n
; A

n
) = (exp ({ n �); 0) 2 top

n
(F�

"
) to the con�guration

(u
n+1; An+1) = (exp ({ (n + 1) �); 0) 2 top

n+1(F
�
"
). We remark that

once we construct a path in the space H
1(
;R2) � H

1(R2 ;R2) be-

tween (u
n
; A

n
) and (u

n+1; An+1), we can obtain a path between the

corresponding physical states [u
n
; A

n
] and [u

n+1; An+1] in the quotient

space H
gi
by projecting the original path. The general case of a tran-

sition between (v0; B0) 2 top
n
(F�

"
) and (v1; B1) 2 top

n+1(F
�
"
) can be

proved in a similar way.

Physically, the path we construct corresponds to bringing a positive

unit charge of size " from a point P arbitrarily close to in�nity, to the

origin. By a positive unit charge of size " at a point z
s
2 C , we mean

the map

(1.19) f
zs
(z) =

z � z
s

jz � z
s
j '"(z � z

s
) ;

where '
"
(�) = '(�="), and ' 2 C

1
0 (R2) is such that

(1.20)

8>>>><
>>>>:

'(x) = 0 ; if jxj < 1 ;

'(x) = 1 ; if jxj > 2 ;

0 � '(x) � 1 ; for all x ;

jr'(x)j � 2 ; for all x :

Hence f
zs

is a unit vortex at z
s
which is \smoothened out" in a ball of

radius 2 " around z
s
. Then,

(1.21) F
"
(f
zs
; 0) � C1 j log "j+ C2 ;

where C1 and C2 are constants.
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Let M 2 R+ be an arbitrarily big number, and let z
s
= (1 �

s) (�M) 2 C , for s 2 [0; 1]. This will be a path from the point (�M)

in the negative real axis, to the origin. Using z
s
we construct the path

in H
1(
;R2)�H

1(R2 ;R2) de�ned by

(v
s
; B

s
) := (f

zs
u
n
; 0) ; for s 2 [0; 1] :

We can check that (v0; B0) is arbitrarily close inH
1(
) norm to (u

n
; A

n
)

{ in fact, we would obtain the con�guration (u
n
; A

n
) if we chose M =

+1. Hence, in particular, for big values of M , we certainly have

(v0; B0) 2 top
n
(F�

"
). Furthermore, (v1; B1) = (u

n+1; An+1) and we

can obtain estimate (1.18) as a consequence of the bound (1.21).

Hence we see that the path corresponding to passing a positive unit

charge \of size "" from the outside of our annulus, to the hole inside the

annulus, corresponds to increasing by one the degree of our map and

requires that we go to an energy level of order j log "j. To prove that

any transition between top
n
(F�

"
) and top

n+1(F
�
"
) also requires passing

through energy levels of order j log "j, thus proving that c
n
is of order

j log "j, is a very delicate problem. We will show a way to solve this

problem and obtain very precise estimates for the threshold energies in

a forthcoming work ([1]).

1.5. The case of more general domains.

In Theorem 1 we considered a very particular domain { the annulus


 = fx 2 R2 : 1=4 < jxj < 1g. However, once we have the result for

the annulus, it is not hard to extend it to the case of a general open

subset D � R2 , or even the case of a domain in a Riemannian manifold

M. We de�ne the energy functional just as in (1.1) but replacing 
 by

our new domain D,

(1.22) E
"
(u;D) =

1

2

Z
D

jruj2 + 1

4 "2

Z
D

(1� juj2)2 ;

and we de�ne the corresponding level sets

E
�
"
(D) := fu 2 H

1(D;R2) : E
"
(u;D) < �g :

We start by �xing a set of representatives of generators of �1(D) (the

�rst homotopy group of D), f

j
; j 2 Jg, such that each 


j
: S1 �! D,
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is an injective closed smooth curve inside our open set D. Hence, 

j

will have a tubular neighborhood �
j
� 
. We may suppose that for

each j there is a positive number, �
j
> 0, such that for each j

i) �
j
= fx 2 D : dist (x; 


j
) < �

j
g.

ii) There is a di�eomorphism

�
j
: �

j
�! S

1 � (0; 1) ;

such that 

j
(�) = ��1

j
(�; 1=2), and the Jacobian of �

j
is uniformly

bounded from above and away from zero, i.e. there is a constant C
j
> 0

such that

(1.24)
1

C
j

< jr�
j
(x)j < C

j
; for all x 2 �

j
:

Let 
̂ := S
1 � (1=4; 3=4). This set is topologically an annulus just

like our standard set 
 considered before. Let Y
j
:= ��1

j
(
̂). Given

a map u 2 E
�
"
(D) we consider the map w

j
= u � ��1

j
: 
̂ �! R

2 .

The map w
j
belongs to E%

"
(
̂), where % is a constant that depends only

on � and the constant C
j
in (1.24). Thus, we can apply Theorem 1

replacing 
 and � by 
̂ and %, respectively. Hence for " su�ciently

small deg (w
j
; 
̂) is well de�ned. We set, for each j 2 J ,

(1.25) deg (u; Y
j
) := deg (w

j
; 
̂) :

Suppose that the index set J is �nite (J = f1; : : : ;mg), i.e. suppose

that we �x a �nite number of (representatives of) generators of �1(D).

We de�ne the topological type of u 2 E
�
"
(D) as the m-tuple of integers

(1.26) �(u) := (deg (u; Y1); : : : ; deg (u; Ym)) :

By the previous argument, this �(u) 2 Zm is well de�ned for su�ciently

small ". The continuity of � in W
1;2(D;R2) topology inside E

�
"
(D)

(which is an immediate consequence of the continuity of deg (u;
)

proved in section 7) will then allow us to assert that, since Zm is dis-

crete, for each P 2 Zm, its inverse image by �, i.e. �
�1(P ) = fu 2

E
�
"
(D) : �(u) = Pg, will be an open and closed subset of E�

"
(D). For

each P 2 Zm, we call ��1(P ) the P -topological sector of E�
"
(D). We

have thus proved the following Theorem which extends the classi�cation

given by Theorem 1 to this more general setting.
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Theorem 6. Let D be an open subset of R2 or a domain in a Riemann

manifold M. Let 
1; : : : ; 
m be simple, closed and smooth curves which

are a set of representatives of generators of �1(D). Given � > 0 there

exists "0 > 0, depending on �, such that for " < "0 we can de�ne a

continuous map

(1.27)
� : E�

"
(D) �! Zm ;

u 7�! (deg (u; Y1); : : : ; deg (u; Ym)) ;

such that for the special case where u 2 E
�
"
(D) \ W

1;2(D;S1), we

recover the classical notion of degree of a S
1 valued map. Therefore,

given P = (P1; : : : ; Pm) 2 Zm, the subset ��1(P ) � E
�
"
(D) will be an

open and closed subset of E�
"
(D).

The same argument in the context of the superconductivity model

will give a similar extension of Theorem 2.

1.6. Idea of the proof of Theorem 1.

The maps u 2 E
�
"
may take values close to zero, which creates big

technical problems for de�ning their degree. However, this can only

happen in a set of small measure. We will start by studying, in sections

2, 3 and 4 the set G(�) where juj is smaller than an appropriately chosen

� 2 (1=2; 3=4). For technical reasons (to avoid problems that may

appear near the boundary @
) we will concentrate on the components

of G(�) that intersect an interior annulus

Y :=
n
x 2 R2 : 1

2
< jxj < 3

4

o
:

Using Sard's Lemma we will see that for su�ciently small ", these com-

ponents of G may be included in a �nite number of simply-connected

sets, which we denote by W
k
; k = 1; : : : ; ~N . Their boundaries will be

closed smooth curves, V
k
= @W

k
, and juj = � on each of the V

k
's.

In Section 2 we see, using the coarea formula, that the sum of

the lengths of the V
k
's will tend to zero when " �! 0. Furthermore,

the coarea formula also gives us a bound on the L
1 norm of ru on

V =
S
V
k
. Since juj = � > 1=2 on V

k
, it makes sense to talk about

deg (u; V
k
).
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In Section 3 we the obtain an uniform bound on
P jdeg (u; V

k
)j

using the estimate for kruk
L
1(V ) (and consequently we will also have

uniform bounds on jdeg (u; V
k
)j for each k). Thus, we see that for all

u 2 E
�
"
the number of V

k
's such that deg (u; V

k
) 6= 0 (which we call the

\charged" V
k
's) is uniformly bounded by a constant depending only on

�. Suppose that the charged V
k
's are V1; : : : ; VN2

.

In Section 4 we will focus our attention on the \uncharged" V
k
's

(i.e. those for which deg (u; V
k
) = 0). We will see, again using the

estimate for kruk
L
1(V ) obtained in Section 2, that the number of \un-

charged" V
k
's such that the oscillation of u is bigger than or equal

to �=3, is also uniformly bounded. Suppose they are V
N2+1; : : : ; VN .

Moreover, for the remaining V
k
's, i.e. the \uncharged" ones such that

the oscillation of u is smaller than �=3 (which will be V
N+1; : : : ; V ~

N
),

we are able to prove that the energy minimizing extension toW
k
of ujVk

will have absolute value which is uniformly bounded away from zero {

hence we will show that these sets are rather \harmless".

In Section 5, thanks to the uniform bound on N (the number of

\charged" V
k
's plus that of \uncharged" V

k
's such that the oscillation

of u is bigger than or equal to �=3), we can cover V1; : : : ; VN by a �nite

(uniformly bounded) number of balls, B1; : : : ; Bm
, of radius of order

at most "� for some � > 1=2, and which are far away from each other

(in the sense that suitable dilations of the B
i
's are pairwise disjoint).

Furthermore, we will see that deg (u; @B
i
) = 0, for all i. This means

that though we may have individual singularities that are charged, at

a scale of order "1=2 they cluster to form neutral structures.

In Section 6 we will �nally give the good de�nition of the global

degree of u in 
, deg (u;
). Let

T :=
n
r 2

�1
2
;
3

4

�
such that S

r
\G(�) 6= ?

o
;

and let

A :=
�1
2
;
3

4

�
n T :

We show that jT j �! 0, when " �! 0, and hence jAj �! 1=4, when

" �! 0. For r 2 A we de�ne

(1.28) f(r) := deg (u; S
r
) = deg

�
u

juj ; Sr
�
2 Z :

This function is well de�ned since for r 2 A; ju(r; �)j � �. As we

mentioned before, for u 2 W
1;2(
; S1) this function is constant. In
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our case this might not be true, but by the results of Section 5, it

cannot change too much: as a matter of fact, for " su�ciently small,

the value of f can only change when S
r
intersects one of the balls B

i
,

and even when this occurs, the absolute value of f remains bounded

by a constant that depends only on �. Outside these balls (i.e. when

S
r
\ B = ?, where B :=

S
B
i
) f(r) will always have the same value

(since deg (u; @B
i
) = 0). This is the value we use to de�ne deg (u;
),

which will thus automatically be an integer. To recover this integer we

can also integrate f(r) over A and divide by the measure of A, thus

de�ning

(1.29) ]adeg (u;
) :=
1

jAj
Z
A

f(r) dr :

This quantity, ]adeg (u;
), is called the approximate degree of u in 
.

In general, it is not an integer, but it will tend to the integer deg (u;
)

as " �! 0. In fact, let Q = A \ B =
S
(A \ B

i
). The measure of Q

tends to zero when " �! 0 (it is bounded by jBj which, in turn, is at

most, of order "� < "
1=2). Furthermore, f remains uniformly bounded

even inside Q, and hence, we can see that

(1.30) j]adeg (u;
)� deg (u;
)j < 1

4
;

for su�ciently small ". Thus we can recover the integer deg (u;
) as

the closest integer to ]adeg (u;
) for " small.

In Section 7 we will prove, for su�ciently small ", the continuity

of ]adeg (u;
) (and thus also of deg (u;
)) in W 1;2(
) norm, inside the

level set E�
"
we �xed. Using this continuity we will then conclude the

proof of Theorem 1 in Section 5.

Finally, in the Appendix (Section 12) we prove a general covering

Lemma of which we used a special case to obtain the balls B
i
in Section

5.

1.7. Open questions and related results.

As we saw, many questions about this subject remain open, in

particular in the borderline between the mathematics and the physical

behavior of these systems, a considerable amount of work remains to be

done. In this subsection we will discuss some of these problems shortly
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and mention some results of related interest. We start by mentioning a

few problems we are working on at the moment.

In [1] we are able to carry out a more detailed study of the proper-

ties of the threshold energies we introduced above. In particular, using

some techniques introduced by F. Bethuel and the author in [4], we can

prove a more accurate version of the upper bound for the threshold en-

ergy c
n
stated in Theorem 5. More precisely, we show that there exists

a constant �
n
, not depending on ", such that c

n
� � j log "j+ �

n
.

This estimate is crucial to succeeding in obtaining (see [1]) a lower

bound for c
n
which is of the same order of the above, i.e. to showing

that c
n
� � j log "j � �

n
. Such a bound, as we mentioned, implies

that the energy barriers have a height of at least � j log "j � �
n
, and

therefore, since " is supposed to be small, we will have very high barriers

separating the wells. This agrees with what we expected considering

the physical behavior of our system, as we described above.

Regarding the extension of our results to the 3-dimensional case,

there is a substantial part we are able to do, but there are still some

technical di�culties (which stem from the higher degree of liberty of the

equivalent of the V
k
's, which, in this setting, will be two-dimensional

surfaces). Once we succeed in de�ning the degree, we can obtain

mountain-pass solutions just as for the dimension 2, but proving that

the threshold energy, c
n
, is of order j log "j should be considerably harder

(for results on the structure of the singularities of the Abelian Higgs

model in R3 , see the works of T. Rivi�ere [23] and [24]).

Our work was also motivated by the paper of S. Jimbo and Y.

Morita [16]. In [16] the authors establish the existence of stable non-

trivial solutions for the Ginzburg-Landau equations in the case the do-

main 
 � R3 is a solid of revolution obtained by rotating a convex

cross-section around the z-axis in R3 . Thanks to this special geometry,

they can �nd solutions using a separation of variables method. They

show that the solutions constructed are stable for variations in a linear

space that is transversal to the gauge-invariance of the problem.

Very recently, while this work was being �nished, the author re-

ceived a series of preprints of S. Jimbo, Y. Morita and J. Zhai [17], [18],

[19] where they improve the techniques developed in [16] and introduce

some new ideas to obtain very interesting results about stationary so-

lutions of the Ginzburg-Landau equations in topologically non-trivial

domains. The author also received recently a preprint J. Rubinstein

and P. Sternberg [25], where the ideas of B. White and F. Bethuel con-

cerning the homotopy classes for Sobolev functions are used, together
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with variational techniques, in a very ingenious way, to obtain a homo-

topy classi�cation for the minimizers of the Ginzburg-Landau energy

in the case the domain is topologically a torus in R3 . One fundamental

di�erence between these works and ours is that, since their authors are

looking at critical points, they rely strongly on the Ginzburg-Landau

equation to prove nice properties for these critical points, and then

succeed in de�ning the degree of the stationary solutions using these

properties. In our case, since we look at the whole level set of the en-

ergy, we cannot rely on the equation to help us de�ne the degree. This,

as we saw, poses many technical problems, but gives us a considerable

amount of new information. Such information should enable us to have

a better understanding about the formation of permanent currents and

the transition processes between physical states.

Another important question is that of the evolution equation for

Ginzburg-Landau. Recently there was some work of F. H. Lin [21], [22],

and of S. Demoulini and D. Stuart [12] on the heat 
ow for Ginzburg-

Landau. The author, F. Bethuel and Y. Guo have also obtained some

results regarding the dynamical stability of symmetric vortices in the

Maxwell-Higgs model (see [15] and [5]).

Remarks on notation.

� 
 is the annulus fx 2 R2 : 1=4 < jxj < 1g � R2 . Its boundary,
@
, has two connected components: @
1 = S1=4, the inner circle, and

@
2 = S1, the exterior circle. On @
, �(x) stands for the exterior unit

normal to @
 at x. Hence �(x) = �x=jxj on @
1, and �(x) = x=jxj on
@
2. For x 2 @
, �(x) stands for the unit tangent vector to @
 at x,

pointing in the sense of increasing �.

� ^ denotes the wedge product of di�erential forms, and � repre-

sents the exterior product of two vectors in R2 (it is considered as a

real number).

�We often use the natural identi�cation between an one-form and

the associated vector (given by the scalar product in R2).

� Although we would normally prefer to write vectors as columns,

we will often write them as rows because it makes it easier to insert

them in the text.

� We identify the vector (v1; v2) 2 R2 with the complex number

v
1 + { v

2. The scalar product in C is denoted by ( ; ). So (u; v) =

(u v + v u)=2. With this notation we have that u � u
�
= ({ u; u

�
).
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Although this permanent switch between the vector and the complex

number notation may be slightly confusing at the beginning, later on

the reader will appreciate the convenience that stems from having both

notations available.

� d denotes the exterior derivative and ? denotes the Hodge star

operator, which in R2 is the linear operator on R-valued forms de�ned

by

?1 = dx
1 ^ dx2 ; ?dx1 = dx

2
; ?dx

2 = dx
1
; and ?dx

1 ^ dx2 = 1 :

We have that for k-forms on R2 , ?? = I
(k(2�k)), where I denotes the

identity. Hence ? ? � = �, if � is a zero-form or a two-form, and

? ? � = ��, if � is a one-form.

� d? denotes the operator ?�1d?, where ?�1 stands for the inverse
operator of ?.

� In many of the estimates we obtain during the proof of Theorem

1, there are constants which depend on the domain considered. How-

ever, since we will have �xed as domain the annulus 
, we will usually

not mention such dependence explicitly in the text.

2. Coarea formula and control of the bad set.

As we mentioned before, the bad set consists of the places where

juj is close to zero. Nevertheless, the presence of the potential term in

E
"
(in particular, the presence of the "�2 factor), assures us that for

u 2 E
�
"
, the measure of the set fx : juj < 1=2g will be very small when

" �! 0. In fact, as we will see in this section, a more careful analysis

using the coarea formula will allow us to prove much more about this

set.

Suppose � and " given and �x an element u 2 E
�
"
\ C

1(
). For

each � 2 [1=2; 3=4], let

V (�) = fx 2 
 : ju(x)j = �g :
By Sard's Lemma we know that for almost every �, V (�) is a one-

dimensional submanifold of 
, hence we will suppose that the � we

choose is in these conditions. We will now de�ne as our bad set, the set

G where juj is smaller than �. Let

G(�) := fx 2 
 : ju(x)j < �g ; � 2
h1
2
;
3

4

i
:
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It is easy to see that for small ", the measure of G(�) will be very small.

In fact,

(2.1)

Z
G(�)

(1� juj2)2 �
Z
G(�)

(1� �
2)2

� jG(�)j (1� �
2)2

�
� 7

16

�2
jG(�)j ;

and,

(2.2)

Z
G(�)

(1� juj2)2 � 4 "2
1

4 "2

Z



(1� juj2)2 � 4 "2 � :

Combining (2.1) and (2.2) we obtain the desired bound on jG(�)j,

(2.3) jG(�)j �
�16
7

�2
4 "2 � = C "

2 �!
"!0

0 ;

where C is a constant depending only on the energy bound �.

2.1. The coarea formula.

Using the coarea formula of Federer and Flemming, we can obtain

a considerable amount of information about the V
k
's and the behavior

of ujVk , for � conveniently chosen.

Here we will apply a special case of this formula which can be

stated as follows (for a proof and more general forms of this result see,

for instance, L. Evans and R. Gariepy [13]).

Theorem 7 (coarea formula (change of variables)). Let f : R2 �! R

be Lipschitz. Then, for every Lebesgue summable function g : R2 �! R,
we have that

i) The restriction gjf�1fyg is Hausdor� H1-measurable for almost

every y.

ii) For every measurable set X � R2 ,Z
X

gjrf j dx =
Z
R

�Z
f
�1fyg\X

g dH1
�
dy :
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Remark. By Rademacher's Theorem, since f is Lipschitz, it is di�er-

entiable almost everywhere, and hence rf is de�ned almost everywhere

x 2 X.

2.2. Upper-bound for the length of the V
k
's.

We start by proving that the length (Hausdor� one-dimensional

measure) of the V
k
's is small for small ". As a matter of fact, if we

denote � := fx : 1=2 � juj � 3=4g, it follows from the co-area formula

that

(2.4)

Z 3=4

1=2

H1(V (�)) d� =

Z
�

jrjuj j

�
Z
�

jruj

�
�Z

�

jruj2
�1=2

j�j1=2 ;

where we used Cauchy-Schwarz for the last inequality. Moreover,

1

2

Z



jruj2 � E
"
(u) � � ;

hence,

(2.5)
�Z




jruj2
�1=2

�
p
2� :

On the other hand, the measure of � can also be estimated using the

energy bound (just like we did for G(�), in fact � = G(1=2)). We obtain

(2.6) j�j �
�16
7

�2 Z
�

(1� juj2)2 �
�32
7

�2
"
2� :

From (2.4), (2.5) and (2.6), it follows that

Z 3=4

1=2

H1(V (�)) d� � 32
p
2

7
"� :
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Hence, except for � in a set Z1 � [1=2; 3=4] of measure at most
p
2=70 �

1=40,

(2.7) H1(V (�)) � 70p
2

32
p
2

7
� " = 320� " :

2.3. Upper-bound for the L
1(V (�)) norm of ru.

A di�erent application of the coarea formula yields

(2.8)

Z
0<�<1

Z
V (�)

jruj =
Z



jrjuj j jruj �
Z



jruj2 :

Since we assume that u 2 E
�
"
, from (2.8) it follows that

(2.9)

Z
0<�<1

Z
V (�)

jruj � 2E�
"
(u) � 2� :

Using Fubini's Theorem, we will then have that except for � in a set

Z2 � [1=2; 3=4] of measure at most 1=40,

(2.10)

Z
V (�)

jruj � 80� :

Thus, except when � belongs to the set Z1 [ Z2, whose measure is at

most 1=20, estimates (2.7) and (2.10) will be valid. For the rest of

this paper we will choose a � 2 (1=2; 3=4) such that estimates (2.7)

and (2.10) are valid, and that V (�) is a one-dimensional submanifold of


. Hence, V (�) consists of a �nite number of simple curves in 
. Let

V1; : : : ; V �
N

, denote the connected components of V (�). Equation (2.7)

gives us an upper-bound on the length of each V
k
,

(2.11)

�
NX
k=1

H1(V
k
) � H1(V (�)) � 320� " :

In particular,

(2.12) H1(V
k
) � 320� " ; for all k = 1; : : : ; �N :
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Hence, for small ", the length of each V
k
will be small (the same being

true for the sum of their lengths).

3. Properties of the V
k
's which are far from @
.

We consider the interior subdomain Y := f(r; �) : 1=2 < r <

3=4g � 
, i.e., the interior annulus consisting of the points whose dis-

tance to the origin lies between 1=2 and 3=4. For technical reasons, we

will also have to consider a slightly enlarged subdomain, Ŷ := f(r; �) :
3=8 < r < 7=8g. Hence, Y b Ŷ b 
.

We start by proving that for " su�ciently small, the V
k
's that

intersect Ŷ are closed curves that stay away from the boundary of 
.

Lemma 1. If " is su�ciently small, then V
k
\ Ŷ 6= ?, implies that V

k

is a closed curve and dist (V
k
; @
) > 1=16.

Proof. Suppose that V
k
\ Ŷ 6= ?. Then, since dist (Ŷ ; @
) = 1=8, for

dist (V
k
; @
) to be smaller than 1=16, it is necessary that diam(V

k
) �

1=16. However, from (2.12) it follows that

diam (V
k
) � H1(V

k
) � 320� " :

Hence, for " < �=5120 we must have that diam(V
k
) < 1=16, and thus,

dist (V
k
; @
) > 1=16.

The fact that V
k
is then a closed curve, follows from it being a

one-dimensional submanifold of 
 which does not touch @
.

Henceforth, we will always suppose that " is chosen su�ciently

small for the result in Lemma 1 to be true. Suppose that the V
k
's

that intersect Ŷ are V1; : : : ; V
N
. They will be closed curves and thus,

by Jordan's Curve Theorem, we can de�ne the domain W
k
enclosed

by V
k
(W

k
is the bounded component of R2 n V

k
, and in particular,

V
k
= @W

k
).

Among V1; : : : ; V
N
we will only consider those which are maximal

in the following sense: for i; j � N , if V
i
� W

j
then we disregard V

i

and just keep V
j
in our list (so we always keep only the exterior curves).

Suppose that V1; : : : ; V ~
N
, for some ~N � N , are the maximal curves we

obtain. These are the V
k
's that will interest us for the rest of this paper

(unless stated otherwise, henceforth we will always assume k � ~N).
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3.1. Estimates for deg (u; V
k
).

By the de�nition of V (�), the restriction of u to V
k
will have values

in the circle of radius �, i.e. ujVk : V
k
�! S

�
, where we denote S

�
=

fz 2 R2 : jzj = �g. Therefore, we can de�ne the degree of u: as usual

we consider the map

v =

�
v
1

v
2

�
:=

u

juj : Vk �! S
1
;

and we de�ne

(3.1) deg (u; V
k
) := deg (v; V

k
) :=

1

2�

Z
Vk

v � @v

@�
d� ;

where � denotes, as usual, the arc-length parameter on V
k
.

Since u = juj v, we have that

(3.2) ru = r(juj v) =

0
BB@
@juj
@x1

v
1 + juj @v

1

@x1

@juj
@x2

v
1 + juj @v

1

@x2

@juj
@x1

v
2 + juj @v

2

@x1

@juj
@x2

v
2 + juj @v

2

@x2

1
CCA :

Thus,

jruj2 = juj2
��

@v
1

@x1

�2
+
�
@v

1

@x2

�2
+
�
@v

2

@x1

�2
+
�
@v

2

@x2

�2�
+ ((v1)2 + (v2)2)

�
��

@juj
@x1

�2
+
�
@juj
@x2

�2�
+juj @juj

@x1

�
v
@v

@x1

�
+juj @juj

@x2

�
v
@v

@x2

�
:

(3.3)

But since jvj = C
te = 1, it follows that

(v1)2 + (v2)2 = jvj2 = 1 ;

and,

v
@v

@xi
=

1

2

@

@xi
(v v) = 0 :

Thus, (3.3) yields

(3.4) jruj2 = juj2 jrvj2 + jrjuj j2 :
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Hence, in particular,

(3.5) jruj2 � juj2 jrvj2 :

For x 2 V
k
, since ju(x)j = � � 1=2, this yields

(3.6) jruj2 � �
2 jrvj2 � 1

4
jrvj2 ;

which, in turn, implies that on V
k
,

(3.7) jruj � 1

2
jrvj :

From equations (3.1) and (3.7) it follows that

jdeg (u; V
k
)j = jdeg (v; V

k
)j �

Z
Vk

���v � @v

@�

��� d� � Z
Vk

jrvj � 2

Z
Vk

jruj :

Therefore, using equation (2.10), we obtain a bound on the absolute

value of the degree of u in each of the V
k
, for all k = 1; : : : ; ~N (we

remark that this bound is also valid for ~N < k � N̂ as long as V
k
is a

closed curve { so that we have no problem de�ning deg (u; V
k
)),

(3.8) jdeg (u; V
k
)j � 2

Z
Vk

jruj � 2

Z
V (�)

jruj � 160� :

Moreover, we even have a bound on the sum of the absolute values of

these degrees,

(3.9)

~
NX
k=1

jdeg (u; V
k
)j � 2

~
NX
k=1

Z
Vk

jruj � 2

Z
V (�)

jruj � 160� ;

which gives a bound on the number N2 := #fk : V
k
\ Ŷ 6= ?, and

deg (u; V
k
) 6= 0g, i.e., the number of \charged" V

k
's that intersect Ŷ .

In fact, we obtain

(3.10) N2 �
~
NX
k=1

jdeg (u; V
k
)j � 160� :
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Remark. We will often refer to a V
k
such that deg (u; V

k
) 6= 0 as a

\charged" (or topologically charged) singularity of u, and to one such

that deg (u; V
k
) = 0 as a \uncharged" (or neutral or topologically un-

charged) singularity of u. This terminology is unprecise but helps con-

vey the essential di�erence between the behavior of u on these two types

of sets.

Using this terminology, the charged V
k
's that intersect Ŷ are

V1; : : : ; VN2
, and the neutral ones are V

N2+1; : : : ; V ~
N
.

4. The \uncharged" V
k
's.

Although the charged V
k
's are the only ones that may change the

value of f(r) = deg (u; S
r
), de�ned in (6.1), in order to prove that these

cannot be isolated, we will need some control of u on the uncharged

V
k
's (i.e., V

N2+1; : : : ; V ~
N
), and on the energy minimizing extensions of

u to the W
k
's that lie inside them. Thus, in this section we will always

suppose k 2 fN2 + 1; : : : ; ~Ng.
The restriction of u to V

k
= @W

k
; g

k
: V

k
�! S

�
, has degree zero

(since we are considering only the \uncharged" V
k
's) and W

k
is simply

connected, hence g
k
can be written as

(4.1) g
k
= � exp ({ �

k
) ;

where �
k
: V

k
�! R, is a smooth lifting of ujVk . For x 2 V

k
we have

that

jr�
k
j2 = jr(exp ({ �

k
))j2 =

���r� u

juj
����2 :

Therefore, by (3.4),

(4.2) jruj2 = �
2 jr�

k
j2 + jrjuj j2 ;

and, in particular,

(4.3) jr�
k
j � jruj

�
:

As usual, we de�ne the oscillation of �
k
as

(4.4) osc (�
k
) := sup

x2Vk

(�
k
(x))� inf

x2Vk

(�
k
(x)) :
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We will prove that the number of V
k
's for which �

k
can oscillate con-

siderably, is uniformly bounded (by a constant depending only on the

energy bound �).

Lemma 2. Given � 2 R+ , there is a constant M 2 R+ such that, for

all " > 0, for all u 2 E
�
"
, if

I :=
n
k 2 fN2 + 1; : : : ; ~Ng; such that osc (�

k
) >

�

3

o
;

then,

(4.5) #I �M =
480�

�
:

Proof. By the fundamental Theorem of Calculus,

osc (�
k
) = sup

x;y2Vk

(�
k
(x)� �

k
(y)) �

Z
Vk

���@�k
@�

��� � Z
Vk

jr�
k
j :

Then, using equations (2.10) and (4.3) we obtain

�

3
#I �

X
k2I

osc (�
k
)

�
X
k2I

Z
Vk

jr�
k
j

�
X
k2I

1

�

Z
Vk

jruj

� 2

Z
V (�)

jruj

� 160� :

Hence,

(4.6) #I � 3

�
160� =

480

�
� :

Thus, we have proven Lemma 2 with M = 480�=�.
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If deg (u; V
k
) = 0, we know that there exist smooth extensions of

g = ujVk : Vk �! S
�
to W

k
, where S

�
= fx 2 R2 : jxj = �g ' S

1, and

W
k
is the domain inside V

k
(in the sense of Jordan's curve Theorem).

Let H1
g
:= fu 2 H

1(W
k
; C ) : u = g on V

k
g. Then, as in the work of F.

Bethuel, H. Brezis and F. H�elein [7], we know that

(4.7) �
g
:= min

u2H1
g

E
"
(u) ;

is achieved by some map u
"
, and furthermore, u

"
satis�es the Euler

equation

(4.8)

8<
: ��u

"
=

1

"2
u
"
(1� ju

"
j2) ; in W

k
;

u
"
= g = u ; on V

k
:

This elliptic system will allow us to prove some sort of maximum prin-

ciple for u
"
which will give us upper and lower bounds for ju

"
j in terms

of the oscillation of g = ujVk or, more precisely, in terms of osc (�
k
). In

particular, we will be able to prove that if the oscillation of �
k
is small

enough, then ju
"
j stays bounded away from zero in W

k
. Together with

Lemma 2 this will imply that the number of W
k
's for which ju

"
j can be

close to zero, is uniformly bounded.

We start by proving an upper bound for ju
"
j. The following Lemma

is just an adaptation of [7, Proposition 2] to our situation.

Lemma 3. Let u
"
be a solution of (4:8). Then, ju

"
j � 1, in W

k
.

Proof. We start by observing that

�(ju
"
j2) = 2u

"
�u

"
+ 2 jru

"
j2 :

Hence, by (4.8),

(4.9) �(ju
"
j2) = 2

"2
ju
"
j2 (ju

"
j2 � 1) + 2 jru

"
j2 � 2

"2
ju
"
j2 (ju

"
j2 � 1) :

Therefore, v
"
:= ju

"
j2 � 1, will satisfy

8<
:

�v
"
� 2

"2
ju
"
j2 v

"
� 0 ; in W

k
;

v
"
= �

2 � 1 ; on V
k
= @W

k
:
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Since �(2="2) ju
"
j2 � 0, the maximum principle implies that (see, for

instance, [14, Corollary 3.2])

(4.10) sup
Wk

v
"
� sup

Vk

v
+
;

where v+(x) := maxfv
"
(x); 0g. Hence, since v+(x) := maxf�2�1; 0g =

0, on V
k
, it follows that

sup
Wk

ju
"
j2 � 1 = sup

Wk

v
"
� 0 :

Thus,

(4.11) sup
Wk

ju
"
j � 1 :

This concludes the proof of Lemma 3.

Using this Lemma and equation (4.8), we are now able to obtain

Proposition 1. Suppose that osc (�
k
) � �=3. Let u

"
be the minimizer

of (4:7). Then,

(4.12) ju
"
(x)j � 1

2
� � 1

4
; for all x 2W

k
:

Proof. If osc (�
k
) � �=3, then u(V

k
) is contained in an arch �̂ of S

�
,

of amplitude at most �=3. Let a and b be the endpoints of �̂, and let B

be the domain bounded by the straight line r̂ passing through a and b,

and the unit circle S1. We claim that the maximum principle implies

that

(4.13) u
"
(W

k
) � B :

By Lemma 3 we already know that ju
"
j � 1, so it su�ces to prove that

u
"
(W

k
) and the origin lie on opposite sides of the straight line r̂ de�ned

above.

Choose coordinates y1; y2 in the image space such that the y2 axis

is parallel to r̂ (i.e., it is the straight line through the origin parallel to

the segment a b), and the y1 axis cuts the segment a b perpendicularly

at its midpoint. In these coordinates we may write

u
"
(x) =

�
u
1
"
(x)

u
2
"
(x)

�
= � exp ({ �

k
) ;
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where, we are taking the positive y1 axis as the origin for the angle �
k
.

Since the amplitude � := osc (�
k
) � �=3, the y1 coordinate of the

endpoints a and b satis�es

(4.14)

` := y
1(a)

= y
1(b)

= min
x2Vk

y
1(u(x))

= � cos
�
�

2

�
� � cos

�
�

6

�

=
�

2

� 1

4
:

On the other hand, since u
"
is a minimizer of E

"
, hence a critical point,

it is a solution of equation (4.8). In particular u1
"
will satisfy

(4.15)

8<
:
��u1

"
=

1

"2
u
1
"
(1� ju

"
j2) ; in W

k
;

u
1
"
� ` ; on V

k
= @W

k
:

Doing a re
ection of u across the y2 axis in order to make the image lie

in the right half-plane, we obtain the map

~u
"
(x) =

�
~u1
"
(x)

~u2
"
(x)

�
:=

� ju1
"
(x)j

u
2
"
(x)

�
;

which satis�es

E
"
(~u

"
) = E

"
(u

"
) = min

v2H1
g(Wk;C)

E
"
(u) :

Hence, ~u
"
is also a minimizer, and thus critical point, of E

"
, and there-

fore, ~u1
"
= ju1

"
j, satis�es

(4.16)

8<
:
��~u1

"
=

1

"2
~u1
"
(1� ju

"
j2) ; in W

k
;

~u1
"
� ` ; on V

k
= @W

k
:
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Using Lemma 3 we see that the right-hand side of (4.16) is always non-

negative. Hence, ��~u
"
� 0, and thus the maximum principle assures

us that

min
Wk

~u1
"
= min

Vk

~u1
"
� ` :

Consequently, using (4.14) we obtain

(4.17) min
Wk

ju1
"
j � ` � �

2
� 1

4
:

Since u
1
"
is continuous and W

k
is connected, u1

"
(W

k
) has to be con-

nected. Thus, using (4.17) and the fact that u1
"
(x) � ` on V

k
, we know

that we must have

(4.18) u
1
"
(x) � ` ; for all x 2W

k
:

This, together with equation (4.11), proves claim (4.13). In particular,

from (4.18) it follows that

(4.19) ju
"
j =

p
(u1

"
)2 + (u2

"
)2 � ju1

"
j � ` � �

2
� 1

4
; for all x 2W

k
;

which is equation (4.12).

Remark. The same method we used to prove claim (4.13) will give us

the slightly more precise result

(4.20) u
"
(W

k
) � A � B ;

where A is the closed set bounded by the half-lines _0 a and _0 b, the

segment a b and the circle S1. In fact, all we have to do to prove this

result is to, instead of using a re
ection relative to an axis parallel to the

segment a b, as before, we have to consider re
ections with respect to

axii which approach 0 a (and others which approach 0 b) on the outside

of the set A de�ned above.
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5. Blow-up of the energy around an isolated \charged" singu-

larity.

5.1. The covering argument.

For simplicity, we will do one more renumbering of the V
k
's, k =

1; : : : ; ~N such that

a) deg (u; V
k
) 6= 0 and V

k
\ Y 6= ? if and only if k 2 f1; : : : ; N1g.

b) deg (u; V
k
) 6= 0, V

k
\ Ŷ 6= ? and V

k
\ Y = ? if and only if

k 2 fN1 + 1; : : : ; N2g.
c) deg (u; V

k
) = 0, V

k
\ Ŷ 6= ? and osc (�

k
) > �=3 if and only if

k 2 fN2 + 1; : : : ; Ng.
d) deg (u; V

k
) = 0, V

k
\ Ŷ 6= ? and osc (�

k
) � �=3 if and only if

k 2 fN + 1; : : : ; ~Ng.
From (3.10) it follows that

(5.1) N1 � N2 � 160� :

On the other hand, Lemma 2 implies that

(5.2) N = N2 +#I � 160� +
480

�
� � 320� :

We remark that (5.2) gives a bound for N which is valid for all u 2 E
�
"

and which, moreover, depends only on � and not on ". We have no sim-

ilar bound for ~N , the total number of V
k
's that intersect Ŷ . However,

as we will see in this section, a bound on N like (5.2) is enough since

Proposition 1 will allow us to prove that the V
k
's in condition d) (i.e.,

those for which deg (u; V
k
) = 0 and osc (�

k
) � �=3 are \harmless" { in

fact, Proposition 1 gives us a good enough control over the behavior of

u inside these V
k
's for our estimates of lower bounds on the energy of an

isolated charged singularity to go through, regardless of the the pres-

ence of V
k
's of type d) in its neighborhood. We will need the following

two rather technical Lemmas to obtain these lower bounds.

The �rst one is a covering argument that will allow us to see that

W1; : : : ;WN
can be subdivided into groups, each of which is contained

in some ball of radius of order bigger than
p
", and that the di�erent

balls are, in some sense, far apart (this type of technique has recently

been used by several authors like M. Str�uwe or F. Bethuel, H. Brezis
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and F. H�elein or still F.H. Lin in [22] { our approach is closer to that

of the latter).

The second Lemma will then serve to prove that if any of the balls

B
j
which intersect Y were charged, then we would have to pay a very

high price (of order j log "j) in energy.

Lemma 4. Fix � 2 R+ . Let u 2 E
�
"
, and W1; : : : ;WN

be de�ned

as above. Then, for " su�ciently small, there is an integer m � N ,

a family of numbers �1; : : : ; �m 2 (1=2; 1], and a family of balls B
j
,

j = 1; : : : ;m, of centers x
j
and radii r

j
such that

i) r
j
� C"

�j .

ii)

N[
i=1

W
i
�

m[
j=1

B
j
.

iii) The enlarged balls ~B
j
:= B(x

j
; "
��j=(2

N+1+1)
r
j
) are pairwise

disjoint.

Proof. We have �xed � 2 R+ , and we are looking at maps u 2 E
�
"
,

for " su�ciently small (to be chosen later). We de�ne W1; : : : ;WN
as

above (thus they will be open, simply-connected subsets of 
 � R2 ,
such that @W

k
= V

k
). By equation (5.2) we know that there exists

a uniform bound on N depending only on the energy level � we are

considering, and not on " { to be able to change " while having an

uniform bound on the number m of balls used in the covering is crucial

for our argument to work.

On the other hand, by (2.12) we have that

(5.13) diam(W
k
) � 1

2
H1(V

k
) � 160� " :

Hence our Lemma follows from the more general covering argument

stated in Lemma 7 of the Appendix. In fact, it corresponds to the

special case where C = 160� and � = 1.

5.2. Lower-bound for the energy around an isolated charged

singularity.

Lemma 5. Let R1, R2 2 R+ be such that R1 < R2. Let 
 be the

annulus 
 = B(0; R2) nB(0; R1), and u 2 H
1(
; C ) be such that exists
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� 2 R+ such that ju(x)j � � > 0, for all x 2 
, and deg (u; S
R1
) =

deg (u; S
R2
) = d 6= 0. Then,

(5.4) E
"
(u) � � d

2
�
2 log

�
R2

R1

�
:

Proof. We have that

(5.5) E
"
(u) � 1

2

Z



jruj2 ; for all u 2 H
1(
; C ) :

Hence, we will concentrate on obtaining a lower bound for the Dirichlet

energy of u (the right hand side of (5.5)). Since, by hypothesis, juj �
� > 0, we may de�ne

v :=
u

juj 2 H
1(
; S1) ; and deg (v; S

R1
) = deg (v; S

R2
) = d 6= 0 :

By (3.5) we know that

(5.6) jruj2 � juj2 jrvj2 � �
2 jrvj2 :

We de�ne

V
d
= fv 2 H

1(
; S1) : deg (v; S
R1
) = deg (v; S

R2
) = dg :

From (5.5) and (5.6) it follows that

(5.7) E
"
(u) � 1

2

Z
jruj2 � �

2 inf
v2Vd

�1
2

Z
jrvj2

�
:

The problem of determining

inf
v2Vd

�1
2

Z
jruj2

�
has already been extensively studied. In fact we can reduce it, using an

associated linear problem (see, for instance, [8, Theorems I.1 and II.1,

and their Corollaries]), to determining the Dirichlet energy of a har-

monic map � such that

(5.8)

8>>>>>>><
>>>>>>>:

�� = 0 ; in 
 ;

� = 0 ; on S
R2

;

� = C ; on S
R1

;Z
SRi

@�

@�
= 2� d ;
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where C is some constant, and � is the outward normal to B
R1

and

also the outward normal to B
R2

(so � will point inside 
 on S
R1

and

outside on S
R2
).

We can easily check that � = d log (r=R2) is a solution of (5.8).

Therefore, by the proof of [8, Theorem I.1] (see step 1 of that proof {

it is essentially a consequence of Poincar�e's Lemma) we know that for

all v 2 H
1(
; S1): deg (v; S

Ri
) = d, i = 1; 2,

(5.9)

Z



jrvj2 �
Z



jr�j2

=

Z



���d
r

���2

=

Z 2�

0

d�

Z
R2

R1

r
d
2

r2
dr

= 2� d2 log
�
R2

R1

�
:

Combining equations (5.7) and (5.9) we obtain

E
"
(u) � � �

2
d
2 log

�
R2

R1

�
;

which is the desired result.

We are now ready to prove the main result of this section.

Theorem 8. Let � 2 R be �xed and u 2 E
�
"
. Then, there exists "0 > 0

(depending only on �) such that if " < "0, then B
j
\ Y 6= ? implies

that deg (u; @B
j
) = 0, where the balls B

j
are given by Lemma 4.

Proof. Suppose that for some ", su�ciently small to apply Lemma

4, there exists u 2 E
�
"
such that in Lemma 4 we obtained a ball B

j

such that B
j
\ Y 6= ? and deg (u; @B

j
) 6= 0. Since B

j
\ Y 6= ?, if " is

su�ciently small (depending only on �) ~B
j
� Ŷ (because the radius of

~B
j
tends to zero when " �! 0). Thus, since in the covering argument

we took care of all the V
k
's such that V

k
\ Ŷ 6= ? and deg (u; V

j
) 6= 0

or osc (�
k
) > �=3, we know that the annulus D

j
:= ~B

j
n B

j
may only

intersect uncharged V
k
's such that osc (�

k
) � �=3 (what we called V

k
's

of type d) in the beginning of this section).
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We may suppose, without loss of generality, that the V
k
's that

intersect D
j
are V

N+1; : : : ; V
N̂

, for some N̂ � ~N . We know that

osc (�
k
) � �=3, k = N +1; : : : ; N̂ . However, we cannot apply Lemma 5

directly to u on D
j
since a priori we have no lower bound on juj inside

W
N+1; : : : ;W

N̂

. Nevertheless, if we replace u inside each of the W
k
,

k = N + 1; : : : ; N̂ , by the corresponding minimizer of (4.7), we will

decrease the energy and, at the same time, by Proposition 1, we will

have a lower bound on the absolute value of the map obtained. Let

(5.10) ~u :=

8>><
>>:

u ; in D
j
n

N̂[
k=N+1

W
k
;

u
"
; in W

k
; k = N + 1; : : : ; N̂ ;

where u
"
is the minimizer of E

"
in W

k
with boundary value u. In

particular, u
"
satis�es equation (4.8). By construction, j~uj � � � 1=2

in D
j
n SN̂

k=N+1Wk
, and by Proposition 1, j~uj = ju

"
j � 1=4 in W

k
,

k = N + 1; : : : ; N̂ . Therefore,

(5.11) j~uj � 1

4
; in D

j
:

Hence, deg (~u; @ ~B
j
) = deg (~u; @B

j
) = d 6= 0.Thus, we may apply

Lemma 5 to ~u in D
j
. Denoting the energy of a map w in a domain

G by

E
"
(w;G) :=

1

2

Z
G

jrwj2 + 1

4 "2

Z
G

(1� jwj2)2 ;

this Lemma yields

(5.12) E
"
(~u;D

j
) � �d

2
�1
4

�2
log ("��j=(2

N+1+1)) :

Since �
j
� 1=2 (by Lemma 4), we have that

(5.13) E
"
(~u;D

j
) � � d

2

16
log ("�1=(2(2

N+1+1))) = � � d
2

32 (2N+1 + 1)
log " :

We claim that, for " su�ciently small

(5.14) E
"
(u;
) � E

"
(~u;D

j
) :
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Proof of claim (5.14). We have that

(5.15)

E
"
(~u;D

j
) = E

"

�
~u;D

j
n

N̂[
k=N+1

W
k

�
+

N̂X
k=N+1

E
"
(~u;W

k
\D

j
)

� E
"

�
~u;D

j
n

N̂[
k=N+1

W
k

�
+

N̂X
k=N+1

E
"
(~u;W

k
) :

By construction, ~u = u on D
j
nSN̂

k=N+1Wk
, we have that

E
"

�
~u;D

j
n

N̂[
k=N+1

W
k

�
= E

"

�
u;D

j
n

N̂[
k=N+1

W
k

�
;

and, on the other hand, by the de�nition of u
"
as the minimizer of (4.7),

we also have that

E
"
(~u;W

k
) � E

"
(u;W

k
) ; for k = N + 1; : : : ; N̂ :

Therefore, it follows from (5.15) that

E
"
(~u;D

j
) � E

"

�
u;D

j
n

N̂[
k=N+1

W
k

�
+

N̂X
k=N+1

E
"
(u;W

k
)

= E
"
(u;D

j
[W

N+1 [ � � � [W
N̂
)

� E
"
(u;
) ;

since W
k
� Ŷ � 
, k = N + 1; : : : ; N̂ , if " is su�ciently small. This

concludes the proof of claim (5.14).

Combining (5.13) and (5.14) we have that for " su�ciently small,

(5.16) E
"
(u;
) � � � d

2

32 (2N+1 + 1)
log " � C d

2 j log "j ;

where C is a positive constant only depending on � (in fact, using

equation (5.2) we may choose C = �=(32 (2320�+1+ 1)) > 0).

If, as we supposed, d 6= 0, then, since u 2 E
�
"
, we would have that

C d
2j log "j � �, for all " su�ciently small. However, this is clearly not
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true for " � exp (��=(C d
2)). Hence, d must be zero, which concludes

the proof of Theorem 8.

Remark. Theorem 8 proves rigorously our idea that as " gets small the

charged V
k
's have to cluster, giving rise to \neutral" (deg = 0) B

j
's, or

to \drift" towards the boundary @
 (thus exiting the interior domain

Y ). Hence, in the interior of 
, and for a distance scale of order "1=2,

the charged singularities shouldn't be \perceptible".

6. De�nition of the degree of u in 
.

In this section we de�ne the degree of u in 
, which is an integer,

and show that this integer is well de�ned.

Let

v :=
u

juj : Ŷ n
~
N[
k=1

W
k
�! S

1
;

and

A :=
n
r 2

�1
2
;
3

4

�
: S

r
\ V

k
= ? ; for all k = 1; : : : ; ~N

o
:

As before, for r 2 A, we de�ne

(6.1) f(r) :=
1

2�

Z
Sr

v � @v

@�
= deg (u; S

r
) ;

and we de�ne the approximate degree as

(6.2) adeg (u) :=
1

2�jAj
Z
A

Z
Sr

v � @v

@�
d� dr =

1

jAj
Z
A

f(r) dr :

The function f may only change value when we cross a charged V
k
since

if r1; r2 2 A, r2 > r1, then

f(r2)� f(r1) =
X

k2Ir1;r2

deg (u; V
k
) ;(6.3)

I
r1;r2

= fk : V
k
� B(0; r2) nB(0; r1)g :

By (5.3), (5.2), Lemma 4 and Theorem 8, inside Y we can cover all

the charged V
k
's by an uniformly bounded number of balls B1; : : : ; Bm

,
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with m � 320�, and such that r
j
= radius (B

j
) � 160� "1=2, and

deg (u; @B
j
) = 0. Hence the function f will always have the same value

in �A := A n B, where B :=
S
m

j=1fr : S
R
\ B

j
6= ?g. This is the value

we use to de�ne deg (u;
) 2 Z.
When " �! 0 the approximate degree (adeg (u)) approaches this

value. In fact, from (5.2) and Lemma 4, it follows that

(6.4) jBj � 2

mX
j=1

r
j
� 2m 160� "1=2 � (320�)2 "1=2 :

Furthermore, even inside A \ B the value of f(r) = deg (u; S
r
) is uni-

formly bounded { equations (3.9) and (6.3) imply that

(6.5) jf � deg (u;
)j �
N1X
k=1

jdeg (u; V
k
)j � 160� :

Thus, using (2.7), (6.4) and (6.5), we obtain

(6.6)

jadeg (u)� deg (u)j =
��� 1jAj

Z
A

f(r) dr� 1

jAj
Z
A

deg (u;
) dr
���

� 1

jAj
Z
A

jf(r)� deg (u;
)j

� 1

jAj jBj 160�

� (320�)3

2
�1
4
�H1(V (�))

� "1=2

� (320�)3

1

2
� 320� "

"
1=2

:

Since this bound depends only on � and " (and not on u), we will have

that adeg (u) will converge to deg (u;
) 2 Z, uniformly in u 2 E
�
"
.

Hence, given �, we know that for " su�ciently small

jadeg (u)� deg (u)j � 1

4
;

and therefore, the knowledge of adeg (u) will determine the integer

deg (u) as desired.
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Remark. Of course we can also obtain deg (u;
) by evaluating f(r) =

deg (u; S
r
) for any r 2 �A = A n B. The problem is that the process of

obtaining the balls B
j
that de�ne B is very elaborate { hence our choice

of also showing how to obtain deg (u;
) using the approximate degree.

We remark also that the B
j
's obtained using Lemma 4, and thus also B,

are not uniquely determined. However, using estimate (6.4), it is easy

to check that (for su�ciently small ", as usual) the value of deg (u;
)

obtained by evaluating f(r) in �A, is independent of the particular B
j
's

used in the process.

7. Continuity of deg (u;
).

This section is devoted to showing that the notion of deg (u;
)

we de�ned in the previous section (Section 6) is continuous in H
1(
)

topology inside each level set of the Ginzburg-Landau energy (1.1).

This result will be stated in Theorem 9 at the end of the section.

Let � 2 R+ be given and " < "0 (with "0 de�ned as in Theorem 8)

and consider u1; u2 2 E
�
"
. Suppose Bi

1; : : : ; B
i

mi
, are the balls obtained

when applying Lemma 4 to u
i
, i = 1; 2, and V

i

k
, k = 1; : : : ; ~N

i
, i = 1; 2,

denote the corresponding V
k
's. We de�ne, as before, v

i
:= u

i
=ju

i
j,

A
i
:=
n
r 2

�1
2
;
3

4

�
: S

r
\ V i

k
= ?; for all k = 1; : : : ; ~N;

and S
r
\ Bi

j
= ?; for all j = 1; : : : ;m

i

o
;

f
i
(r) :=

1

2�

Z
Sr

v
i
� @v

i

@�
d� ; for r 2 A

i
:

Then, denoting A := A1 \ A2,

(7.1) deg (u
i
;
) =

1

jA
i
j
Z
Ai

f
i
(r) dr =

1

jAj
Z
A

f
i
(r) dr ;

since f
i
(r) = C

te = deg (u
i
;
) in A

i
(hence also in A � A

i
). Therefore,

denoting G := f(r; �) : r 2 A; � 2 [0; 2�)g,
jdeg (u1;
)� deg (u2;
)j

=
1

2�jAj
��� Z

A

Z
Sr

�
u1

ju1j � @
�

�
u1

ju1j
�
� u2

ju2j � @
�

�
u2

ju2j
��

d� dr

���
(7.2)
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=
1

2�jAj
��� Z

A

Z
Sr

�
u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�

�
d� dr

��� ;
since

u
i

ju
i
j � @

�

�
u
i

ju
i
j
�
=

u
i

ju
i
j �

� 1

ju
i
j
@u

i

@�

�
+

u
i

ju
i
j �

�
u
i
@
�

� 1

ju
i
j
��

=
u
i

ju
i
j �

� 1

ju
i
j
@u

i

@�

�
;

because u
i
� u

i
= 0.

Furthermore, from equation (2.11) and Lemma 4, it follows that

jA1j, jA2j and jAj �! 1=4 uniformly when " �! 0, and thus, in partic-

ular, we have that for " su�ciently small (independent of the particular

choice of u1; u2 2 E
�
"
), jAj > 1=(2�). Hence, equation (7.2) yields that

for all " as above,

(7.3)

jdeg (u1;
)� deg (u2;
)j

=
1

2�jAj
��� Z

A

Z
Sr

�
u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�

�
d� dr

���
� 1

2�jAj
Z
G

��� u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�

���
�



 u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�





L
1(G)

:

We can write the integrand in (7.3) as

u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�

=
1

ju1j
u1

ju1j �
@u1

@�
� 1

ju2j
u2

ju2j �
@u2

@�

=
� 1

ju1j �
1

ju2j
�
u1

ju1j �
@u1

@�
� 1

ju2j
�
u1

ju1j �
@u1

@�
� u2

ju2j �
@u2

@�

�
:

(7.4)

Moreover, one can write the last factor in (7.4) as

u1

ju1j �
@u1

@�
� u2

ju2j �
@u2

@�
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=
1

ju1j
�
u1 � @u1

@�
� u2 � @u2

@�

�
+
� 1

ju1j �
1

ju2j
�
u2 � @u2

@�

=
1

ju1j
�
(u1 � u2)� @u1

@�
+ u2 � @(u1 � u2)

@�

�(7.5)

+
� 1

ju1j �
1

ju2j
�
u2 � @u2

@�
:

From (7.4) and (7.5) it follows that

u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�

=
� 1

ju1j �
1

ju2j
�
u1

ju1j �
@u1

@�
+

1

ju1j ju2j
�
(u1 � u2)� @u1

@�

�

+
1

ju1j
�
u2

ju2j �
@(u1 � u2)

@�

�
+
� 1

ju1j �
1

ju2j
��

u2 � @u2

@�

�
:

(7.6)

On the other hand, since ju
i
j � 1=2 in G, we have that

(7.7)
1

ju
i
j � 2 ; i = 1; 2 ; and

1

ju1j ju2j � 4 ; in G :

Furthermore, we have the following estimates for v
i
= u

i
=ju

i
j,




 u
i

ju
i
j




L
1(
)

= 1 ;(7.8)




 u
i

ju
i
j




L
2(G)

�



 u

i

ju
i
j




L
1(G)

jGj1=2 � jGj1=2 � jY j1=2 =
p
5�

4
:(7.9)

Regarding the tangential derivatives, we have that j@u
i
=@� j � jru

i
j,

and thus,

(7.10)



@ui
@�





L
2(G)

� kru
i
k
L
2(G) � kru

i
k
L
2(
) ;

and also that ���@(u1 � u2)

@�

��� � jr(u1 � u2)j ;
which implies that

(7.11)



@(u1 � u2)

@�





L
2(G)

� kr(u1�u2)kL2(G) � kr(u1�u2)kL2(
) :
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Finally, we can easily check that

��� 1

ju1j �
1

ju2j
��� = j ju1j � ju2j j

ju1j ju2j � ju1 � u2j
ju1j ju2j � 4 ju1 � u2j ;

which, in turn, yields

(7.12)



 1

ju1j �
1

ju2j




L
2(G)

� 4 ku1 � u2kL2(G) � 4 ku1 � u2kL2(
) :

Moreover, since we supposed that u
i
2 E

�
"
, we have, as in (2.5),

(7.13) kru
i
k
L
2(G) � kru

i
k
L
2(
) �

p
2E

"
(u

i
) �

p
2� :

Using the Cauchy-Schwarz inequality and equations (7.6), (7.7), (7.8),

(7.9), (7.10), (7.11), (7.12) and (7.13), it follows from equation (7.3)

that

jdeg (u1;
)� deg (u2;
)j

�



 u1

ju1j2 �
@u1

@�
� u2

ju2j2 �
@u2

@�





L
1(G)

�



 u1

ju1j




L
1(G)




 1

ju1j �
1

ju2j




L
2(G)

kru1kL2(G)

+ 4 ku1 � u2kL2(G) kru1kL2(G)
+ 2




 u2

ju2j




L
2(G)

kr(u1 � u2)kL2(G)

+



 u2

ju2j




L
1(G)




 1

ju1j �
1

ju2j




L
2(G)

kru2kL2(G)

� 4 kru1kL2(G) ku1 � u2kL2(G) + 4 kru1kL2(G) ku1 � u2kL2(G)
+ 2 jY j1=2 kr(u1 � u2)kL2(G) + 4 kru2kL2(G) ku1 � u2kL2(G)

� (8 kru1kL2(
) + 4 kru2kL2(
)) ku1 � u2kL2(
)

+ 2

p
5�

4
kr(u1 � u2)kL2(
)

� 12
p
2� ku1 � u2kL2(
) +

p
5�

2
kr(u1 � u2)kL2(
)

� C ku1 � u2kH1(
) ;
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where C is a constant that depends only on the energy bound � (we may

take C = 12
p
2� +

p
5�=2). Therefore, we have proven the following

Theorem which is the main result of this section.

Theorem 9. Let � > 0 be given and " be su�ciently small. Then,

inside the level set E�
"

the degree de�ned as above is continuous in

H
1(
) topology, and there is a constant C, depending only on �, such

that for all u1; u2 2 E
�
"

(7.14) jdeg (u1;
)� deg (u2;
)j � C ku1 � u2kH1(
) :

8. Proof of Theorem 1 and Theorem 6.

We start by proving Theorem 1, i.e. the case where 
 is of the

special form we studied (the annulus 
 = fx 2 R2 : 1=4 < jxj < 1g).
In this case we de�ned in Section 6 the map deg (u;
) which has all the

required properties of �(u). Thus, we de�ne �(�) := deg (�;
) : E�
"
�!

Z. Theorem 9 states that this map is continuous inside each level set of

the Ginzburg-Landau energy. Since � is a continuous map with values

in the discrete set Z, for each k 2 Z, ��1(k) = fu 2 E
�
"
: �(u) = kg,

will be an open and closed subset of E�
"
(in H1 topology). We have thus

succeeded in de�ning topological sectors inside E�
"
. This concludes the

proof of Theorem 1. Theorem 6 follows from Theorem 1 as described

in the Introduction.

9. The Palais-Smale condition: proof of Theorem 3.

Suppose that u
n
is a Palais-Smale sequence for E

"
, i.e. that there

exists a constant M such that

E
"
(u

n
) �M ; for all n ;(9.1)

dE
"
(u

n
) �! 0 in (H1)� as n �! +1 ;(9.2)

where (H1)� is the dual of H1(
;R2), and dE
"
(u

n
) denotes the dif-

ferential of E
"
at u

n
. We want to show that then u

n
has a strongly

convergent subsequence in H
1. This shall be achieved in two steps:

�rst we prove that u
n
is bounded in H

1(
;R2) and then we �nd a

convergent subsequence.
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9.1. Step 1: u
n
is bounded in H

1.

Equation (9.1) can be written as

(9.3)
1

2

Z



jru
n
j2 + 1

4 "2

Z



(1� ju
n
j2)2 �M ; for all n ;

and equation (9.2) means that there is a sequence C
n
� 0, such that

for all v 2 H
1(
;R2),

(9.4)
��� Z




ru
n
� rv � 1

"2

Z



(1� ju
n
j2)u

n
� v
��� � C

n
kvk

H
1(
;R2) ;

which implies that there exists a sequence b
n
(v) such that 0 � b

n
(v) �

C
n
, for all n; v (and hence b

n
�! 0) and

(9.5)
��� Z




ru
n
� rv

��� = b
n
kvk

H
1(
;R2) +

��� 1
"2

Z



(1� ju
n
j2)u

n
� v
��� :

Taking v = u
n
in (9.4) we obtain

(9.6)
��� Z




jru
n
j2 � 1

"2

Z



(1� ju
n
j2) ju

n
j2
��� � C

n
ku

n
k
H
1(
;R2) ;

and thus

(9.7)
��� Z




jru
n
j2
��� � C

n
ku

n
k
H
1(
;R2) +

��� 1
"2

Z



(1� ju
n
j2) ju

n
j2
��� :

First, using the Cauchy-Schwarz inequality and (9.3), we notice that,��� 1
"2

Z



(1� ju
n
j2) ju

n
j2
��� = ��� 1

"2

Z



(1� ju
n
j2)2 � 1

"2

Z



(1� ju
n
j2)
���

� 4M +
1

"2

�Z



(1� ju
n
j2)2

�1=2
j
j1=2(9.8)

� 4M +
2

"
M

1=2 j
j1=2 :
Second, the same type of estimate yields

(9.9)

��� Z



ju
n
j2
��� = ��� Z




1� ju
n
j2 + 1

���
�
��� Z




1� ju
n
j2
���+ j
j

� 2M1=2 j
j1=2 "+ j
j
= j
j+ o (") :
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From (9.7) and (9.8) it follows that

(9.10)

Z



jru
n
j2 � C

n
(ku

n
k
L
2 + kru

n
k
L
2) + 4M +

1

"
2M1=2 j
j1=2 ;

and, using (9.9), this yields

(9.11)

kru
n
k2
L
2 � C

n
kru

n
k
L
2 � C

n
(2M1=2 j
j1=2 "+ j
j)1=2

+ 4M +
1

"
2M1=2 j
j1=2

= Ĉ(M; ") :

Since C
n
�! 0 this implies that kru

n
k
L
2(
) is bounded. Together with

(9.9), which gives us a bound on ku
n
k
L
2(
), this yields

(9.12) ku
n
k
H
1(
) � C(M; ") :

which concludes the proof of the �rst step.

Step 2: u
n
has a strongly convergent subsequence in H

1.

Since by (9.12) u
n
is bounded in H

1(
;R2), it has a subsequence,

which we will still denote by u
n

which is weakly convergent in

H
1(
;R2). Hence, using the fact that we have a compact embedding

H
1(
;R2) ,! L

2(
), we know that, up to passing to a subsequence,

there exists u 2 H
1(
;R2) such that

(9.13) u
n
�! u in L

2(
) and ru
n
* ru in L

2(
) :

Therefore, we just need to prove strong convergence in L
2(
) of the

gradients, ru
n
�! ru in L

2(
). By (9.13) we already have weak

convergence ru
n
* ru, thus we just need to prove the convergence of

the L2(
) norms in order to obtain strong convergence.

Since H1(
) ,! L
p(
), for all 1 � p < +1, we have that

(9.14) u
n
* u in H

1 implies u
n
�! u in L

p

; for all 1 � p < +1 :

In particular

u
n
�! u in L

4(
) and ju
n
j2 �! juj2 in L

4(
) :
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Thus, using H�older's inequality,

(1� ju
n
j2)u

n
�! (1� juj2)u in L

2(
) ;

(1� ju
n
j2)u

n
� u �! (1� juj2) juj2 in L

1(
) ;(9.15)

and, since u
n
�! u in L

2(
),

(9.16) (1� ju
n
j2)u

n
� u

n
�! (1� juj2) juj2 in L

1(
) :

Taking v = u 2 H
1 in equation (9.5) we obtain

(9.17)
��� Z




ru
n
� ru

��� = b
n
kuk

H
1(
;R2) +

��� 1
"2

Z



(1� ju
n
j2)u

n
� u
��� :

Passing to the limit n �! +1, using the fact that ru
n
* u weakly in

L
2(
), b

n
�! 0 and (9.15), inequality (9.17) yields

(9.18)

Z



jruj2 =
��� 1
"2

Z



(1� juj2) juj2
��� :

On the other hand, passing to the limit in (9.7), using the fact that

C
n
�! 0, (9.12), (9.16) and (9.18), we obtain

(9.19) lim
n!+1

Z



jru
n
j2 �

��� 1
"2

Z



(1� juj2) juj2
��� = Z




jruj2 :

Since by the lower semi-continuity of the L2 norm in weak topology we

have that Z



jruj2 � lim
n!+1

Z



jru
n
j2 ;

equation (9.19) implies that

(9.20)

Z



jruj2 = lim
n!+1

Z



jru
n
j2 ;

which concludes the proof of Theorem 3 for E
"
. For the case of the

functional F
"
the same proof will work once we �x the Coulomb gauge.

The reader interested in seeing how the gauge invariance a�ects Palais-

Smale sequences in this problem may take a look at the appendix of

[4].
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10. Threshold energies and components of E�
"
.

We can reformulate the statement of Theorem 4 and state the

following Proposition.

Proposition 2. Suppose that for some � 2 R+ , we have that for some

" < "0 (where "0 is given Theorem 1) there exist n; k 2 Z, n 6= k,

such that the topological sectors top
n
(E�

"
) and top

k
(E�

"
) are both non-

empty. Then, there are mountain-pass type critical points of E
"
or,

equivalently, there exist mountain-pass type solutions of the Ginzburg-

Landau equations (1:11).

More precisely, consider two non-empty components of E�
"
, �0 �

top
n
(E�

"
) and �1 � top

k
(E�

"
), and let c

n;k
(�0;�1) be de�ned as in

(10:4). Then, there exists a map u 2 H
1(
;R2) which is a critical

point of E
"
and such that E

"
(u) = c

n;k
(�0;�1).

Since H1(
) is locally pathwise connected and the level sets E�
"

are open, their path components coincide with their components, so

we can use the two concepts indistinguishably. Let n; k 2 Z be two

distinct integers, and let �0 and �1 be components of E�
"
such that

�0 � top
n
(E�

"
) and �1 � top

k
(E�

"
). Then, given u0; u

0

0 2 �0 and

u1; u
0

1 2 �1, we know that there exist two paths 

i
, i = 0; 1, such that



i
: [0; 1] �! �

i
; 


i
(0) = u

i
; 


i
(1) = u

0

i
; i = 0; 1 :

In particular,

(10.1) 

i
(s) < � ; for all s 2 [0; 1] :

As usual, we de�ne the composition operation for paths: let 
 be a path

from p to q, and � be a path from q to r, then % = 
 � is the path from

p to r de�ned by

%(s) :=

8><
>:


(2 s) ; for 0 � s � 1

2
;

�(2 s� 1) ; for
1

2
� s � 1 :

And we de�ne the inverse path of 
, which we denote by 

�1, as



�1(s) := 
(1�s), for s 2 [0; 1]. Then, to any path 
 : [0; 1] �! H

1(
)

between u0 and u1, one can associate a path 

0 = 


�1
0 
 
1 : [0; 1] �!
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H
1(
) from u

0

0 to u
0

1. And vice-versa, to any path 
0 : [0; 1] �! H
1(
)

between u
0

0 and u
0

1, one can associate a path 
 = 
0 

0


�1
1 : [0; 1] �!

H
1(
) from u0 to u1. With these de�nitions, from equation (10.1) it

follows that

(10.2) max
s2[0;1]

E
"
(
(s)) = max

s2[0;1]
E
"
(
0(s)) � � :

And hence,

(10.3) inf

2V

�
max
s2[0;1]

(E
"
(
(s)))

�
= inf


2V0

�
max
s2[0;1]

(E
"
(
0(s)))

� � � ;

where,

V := f
 2 C
0([0; 1]; H1(
;R2)) : 
(0) = u0; and 
(1) = u1g ;

and

V 0 := f
0 2 C
0([0; 1]; H1(
;R2)) : 


0(0) = u
0

0; and 

0(1) = u

0

1g :

Thus, c
n
, the threshold energy for a transition from u0 to u1 de�ned in

(1.16), is well de�ned as a transition energy from a component �0 of

top
n
(E�

"
) to a component �1 of topk(E

�
"
). We can de�ne,

(10.4) c
n;k

(�0;�1) := inf

2Vn;k(�0;�1)

�
max
s2[0;1]

(E
"
(
(s)))

�
;

where,

V
n;k

(�0;�1)

:= f
 2 C
0([0; 1]; H1(
;R2)) : 
(0) 2 �0 � top

n
(E�

"
);

and 
(1) 2 �1 � top
k
(E�

"
)g :

By the Mountain Pass Theorem we know that c
n;k

(�0;�1) is a gen-

eralized critical value of E
"
and, since by Theorem 3 the functional

E
"
satis�es the Palais-Smale condition, this implies that c

n;k
(�0;�1) is

also a critical value of E
"
, thus concluding the proof of Proposition 2

and Theorem 4.

Remark. For small " and n 6= k, c
n;k

(�0;�1) shouldn't depend on the

speci�c components �0 � top
n
(E�

"
) and �1 � top

k
(E�

"
), but only on

n and k (i.e. only on the topological sectors themselves). This leads
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us back to the question of how many distinct components can there be

inside a topological sector and how do they change when � changes. We

expect that for certain values of �, top
n
(E�

"
) may not be connected, but

that as we increase � the di�erent components which existed at lower

energies, should increase in size and eventually intersect thus becoming

the same component. As a matter of fact, in [1] we will be able to

prove that all the components in top
n
(E�

"
) can be connected by paths

wich involve energies of, at most, something like 6�, while to connect

di�erent topological sectors we will need energies like � j log "j, which
for small enough " is much bigger than 6�. In this case c

n;k
(�0;�1)

will depend only on n and k as we said.

Remark. As usual, similar results are valid for F
"
.

11. A model for superconductivity.

In this section we will consider the gauge-invariant Ginzburg-Lan-

dau model (1.3), and prove that inside the level sets F�
"
we can de�ne

topological sectors in a similar way to the one used for de�ning such

sectors inside the level sets E�
"
in theorems 1 and 6 which we proved in

Section 8.

11.1. Gauge �xing.

Given a con�guration (v;B) 2 F
�
"
, we will show in this section

how to choose a gauge equivalent con�guration, (u;A) � (v;B), such

that we have the necessary control on A to allow us to bound the L2

norm of ru by a constant depending only on the energy level �. In

fact, to achieve this, all we need to do is to �x a Coulomb gauge over

the unit disk D = B(0; 1) = 
 [ B(0; 1=4).

Proposition 3. Given a con�guration (v;B)2H1, there exists (u;A)�
(v;B) such that

(1.11)

(
d
?

A = 0 ; in D ;

A � � = 0 ; on @D = S
1
:
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The proof is just the same as that of [9, Propositions I.1 and I.2].

Now we remark that, since D is simply-connected, (11.1) implies that

there exists � 2 H
2(D;R) such that writing �̂ = � dx

1 ^ dx2 = ? �,

(11.2)

(
A = d

?

�̂ = ? d� ; in D ;

� = 0 ; on @D :

It follows from (11.1) and (11.2) that � satis�es

(11.3)

(
�� = d

?

d� = ? dA ; in D ;

� = 0 ; on @D :

This implies, using standard elliptic estimates, that

k�k
W

2;2(D) � Ĉ kdAk
L
2(D) ;

which, together with (11.2) yields

(11.4)

kAk2
W

1;2(D) =

Z
D

jAj2 +
Z
D

jrAj2

=

Z
D

jr�j2 +
Z
D

jr2
�j2

� k�k2
W

2;2(D)

� ĈkdAk2
L
2(D)

� Ĉ F
"
(u;A)

< Ĉ � ;

where Ĉ is a constant.

11.2. Global control of jruj2.

The purpose of this subsection is to show how to obtain a bound

on kruk
L
2(
) by a constant depending only on the energy level �.

Lemma 6. Given (v;B) 2 F
�
"
, let (u;A) be as in Proposition 3. Then,

(11.5)

Z



jruj2 � C ;
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where C is a constant which only depends on �.

Proof. Since, by construction, F
"
(u;A) = F

"
(v;B) � �, we have

that, in particular,

(11.6)

Z



jr
A
uj2 =

Z



jru� { A uj2 � 2F
"
(u;A) � 2� :

Hence, Z



jruj2 =
Z



jru� { A u+ { A uj2

� 2

Z



jru� { A uj2 + 2

Z



jAuj2

� 4F
"
(u;A) + 2

Z



jAj2 juj2(11.7)

� 4� + 2

Z



jAj2 (juj2 � 1) + 2

Z



jAj2

� 4� + 2

Z



jAj2 j1� juj2j+ 2

Z



jAj2 :

Using H�older's inequality, and the fact that from the energy bound it

follows that

k1� juj2k2
L
2(
) � 4 "2 F

"
(u;A) � 4 "2 � ;

we obtain

(11.8)

Z



jruj2 � 4� + 2 kA2k
L
2(
) k1� juj2kL2(
) + 2 kAk2

L
2(
)

� 4� + 4 "�1=2 kAk2
L
4(
) + 2 kAk2

L
2(
) :

Since we are in a two-dimensional domain it follows from the Sobolev

Embedding Theorem that W 1;2(
) ,! L
q(
), for all q < +1. hence,

in particular, there exists a constant ~C such that

(11.9) kAk
L
4(
) � ~C kAk

W
1;2(
) :

Furthermore, from (11.4) we know that

(11.10) kAk
W

1;2(
) � kAk
W

1;2(D) �
p
Ĉ � :
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From equations (11.8), (11.9) and (11.10) it follows that for " < 1 (as

mentioned before, it is the case where " is small that interests us),

(11.11)

Z



jruj2 � 4� + 4 "�1=2 ~C2 kAk2
W

1;2(D) + 2 kAk2
W

1;2(D)

� 4� + 4�1=2 ~C2
Ĉ � + 2� Ĉ = C ;

where C is a constant depending only on �.

11.3. De�nition of deg ([v;B];
) and proof of Theorem 2.

Once we have the estimate (11.5), we can de�ne deg (u;
) as in

the case of the initial model (1.1), since we will have all the estimates

we used in the work that culminated with the de�nition of the degree

in Section 6. Thus, for " su�ciently small, deg (u;
) is well de�ned,

and hence we may de�ne

deg ([v;B];
) := deg (u;
) :

Once we have achieved this, Theorem 2 follows from the corresponding

result for deg (u;
) which, thanks to estimate (11.5), can be proven

in a similar way to that we used for proving Theorem 1 (therefore, we

omit this proof).

The generalization of Theorem 2 to the setting of Riemannian man-

ifolds will then follow from Theorem 2 in an analogous way as Theorem

6 followed from Theorem 1.

12. Appendix: Covering Lemma.

This section is devoted to a general covering Lemma we used to

prove Lemma 4.

Lemma 7. Let " > 0 and W1; : : : ;Wn
be connected open subsets of R2

such that there exist C;� > 0 such that diam(W
l
) � C "

�. Then, for "

su�ciently small, there is a family of numbers �1; : : : ; �m � �=2, and

a family of balls B1; : : : ; Bm
, with m � n, such that, denoting by x

j
the

center of B
j
, and by r

j
its radius,

i) r
j
� C"

�j .
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ii)

n[
l=1

W
l
�

m[
j=1

B
j
.

iii) The enlarged balls ~B
j
:= B(x

j
; "
��j=(2

n+1+1)
r
j
) are pairwise

disjoint.

Proof. We start by de�ning

q
n
:=

2n+1

2n+1 + 1
;

p
k
:=

1
kX

j=0

2�j

=
2k

2k+1 � 1
;

for k = 1; : : : ; n.

The proof of this Lemma is done by induction on the number k

of components of A =
S
n

l=1Wl
. For k = 1, it su�ces to consider a

unique ball of radius r1 = C "
�1 , with �1 = 2�=3 = �p1, since, for "

su�ciently small,

(12.1) diam (A) �
nX
l=1

diam (W
l
) � nC "

� � C "
2�=3

:

Hence, we can �nd a ball B1, of radius r1 � C"
2�=3 containing

S
n

l=1Wl
.

Suppose that the result is always true if A has n components, for all

n � k�1 � n�1, and, furthermore, the number m of balls obtained in

the covering process is at most n and each of the �
j
's obtained satis�es

(12.2) �
j
� �

nX
j=0

2�j

= �p
n
� �p

k�1 :

To complete the induction argument, we just have to show that then

the result will still be true when A has k components, and that in this

case m � k � n and we can �nd �
j
's such that

�
j
� �

kX
j=0

2�j

= �p
k
:
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Let A1; : : : ; Ak
be the connected components of A. Suppose that

(12.3) diam(A) � 5nC "
�qnpk�1 :

Then, for " su�ciently small, we can include A in a ball B1 of radius

r1 � "
�pk . In fact, it su�ces that

3nC "
�qnpk�1 � C "

�qnpk :

This is always true, provided that " is su�ciently small, since

� q
n
p
k�1 > �p

k
if and only if

p
k�1

p
k

>
1

q
n

;

and

p
k�1

p
k

= 1 +
2�k

p
k�1

> 1 +
1

2k+1
=

2k+1

2k+1 + 1
� 2n+1

2n+1 + 1
=

1

q
n

:

Thus, if (12.3) is true, our proof will be completed. Hence, we may

suppose that this is not so, i.e., that

(12.4) diam(A) � 5nC "
�qnpk�1 :

Let y1; y2 2 A be such that jy1�y2j = diam(A), and consider the family

of balls B(y1; r) for r 2 (0; diam(A)). De�ne G
j
:= fr : B(y1; r)\Aj

6=
?g, j = 1; : : : ; k. Each G

j
will be an interval, and the sum of the lengths

of the G
j
's will be smaller than the sum of the diameters of the W

l
's,

which is at most nC"�. Since nC "
� � nC "

�qnpk�1 , for all " � 1, it

follows that the set

Ĝ := (0; diam(A)) n
k[

j=1

G
j
;

will have a measure of at least

5nC"�qnpk�1 � nC "
�qnpk�1 = 4nC "

�qnpk�1 :

Moreover, the set Ĝ is the union of, at most, k � 1 subintervals of

(0; diam(A)) since it was obtained from the latter by removing the

k open intervals G
j
(among which one had endpoint 0 and another
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had endpoint diam (A)). Consequently, at least one of its components,

which we will denote by [a0; b0], will be such that

(12.5) b0 � a0 � jĜj
k � 1

� 4n

k � 1
"
�qnpk�1 > 4 "�qnpk�1 :

Let Â = A \ B(y1; a0), and ~A = A n B(y1; b0). Then, A = Â [ ~A, and

both Â and ~A include at least one of the A
j
's. Hence, both Â and ~A

have at most k�1 components and thus we can apply the induction step

to each of them. It yields, since the sum of the number of components

of Â and ~A is k, that there will be a total of m � k balls B1; : : : ; Bm
,

such that

a) Â � B1 [ � � � [Bm
, ~A � B

m+1 [ � � � [ Bm
, for some m < m.

b) Each B
j
has center x

j
and radius r

j
� C "

�j , where �
j
�

�p
k�1 � �p

k
.

c) The enlarged balls ~B
j
:= B(x

j
; "
��j=(2

n+1+1)
r
j
) are pairwise

disjoint for j 2 f1; : : : ;mg and also for j 2 fm+ 1; : : : ;mg.
However, to obtain the disjointness of two ~B

j
, one corresponding

to Â (i.e. j � m) and the other to ~A (i.e. j > m), we need to use

equation (12.5). In fact, if j1 � m and j2 > m, then

(12.6) jx
j1
� y1j < a0 + C "

�j1 < a0 + C "
�qnpk�1 ;

since B
j1
\ Â 6= ?, Â � B(y1; a0) and by b), �

j1
� �p

k�1 > q
n
�p

k�1.

Similarly, we have that

(12.7) jx
j2
� y1j > b0 � C "

�j2 > b0 � C "
�qnpk�1 ;

since B
j2
\ ~A 6= ?, ~A � A n B(y1; b0) and, by b), �

j2
� �p

k�1 >

q
n
�p

k�1.

Therefore, combining (12.6) and (12.7) we have

(12.8) jx
j1
� x

j2
j > 2C "

�qnpk�1 :

Since ~B
ji
has radius

C "
qn�ji < C "

�qnpk�1 ;

equation (12.8) implies that

~B
j1
\ ~B

j2
= ? ;
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as desired. Consequently, the balls B
j
obtained satisfy all the conditions

required for the induction argument, and thus the proof of Lemma 7 in

completed.

Remark. Relative to the similar covering argument of Lin [22], our

result has the advantage that we are able to keep the �
j
always bigger

than �=2, which corresponds to keeping the balls B
j
rather small { in

Lin's result �
j
may tend to zero when n �!1. However, we also lose

something, both because our proof is technically more complicated, but

also because we obtain smaller (and more complex) expansion factors

for the ~B
j
's. In fact, even Lin's expansion factors ("��j=3) go to 1

when n �!1, but ours ("��j=(2
n+1+1)) will decrease to 1 considerably

faster.

We prefered to privilege the scale of the balls because it enables

us to assert that in our problem, at least at a scale "1=2, things appear

neutral to an outside observer (and it also makes the energy explosion

estimate (5.13) slightly neater). Using Lin's result, the scale would

depend on n, and hence on �, which would be less satisfactory.
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