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On Bernoulli identities

and applications

Minking Eie and King F. Lai

Part I

Abstract. Bernoulli numbers appear as special values of zeta func-

tions at integers and identities relating the Bernoulli numbers follow as

a consequence of properties of the corresponding zeta functions. The

most famous example is that of the special values of the Riemann zeta

function and the Bernoulli identities due to Euler. In this paper we

introduce a general principle for producing Bernoulli identities and ap-

ply it to zeta functions considered by Shintani, Zagier and Eie. Our

results include some of the classical results of Euler and Ramanujan.

Kummer's congruences play important roles in the investigation of p-

adic interpolation of the classical Riemann zeta function. It asserts

congruence relations among Bernoulli numbers, i.e.

(1� p
m�1)

Bm

m
� (1� p

n�1)
Bn

n
(mod pN+1)

if m � n (mod (p � 1) pN ) and (p � 1) is not a divisor of m. In the

second part of this paper, we use a simple Bernoulli identity to prove

that
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We then deduce from this Kummer's congruence by using von Staudt's

theorem and Euler's generalization of Fermat's theorem

a
m � a

n (mod pN+1) ;

if a is relative prime to p and m � n (mod (p� 1) pN ). Our argument

can be applied to derive congruences among Bernoulli polynomials and

in general the special values at negative integers of zeta functions asso-

ciated with rational functions considered by Eie.

1. Introduction.

Let m1; : : : ;mr be positive integers and P (T ) be a polynomial in T

with complex coe�cients of degree less than m1+ � � �+mr. For jT j < 1,

we let

F (T ) =
P (T )

(1� Tm1) � � � (1� Tmr )
=

1X
k=0

a(k)T k
:

Such functions occur as generating functions of partition numbers (cf.

Hardy and Wright [5, Chapter XIX]) and dimensions of spaces of au-

tomorphic forms { e.g. if we let a(k) be the dimension of the space of

Siegel modular forms of genus 2 and weight k, then

1X
k=0

a(k)T k =
1 + T

35

(1� T 4) (1� T 6) (1� T 10) (1� T 12)

(cf. Igusa [6]). The value of a(k) is determined by F via the residue

theorem as

a(k) =
1

2�i

Z
C

F (z) dz

zk+1
;

where C is a su�ciently small circle centered at the origin going coun-

terclockwise.

The generating function of the numbers a(k) is the Dirichlet series

ZF (s) =

1X
k=1

a(k) k�s

(cf. Hardy and Wright [5, Chapter XVII]). This zeta function is related

to F (T ) via a Mellin transform

ZF (s) �(s) =

Z 1
0

t
s�1 (F (e�t)� F (0)) dt ;
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for Re s su�ciently large. Our underlying principle is to evaluate F (T )

in two ways, yielding a Bernoulli identity, with special values of the zeta

functions of Shintani [8], Zagier [9] and Eie [2], [3] on the one hand, the

special values of classical zeta functions of Riemann and Hurwitz and

sums of residues on the other. One gets easily this way Euler's identity:

if n � 2,

n�1X
k=1

(2n)!

(2 k)! (2n� 2 k)!
B2k B2n�2k = �(2n+ 1)B2n ;

(cf. [1, Part I, p. 122]) and Ramanujan's identities (�; � > 0 with

�� = �
2),

1) if n > 1,

�
n

1X
k=1

k
2n�1

e2�k � 1
� (��)n

1X
k=1

k
2n�1

e2�k � 1
= (�n � (��)n)

B2n

4n
;

2) if n 2 Z,

�
�n
�1
2
�(2n+ 1) +

1X
k=1

k
�2n�1

e2�k � 1

�

� (��)�n
�1
2
�(2n+ 1) +

1X
k=1

k
�2n�1

e2�k � 1

�

= �22n
n+1X
k=0

(�1)k
B2k

(2 k)!

B2n+2�2k

(2n+ 2� 2 k)!
�
n+1�k

�
k
;

3) if n � 1,

�
�n

1X
k=1

(�1)k+1
csch (�k)

k2n+1
� (��)�n

1X
k=1

(�1)k+1
csch (� k)

k2n+1

= 22n+1
n+1X
k=0

(�1)k
B2k

�1
2

�
(2 k)!

B2n+2�2k

�1
2

�
(2n+ 2� 2 k)!

�
n+1�k

�
k
;

(cf. [1, Part II, Chapter 14]).

In the �rst part of this paper we present some new Bernoulli iden-

tities. In view of the current motivic interest in special values of zeta
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functions, one cannot help from wondering if there is an abstract frame-

work giving a uni�ed explanation of these identities as in the case of

polylogarithms (cf. Zagier [10]).

In the second part of the paper the Bernoulli identities are used

to give new proofs of classical Kummer congruences. The Bernoulli

numbers Bn (n = 0; 1; 2; : : : ) and Bernoulli polynomials Bn(x) (n =

0; 1; 2; : : : ) are de�ned by

t

et � 1
=

1X
n=0

Bn t
n

n!
; jtj < 2� ;

and
t e

xt

et � 1
=

1X
n=0

Bn(x) t
n

n!
; jtj < 2� :

Suppose that m;n are positive even integers, p is an odd prime with

p � 1 not a divisor of m and N is a non-negative integer. Kummer's

congruences asserted that if

m � n (mod (p� 1) pN ) ;

then

(1� p
m�1)

Bm

m
� (1� p

n�1)
Bn

n
(mod pN+1) :

Kummer's congruences play important roles in the p-adic interpola-

tion of the classical Riemman zeta function. Indeed if we consider the

function

�p(s) = (1� p
�s) �(s) =

X
n=1

(n;p)=1

n
�s
; Re s > 1 :

Then the congruences tell us that �p(s) is a continuous function on the

ring of p-adic integers Zp, i.e.,

�p(1�m) � �p(1� n) (mod pN+1) ;

if m � n (mod (p� 1) pN ).

One can construct a p-adic measure � on Zp and express �p(1�m)

as a constant multiple of the p-adic integration

Z
x
m�1

d�(x) ;
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where the integration is over Z�
p
(see for example Koblitz [9]). Note

that for x 2 (Z=pN+1Z)�, the set of invertible elements of the quotent

ring Z=pN+1Z, one has

x
m�1 � x

n�1 (mod pN+1) ;

if

m � n (mod (p� 1) pN ) :

So that Kummer's congruences follow as easy consequences by a simple

argument (cf. [6]).

Here we shall develop another elementary proof of Kummer's con-

gruences by a simple identity among Riemann zeta function and Hur-

witz zeta functions,

(I) (1� p
�s) �(s) = p

�(N+1)s
X

(j;p)=1

1�j<pN+1

�

�
s;

j

pN+1

�
;

where the Hurwitz zeta function is de�ned as

�(s; �) =

1X
n=0

(n+ �)�s ; Re s > 1 ; � > 0 :

Such an identity follows easily from the consideration of zeta functions

associated with rational functions of the form

F (T ) =
P (T )

(1� Tm1) � � � (1� Tmr)

(see Part I).

Note that both the Riemann zeta function �(s) and Hurwitz zeta

function �(s; �) have analytic continuations in the whole complex plane.

Moreover, their special values at non-positive integers are given by

Bernoulli numbers and Bernoulli polynomials, respectively. Speci�cally,

one has

�(1�m) = (�1)m�1
Bm

m
and �(1�m; �) = �

Bm(�)

m
:

Set s = 1�m in the identity (I), we get

(II) (1� p
m�1)

Bm

m
=

1

m

X
(j;p)=1

1�j<pN+1

mX
l=0

�
m

l

�
Bl j

m�l
p
(N+1)(l�1)

:
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Here �
m

l

�
=

m!

l! (m� l)!

is the binomial coe�cient.

On the other hand, von Staudt's theorem ([2, Chapter 5, Theo-

rem 4]) implies that pBl is alway p-integral, i.e. it contains no divisor

of p in the denominator of pBl. So after modulo pN+1, we get

(III)

(1� p
m�1)

Bm

m
�

1

m

X
(j;p)=1

1�j<pN+1

j
m
p
�(N+1)

�
1

2

X
(j;p)=1

1�j<pN+1

j
m�1 (mod pN+1) :

Next we evaluate the sum

X
(j;p)=1

1�j<pN+1

j
m
;

in the multiplicative group (Z=pN+1Z)� by decomposing it into a direct

product of �nite cyclic groups and we obtain Kummer's congruences by

assuming von Staudt's Theorem; �nally we give a proof of von Staudt's

theorem by using the Bernoulli identity (II) with N = 0.

At the end of the paper we extend Kummer's congruences on

Bernoulli numbers to congruences on Bernoulli polynomials.

2. Special values of zeta functions.

2.1. Bernoulli numbers and Bernoulli polynomials.

We recall some results on special values of zeta functions.

For the Riemann zeta function

�(s) =

1X
n=1

n
�s
; Re s > 1
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and the Hurwitz zeta function

�(s; �) =

1X
n=0

(n+ �)�s ; � > 0 ; Re s > 1 ;

it is well known that for an integer m � 0 ,

�(�m) = (�1)m
Bm+1

m+ 1
and �(�m; �) = �

Bm+1(�)

m+ 1
:

2.2. Zeta functions associated with linear forms.

Let � = (�1; : : : ; �r) be an r-tuple of nonnegative integers and

L(x) = a1 x1 + � � �+ ar xr + � be a linear form with

Re aj > 0 and Re
�
� +

rX
j=1

aj

�
> 0 :

For Re s > r + j�j, de�ne the zeta function associated with L as

Z(L; �; s) =
X
n2Nr

n
�
L(n)�s

=

1X
n1=1

� � �
1X

nr=1

n
�1

1 � � �n�r
r
(a1 n1 + � � �+ ar nr + �)�s ;

where we use the notation n� = n
�1

1 � � �n�rr .

These zeta functions were �rst considered in more general context

by Eie in [2]. In particular, they have meromorphic continuations in

the whole complex s-plane. Furthermore, their special values at non-

positive integers are given explicitly there. Here we summarize the

results we need from [3].

For any polynomial f(x) of p variables and degree k

f(x) =

kX
j�j=0

a� x
�1
1 � � �x�pp ;

we let

J
p(f(x)) =

kX
j�j=0

a� �(��1) � � � �(��p) =
kX
j�j=0

a�

pY
j=1

(�1)�jB�j+1

�j + 1
;
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where � = (�1; : : : ; �p) ranges over all p-tuples of non-negative integers

and j�j = �1 + � � �+ �p.

Also for any nonempty subset S of the index set I = f1; 2; : : : ; rg,
we let

LS(x) =
X

i2I�S

ai xi + � = L(x)�
X
j2S

aj xj

and jSj be the cardinal number of S.
The following proposition is an immediate consequence of the main

theorem in [3].

Proposition 1. For any integer m � 0, the special value at s = �m
of Z(L; �; s) is given by

Z(L; �;�m) = J
r(x�Lm(x))

+
X
S

�Y
j2S

(�1)�j+1 �j !

a
�j+1

j

� 1

�(S)!
J
r�jSj

�
�Y
i 62S

x
�i

i
L
�(S)

S
(x)
�
;

where S ranges over all non-empty subset of I = f1; 2; : : : ; rg in the

summation and

�(S) = m+ jSj+
X
j2S

�j :

Here we describe the analytic continuation of Z(L; �; s). For Re s >

r + j�j, we have

Z(L; �; s) �(s)

=

1X
n1=1

� � �
1X

nr=1

n
�1

1 � � �n�rr

Z 1
0

t
s�1

e
�(a1n1+���+arnr+�)t dt

=

Z 1
0

e
��t

rY
j=1

� 1X
n=1

n
�j e
�ajnt

�
dt :

Set

Fj(t) =

1X
n=1

n
�j e
�ajnt and F (t) = e

��t
rY

j=1

Fj(t) :
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A term by term di�erentiation of the identity

1X
n=1

e
�ajnt =

1

eajt � 1
; t > 0 ;

we get

Fj(t) = (�aj)��j
�
d

dt

��j� 1

eajt � 1

�
:

Thus around t = 0, Fj(t) has the asymptotic expansion

�j !

(aj t)�j+1
+ (�1)�j

X
nj��j+1

Bn(aj t)
n��j�1

n(n� �j � 1)!
:

It follows that at t = 0, F (t) has an asymptotic expansion of the form

X
n��(j�j+r)

Cn t
n
:

Consequently, the analytic continuation of Z(L; �; s) and its special

values at negative integers follow from Lemma 7 in Section 4.

When � = 0, we have the following

Corollary. For any integer m � r, one has

Z(L; 0; r�m)

=
X
j�j=m

(�1)m�r��r+1 (m� r)!

�1! � � ��r!�r+1!
B�1

� � �B�r
a
�1�1
1 � � �a�r�1

r
�
�r+1 :

2.3. Shintani zeta functions.

Next we consider another kind of zeta function which were inves-

tigated �rst by Shintani in [8] and then Eie in [3]. Here we reformulate

the main result in [3].

Let A = (a1; : : : ; ar) and u = (u1; : : : ; ur) be r-tuples of complex

numbers such that Re aj > 0 and uj > 0. De�ne the zeta function

Z(A; u; s) =

1X
n1=0

� � �
1X

nr=0

(a1(n1 + u1) + � � �+ ar(nr + ur))
�s
;
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where Re s > r.

Proposition 2. For any integer m � r, one has

Z(A; u; r�m)

= (�1)r
X
jpj=m

(m� r)!

p1! � � � pr!
Bp1

(u1) � � �Bpr
(ur) a

p1�1
1 � � �apr�1

r
:

Here the summation is over all p-tuples of non-negative integers

such that and jpj = p1 + � � �+ pr = m.

3. Euler's Identity.

If we start from the fraction

F (T ) =
1

(1� T )2
=

1X
k=0

(k + 1)T k
;

we obtain the identity

�(s� 1) + �(s) =

1X
n1=1

1X
n2=1

(n1 + n2)
�s + 2 �(s) ;

from the Dirichlet series ZF (s). Setting s = 2 � 2n, we get Euler's

identity

n�1X
k=1

(2n)!

(2 k)! (2n� 2 k)!
B2k B2n�2k = �(2n+ 1)B2n ; n � 2 :

In this section we shall establish a new identity analogous to that of

Euler and then as an illustration of our method we give an extension

of the Euler identity to Bernoulli polynomials. We state a lemma.

Lemma 3. Given

P (T ) =

mX
j=0

bj T
j

and

F (T ) =
P (T )

(1� Tm1) � � � (1� Tmr)
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with m1 + � � �+mr > m, then, for jT j < 1 we have

F (T ) =

mX
j=0

bj

1X
n1=0

� � �
1X

nr=0

T
n1m1+���+nrmr+j

and hence

ZF (s) = b0

X
n1;:::;nr�0
jnj>0

(n1m1 + � � �+ nrmr)
�s

+

mX
j=1

bj

X
n1;:::;nr�0

(n1m1 + � � �+ nrmr + j)�s :

To illustrate our principle we consider as a �rst example, a fraction

related to the generating function of the dimensions of Siegel modular

forms of genus two,

F (T ) =
1

(1� T 2) (1� T 3) (1� T 5) (1� T 6)

and we derive a new Bernoulli identity.

Proposition 4. For any integer m � 3,

X
jpj=2m

(2m� 4)!

p1! p2! p3! p4!
Bp1

Bp2
Bp3

Bp4
2p1�1 3p2�1 5p3�1 6p4�1

= �
1

1080

B2m

2m
�
� 17

432
+

1

48
22m�2 +

257

360
32m�4

�
B2m�2

2m� 2

�
197

180

62m�4

2m� 2

�
B2m�2

�1
6

�
+ B2m�2

�1
3

��

+
1

54

62m�4

2m� 3

�
25B2m�3

�1
6

�
� 16B2m�3

�1
3

��

�
52m�3

2m� 3
B2m�3

�1
5

�
:

Proof. Let

F (T ) =
1

(1� T 2) (1� T 3) (1� T 6) (1� T 5)
:



178 M. Eie and K. F. Lai

By Lemma 3, we have for Re s > 4

ZF (s) =
X

n1;:::;n4�0
jnj>0

(2n1 + 3n2 + 6n3 + 5n4)
�s

=

1X
n1=1

1X
n2=1

1X
n3=1

1X
n4=1

(2n1 + 3n2 + 6n3 + 5n4)
�s

+

1X
n1=1

1X
n2=1

1X
n3=1

�
(2n1 + 3n2 + 6n3)

�s+(2n1+6n2+5n3)
�s

+(2n1+3n2+5n3)
�s+(3n1+6n2+5n3)

�s�

+

1X
n1=1

1X
n2=1

�
(2n1 + 3n2)

�s+(2n1 + 6n2)
�s+(2n1 + 5n2)

�s

+(3n1+6n2)
�s+(3n1+5n2)

�s+(6n1+5n2)
�s�

+ (2�s + 3�s + 6�s + 5�s) �(s) :

On the other hand, we decompose F (T ) into partial fractions

F (T ) =
1

180 (1� T )4
+

1

30 (1� T )3
+

1

48 (1 + T )2
+

1� T
4

5 (1� T 5)

+
19� 332T � 23T 2 � 54T 3 + 15T 4 + 144T 5

720 (1� T 6)

+
514 + 274T + 514T 2 + 514T 3 + 274T 4 + 514T 5

720 (1� T 6)2

=
1

1080

1X
k=0

(k + 1) (k + 2) (k + 3)T k +
1

60

1X
k=0

(k + 1) (k + 2)T k

+
1

48

1X
k=0

(�1)k(k + 1)T k +
1

5

1X
k=0

(1� T
4)T 5k

+
1

720

1X
k=0

(19� 332T � 23T 2 � 54T 3 + 15T 4 + 144T 5)T 6k

+
1

720

1X
k=0

(k + 1) (514 + 274T + 514T 2
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+ 514T 3 + 274T 4 + 514T 5)T 6k
:

So the corresponding zeta function is

ZF (s) =
1

1080
(�(s� 3) + 6 �(s� 2) + 11 �(s� 1) + 6 �(s))

+
1

60
(�(s� 2) + 3 �(s� 1) + 2 �(s))

+
1

48
((22�s � 1) �(s� 1) + (21�s � 1) �(s))

+
1

5

� 1X
k=1

(5 k)�s �
1X
k=0

(5 k + 4)�s
�

+
1

720

�
19

1X
k=1

(6 k)�s

�
1X
k=0

�
332 (6 k + 1)�s + 23 (6 k+ 2)�s

+54 (6 k+3)�s�15 (6 k+4)�s�144 (6 k+5)�s
��

+
1

720

�
514

1X
k=1

(6 k)�s

+

1X
k=0

(k + 1)
�
274 (6 k+ 1)�s + 514 (6 k + 2)�s

+ 514 (6 k+ 3)�s + 274 (6 k+ 4)�s

+ 514 (6 k+ 5)�s
��
:

Set s = 4 � 2m with m � 3, we get that ZF (4 � 2m) is equal to the

right hand side of our identity after an elementary calculation.

Consider ZF (s) as a sum of zeta functions associated with linear

forms, we have

ZF (4� 2m)

=
X
jpj=2m

(2m� 4)!

p1! p2! p3! p4!
Bp1

Bp2
Bp3

Bp4
2p1�1 3p2�1 6p3�1 5p4�1
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+
X

jpj=2m�1

(2m� 4)!

p1! p2! p3!
Bp1

Bp2
Bp3

�
�
2p1�1 3p2�1 5p3�1 + 2p1�1 3p2�1 6p3�1

+ 2p1�1 6p2�1 5p3�1 + 3p1�1 6p2�1 5p3�1
�

+
X

jpj=2m�2

(2m� 4)!

p1! p2!
Bp1

Bp2

�
�
2p1�1 3p2�1 + 2p1�1 6p2�1 + 2p1�1 5p2�1

+ 3p1�1 6p2�1 + 3p1�1 5p2�1 + 6p1�1 5p2�1
�
:

In the second summation, p = (p1; p2; p3) ranges over all non-negative

integers p1; p2; p3 such that p1 + p2 + p3 = 2m � 1. So at least one of

pj must be odd. But Bernoulli numbers of odd index are zero except

B1 = �1=2. Hence we have

X
jpj=2m�1

(2m� 4)!

p1! p2! p3!
Bp1

Bp2
Bp3

a
p1�1
1 a

p2�1
2 a

p3�1
3

= �
1

2

X
jpj=2m�2

(2m� 4)!

p1! p2!
Bp1

Bp2

�
�
a
p1�1
1 a

p2�1
2 + a

p1�1
1 a

p2�1
3 + a

p1�1
2 a

p2�1
3

�
:

Therefore, the second sum in the summation cancels the third sum.

Hence our identity follows.

Remark. Di�erent decompositions of F (T ) into partial fractions may

lead to di�erent expressions of ZF (s) in terms of �nite sums of Riemann

zeta functions and Hurwitz zeta functions. However, one can prove that

the resulting identities are the same by employing well known identities

such as

Bm(k �) = k
m�1

kX
j=1

Bm

�
� +

j

k

�
:

The formula in the next proposition is an analogue of Euler's iden-

tity.
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Proposition 5. For each positive integer n � 4, one has

n�2X
k=2

(2n� 2)!

(2 k � 2)! (2n� 2 k � 2)!

B2k

2 k

B2n�2k

2n� 2 k

=
�
�
B2n

2n

� (2n+ 1) (2n� 6)

6 (2n� 2) (2n� 3)
:

Proof. Let

F (T ) =
T
2

(1� T )4
:

Then for jT j < 1,

F (T ) =
1

3!

1X
k=0

(k + 1) (k + 2) (k + 3)T k+2 =
1

6

1X
m=0

(m3 �m)Tm
:

The corresponding zeta function ZF (s) is then

1

6
(�(s� 3)� �(s� 1)) :

Also we can express ZF (s) as a sum of zeta functions associated with

linear forms. By Lemma 3 we have

ZF (s) =

1X
n1=0

1X
n2=0

1X
n3=0

1X
n4=0

(n1 + n2 + n3 + n4 + 2)�s :

After a change of variables n1 + n2 + 1 = p1, n3 + n4 + 1 = p2 in the

summation we get

ZF (s) =

1X
p1=1

1X
p2=1

p1 p2 (p1 + p2)
�s
:

Set s = 4� 2n with n � 4. The identity

2n�4X
k=0

(2n� 4)!

k! (2n� k � 4)!

Bk+2

k + 2

B2n�k�2

2n� k � 2
+
�
�
B2n

2n

� 2

(2n� 2) (2n� 3)

=
1

6

�
�
B2n

2n
+
B2n�2

2n� 2

�
;
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follows from Proposition 1 and a simple calculation yields our assertion.

Remark. The identity of Proposition 5 appears in [7] as a consequence

of an identity among Eisenstein series. Similar identities follow from

di�erent consideration of generating functions. For example, if we con-

sider F (T ) = T
3
=(1� T )6, we get the following identity for n � 6,

X
p+q+r=n
p;q;r�2

(2n� 6)!

(2 p� 2)! (2 q � 2)! (2 r� 2)!

B2pB2q B2r

8 p q r

=
�
�
B2n

2n

�� 1

120
�

2n2 � 5n

(2n� 2) (2n� 3) (2n� 4) (2n� 5)

�

+
1

80

�
B2n�4

2n� 4

�
:

Proposition 6. For any integer n � 2

2nX
k=0

(2n)!

k! (2n� k)!
(�1)k Bk(u)B2n�k(u) = �(2n� 1)B2n :

Proof. Writing the fraction F (T ) = T=(1 � T )2 in two ways we get

the identity
1X
k=0

k T
k =

1X
n1=0

1X
n2=0

T
n1+n2+1 :

Hence for Re s > 2, we have

�(s� 1) =

1X
n1=0

1X
n2=0

(n1 + n2 + 1)�s

=

1X
n1=0

1X
n2=0

((n1 + �) + (n2 + 1� �))�s ; 0 < � < 1 :

This is just the function Z((1; 1); (�; 1� �); s) of Proposition 2.

Set s = 2� 2n, we get

2nX
k=0

(2n)!

k! (2n� k)!
Bk(�)B2n�k(1� �) = �(2n� 1)B2n :
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In light of the identity (cf. [14, p. 31])

B2n�k(1� �) = (�1)k B2n�k(�) ;

we have proved that the identity holds for 0 < u < 1.

However, as functions of variable u, both sides of the identity are

analytic functions of u. If it holds for 0 < u < 1, it must hold for all u.

Remark. In exactly the same way, we get the following identity

X
p+q+r=2n

(2n)!

p! q! r!
Bp(u)Bq(v)Br(w)

= (2n� 1) (2n� 2)B2n(u+ v + w)

+ (3� 2 (u+ v + w)) 2n (2n� 2)B2n�1(u+ v + w)

+ ((u+ v + w)2�3 (u+ v + w)+2) 2n (2n�1)B2n�2(u+ v + w) :

4. Identities in Ramanujan's notebooks.

In Chapter 14 of Ramanujan's notebooks II [1], there are many

interesting identities on Bernoulli numbers. We shall use here Cauchy's

formula for Taylor series coe�cients. First we prove a new identity

analogous to those of Ramanujan and then we make some remarks on

the proof of Ramanujan's identities by our method.

We quote the following classical result from [9]:

Lemma 7. Let f�g be a sequence of positive real numbers tending +1.

Suppose that the Dirichlet series

 (s) =
X
�>0

a� �
�s
;

converges for su�ciently large Re s. Let

f(t) =
X
�>0

a
��t
�

be the corresponding exponential series. If at t = 0, f(t) has an expan-

sion of the form X
n�n0

Cn t
n
; n0 being integer ;
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then

1)  (s) has a meromorphic continuation in the whole complex

plane, and

2)  (�m) = (�1)mm!Cm for each integer m � 0.

Proposition 8. For �, � > 0 with �� = �
2 and each positive integer

n,

n+1X
k=0

B2k

(2 k)!

B2n+2�2k

(2n+ 2� 2 k)!
(2 k � 1) (2n� 2 k + 1) (��)k �n+1�k

= (2n� 1) 2�1�2n �1�n
1X
k=1

csch2k�

k2n

+ 2�2n �2�n
1X
k=1

csch2k� cotanh k �

k2n�1

+ (2n� 1) 2�1�2n (��)1�n
1X
k=1

csch2k�

k2n

� 2�2n �2�n
1X
k=1

csch2k� cotanh k�

k2n�1
:

Proof. For any positive number ", consider the zeta function

Z"(s) =

1X
n1=1

1X
n2=1

n1n2

�p
� n1 +

�
"+

p
� i
�
n2

��s
; Re s > 4 :

By Proposition 1, Z"(s) has an analytic continuation and

Z"(2� 2n)

=

2n�2X
k=0

(2n� 2)!

k! (2n� 2� k)!

Bk+2

k + 2

B2n�k

2n� k

�p
�
�k�

"+
p
� i
�2n�2�k

+
��
"+

p
� i
�2n

�2
+

�
n�

"+
p
� i
�2
��

�
B2n+2

2n+ 2

� 1

2n (2n� 1)
:
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It follows that

I = lim
"!0

Z"(2� 2n)

=

n+1X
k=0

(2n� 2)!

(2 k)! (2n+ 2� 2 k)!
(2 k � 1) (2n� 2 k + 1)

�B2k B2n+2�2k (��)k�1 �n�k :

On the other hand, let

F"(t) =
� 1X
n1=1

n1e
�
p
�n1t

�� 1X
n2=1

n2 e
�("+

p
� i)n2t

�

=
e
(
p
�+"+i

p
�)t

(e
p
�t � 1)2 (e("+i

p
�)t � 1)2

and

F (t) = lim
"!0

F"(t) =
e
(
p
�+i
p
�)t

(e
p
�t � 1)2 (ei

p
�t � 1)2

:

Note that for Re s > 4,

Z"(s) �(s) =

Z 1
0

t
s�1

F"(t) dt :

It follows from Lemma 7 that

Z"(2� 2n) = (2n� 2)!
1

2�i

Z
jzj=�

z
1�2n

F"(z) dz ;

where 0 < � < 1 and the direction on the circle jzj = � is counterclock-

wise. As " �! 0, we get

I = (2n� 2)!
1

2�i

Z
jzj=�

z
1�2n

F (z) dz :

Let CN be the contour in the complex plane consisting of the rectangle

with vertices (2N + 1)(
p
� +

p
� i), (2N + 1)(

p
� �

p
� i), (2N +

1)(�
p
� �

p
� i), (2N + 1)(�

p
� +

p
� i) in counterclock direction.

Note that F (z) is bounded on the rectangle by a constant independent

of N . Thus we have

lim
N!1

Z
CN

z
1�2n

F (z) dz = 0 :
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This implies in particular that the sum of residues of z1�2nF (z) inside

CN approaches zero as N �! 1. Thus the residue at zero is equal to

the negative of the sum of residues elsewhere. It follows that

I = �(2n� 2)!
X
k 6=0

�
Residues of z1�2nF (z) at z = 2 k

p
� i; 2 k

p
�
	
:

Our assertion now follows .

Remark 1. When � = � = � and n is odd, we get

n+1X
k=0

B2k B2n+2�2k

(2 k)! (2n+ 2� 2 k)!
(2 k � 1) (2n+ 1� 2 k) (�1)k

= (2n� 1) (2�)�2n
1X
k=1

csch2k�

k2n
+ (2�)1�2n

1X
k=1

csch2k� cotanh k�

k2n�1
:

Remark 2. If we consider instead the zeta function

Z"(s) =

1X
n1=0

1X
n2=0

�p
� (n1+u)+

�
"+ i

p
�
�
(n2+ v)

��s
; Re s > 2 ;

with 0 < u, v � 1, we �nd that for all positive integers n

22n
n+1X
k=0

B2k(u)

(2 k)!

B2n�2k+2(v)

(2n� 2 k + 2)!
�
n�k+1 (��)k

= �
1

2
�
�n

1X
k=1

cos (2 k � v) (e2ku� + e
2k(1�u)�)

k2n+1 (e2k� � 1)

+
1

2
(��)�n

1X
k=1

cos (2 k �u) (e2kv� + e
2k(1�v)�)

k2n+1 (e2k� � 1)
:

Setting u = v = 1=2, we obtain the identity

�
�n

1X
k=1

(�1)k+1
csch (�k)

k2n+1
� (��)�n

1X
k=1

(�1)k+1
csch (� k)

k2n+1

= 22n+1
n+1X
k=0

(�1)k
B2k

�1
2

�
(2 k)!

B2n+2�2k

�1
2

�
(2n+ 2� 2 k)!

�
n+1�k

�
k
:
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As u, v approach 0, we get the identity

�
�n
�1
2
�(2n+1)+

1X
k=1

k
�2n�1

e2k� � 1

�
�(��)�n

�1
2
�(2n+1)+

1X
k=1

k
�2n�1

e2�k � 1

�

= �22n
n+1X
k=0

(�1)k
B2k

(2 k)!

B2n+2�2k

(2n+ 2� 2 k)!
�
n+1�k

�
k
;

with n a positive integer. The right hand side of the identity we ob-

tained is a constant multiple of

1

2�i

Z
jzj=�

e
�(
p
�u+i

p
�v)z

dz

z2n+1 (1� e�
p
�z) (1� e�i

p
�z)

:

It is zero if n < �1. This yields the identity ([1, Chapter 14, p. 261])

�
n

1X
k=1

k
2n�1

e2�k � 1
�(��)n

1X
k=1

k
2n�1

e2�k � 1
= (�n�(��)n)

B2n

4n
; n > 1 ;

if we let u, v approach zero.

Remark 3. For each rational function F (T ) of the form

P (T )

(1� Tm1) � � � (1� Tmr )
;

where degP (T ) < m1+� � �+mr. The possible poles of F (e
�z) lie in the

imaginary axis of the complex plane. By a direct veri�cation, we can

�nd a sequence of contours CN (N = 1; 2; : : : ) such that the following

conditions hold:

1) CN is the rectangle with vertices xN+i yN , xN�i yN , �xn+i yN ,
�xN � i yN , xN > 0, yN > 0 with direction counterclockwise,

2) limN!1 xN = limN!1 yN = +1,

3) CN does not pass through any pole of F (e�z), and

4) maxz2CN
jF (e�z)j is bounded by a constant independent of N .

It follows that for any positive integer n,

lim
N!1

1

2�i

Z
CN

z
�(n+1)

F (e�z) dz = 0 :
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This also implies that the residue of z�(n+1)F (e�z) at 0 is equal to

the negative of the sum of residues of z�(n+1)F (e�z) at z = 2k�i=mj,

k 2 Z, k 6= 0, j = 1; : : : ; r. Note that the former is a constant multiple

of ZF (�n) while the latter is an in�nite series in general. This produces
an identity between Bernoulli numbers and sums of in�nite series. Here

we give two examples.

I) For positive integers m and N with N � 3,

1X
n=1

n6�0 (mod N)

cotan
�
n�

N

�
n2m+1

=
(�1)m+1(2�)2m+1

N (2m+ 1)!

N�2X
j=1

(N � j � 1)B2m+1

�
j

N

�
:

II) For positive integer m and even integer N � 3,

1X
n=1

n6�N=2 (mod N)

tan
�
n�

N

�
n2m+1

=
(�1)m(2�)2m+1

N (2m+ 1)!

NX
j=1

(�1)j (N � j � 1)B2m+1

�
j

N

�
:

5. Generalizations to several variables.

It is possible to extend our arguments to the cases when F (T ) is a

particular type of rational functions of several variables.

Suppose that �j = (�j1; : : : ; �jn), j = 1; : : : ; r are n-tuples of

non-negative integers with j�jj = �j1 + � � � + �jn > 0 and P (T ) =

P (T1; : : : ; Tn) is a polynomial in n variables T1; : : : ; Tn with degP (T ) <

j�1j+ � � �+ j�rj. We use the notation

T
� =

nY
j=1

T
�j

j
; if � = (�1; : : : ; �n) :

Consider the rational function F (T ) of the form

F (T ) =
P (T )

(1� T�1) � � � (1� T�r )

=
P (T1; : : : ; Tn)

(1� T
�11

1 � � �T�1n
n ) � � � (1� T

�r1

1 � � �T�rn
n )

:
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For jT1j < 1; : : : ; jTnj < 1, F (T ) has a power series expansion

1X
j�j=0

a(�)T � =

1X
j�j=0

a(�)T
�1

1 � � �T �n
n

:

For su�ciently large Re s, the zeta function associated with F (T ) is

given by

ZF (s) =

1X
�1=1

� � �
1X

�n=1

a(�) (�1�2 � � ��n)�s :

Another expression for ZF (s) as a sum of zeta functions associated with

linear forms was given by Eie in [2]. This leads to an identity in zeta

functions. Using the special values at negative integers, we obtain a

family of Bernoulli identities. Here we give an example to illustrate the

general procedure.

Consider the rational function

F (T ) =
1

(1� T1 T2) (1� T1 T
2
2 )

:

For jT1j < 1 and jT2j < 1, we have

F (T ) =

1X
n1=0

1X
n2=0

(T1 T2)
n1(T1 T

2
2 )

n2 =

1X
n1=0

1X
n2=0

T
n1+n2
1 T

n1+2n2
2 :

It follows for Re s > 1,

ZF (s) =

1X
n1=1

1X
n2=1

((n1 + n2) (n1 + 2n2))
�s +

1X
n1=1

n
�2s
1 +

1X
n2=1

(2n22)
�s

=

1X
n1=1

1X
n2=1

((n1 + n2) (n1 + 2n2))
�s + (1 + 2�s) �(2 s) :

On the other hand, as a rational function of T2, we have the following
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decomposition of F (T ) into partial fraction

F (T ) =
1

(1� T1) (1� T1 T
2
2 )

+
T1 T2

(1� T1) (1� T1 T
2
2 )

�
T1

(1� T1) (1� T1 T2)

=

1X
n1=0

1X
n2=0

T
n1+n2
1 T

2n2
2 +

1X
n1=0

1X
n2=0

T
n1+n2+1
1 T

2n2+1
2

�
1X

n1=0

1X
n2=0

T
n1+n2+1
1 T

n2
2 :

Consequently we get another expression for ZF (s) as

ZF (s) =

1X
n1=0

1X
n2=1

(n1 + n2)
�s (2n2)

�s

+

1X
n1=0

1X
n2=0

(n1 + n2 + 1)�s (2n2 + 1)�s

�
1X

n1=0

1X
n2=1

(n1 + n2 + 1)�s n�s2

= (2�s � 1)

1X
n1=1

1X
n2=1

(n1 + n2)
�s
n
�s
2 + 2�s �(2 s)

+ 2�s
1X

n1=0

1X
n2=0

��
n1 +

1

2

�
+
�
n2 +

1

2

���s�
n2 +

1

2

��s

=
1

2
(2�s � 1) (�2(s)� �(2 s)) + 2�s �(2 s)

+ 2�s
1X

n1=0

1X
n2=0

��
n1 +

1

2

�
+
�
n2 +

1

2

���s�
n2 +

1

2

��s
:

Here we use the identity

�(s)2 =

1X
m=1

1X
n=1

(mn)�s
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=

1X
m=1

1X
n=m+1

(mn)�s +

1X
n=1

1X
m=n+1

(mn)�s + �(2 s)

= 2

1X
n1=1

1X
n2=1

(n1 + n2)
�s
n
�s
2 + �(2 s) :

Now it remains to evaluate the zeta functions at negative integers. We

need the following proposition from Eie [3].

Proposition 9. Let Q = a x
2 + b x y + c y

2 with a, b, c > 0 and

D = b
2 � 4 a c > 0. Suppose that

ZQ(s) =

1X
n1=1

1X
n2=1

(a n21 + b n1 n2 + c n
2
2)
�s
; Re s > 1 :

Then ZQ(s) has an analytic continuation and its special value at each

negative integer s = �m (m = 1; 2; : : : ) is given by

ZQ(�m) =
X

p+q+r=m

m!

p! q! r!
a
p
b
q
c
r
B2p+q+1

2 p+ q + 1

B2r+q+1

2 r + q + 1

+
�
�
B2m+2

2m+ 2

��Z �b=(2a)
0

(a x2 + b x+ c)m dx

+

Z �b=(2c)
0

(a+ b y + c y
2)m dy

�
:

Proposition 10. Suppose that

Z(s) =

1X
n1=0

1X
n2=0

(n1 + n2 + 2 �)�s (n2 + �)�s ; � > 0; Re s > 2 :

Then Z(s) has an analytic continuation and its special value at the

negative integer s = �m (m = 1; 2; : : : ) is given by

m+1X
k=1

m!

(m+ 1� k)! k! (2m+ 2� k)
Bk(�)B2m+2�k(�)

+
� (�1)m (m!)2

2 (2m+ 2)!
+

1

2 (m+ 1)2

�
B2m+2(�) :
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Proof. For Re s > 2, we have

Z(s) (�(s))2

=

1X
n1=0

1X
n2=0

Z 1
0

Z 1
0

(t1 t2)
s�1

e
�(n1+n2+2�)t1 e�(n2+�)t2 dt1 dt2

=

Z 1
0

Z 1
0

(t1 t2)
s�1

1X
n1=0

1X
n2=0

e
�(n1+n2+2�)t1 e�(n2+�)t2 dt1 dt2

=

Z 1
0

Z 1
0

(t1 t2)
s�1 e

(1��)t1+t2 e(1��)t1

(et1+t2 � 1) (et1 � 1)
dt1 dt2

=

Z 1
0

t
2s�1

e
(1��)t

et � 1
dt

Z 1

0

(u (1� u))s�1 e(1��)tu

etu � 1
du :

Rewrite the above formula as

Z(s) �(s) =

Z 1
0

t
2s�3 t e

(1��)t

et � 1
dt

1

�(s)

Z 1

0

(u (1� u))s�1
e
(1��)tu

etu � 1
du :

It follows from a standard process as given in the proof of the main

theorem in [3] that

Z(�m) =
(�1)mm!

2

2m+2X
�=0

B2m+2��(1� �)B�(1� �)

(2m+ 2� �)! �!
F�(�m) ;

where

F�(s) =
1

�(s)

Z 1

0

(u (1� u))s�1 u��1 du =
�(s+ � � 1)

�(2 s+ � � 1)
:

An elementary calculation shows that

F�(�m) =

8>><
>>:

m! ; if � = 2m+ 2 ;

2 (�1)m
(2m+ 1� �)!

(m+ 1� �)!
; if 0 � � � m+ 1 ;

0 ; if m+ 2 � � � 2m+ 1 :

Hence our assertion follows.
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Using the identity

1X
n1=1

1X
n2=1

((n1 + n2) (n1 + 2n2))
�s + (1 + 2�s) �(2 s)

=
1

2
(2�s � 1) (�2(s)� �(2 s)) + 2�s �(2 s)

+ 2�s
1X

n1=0

1X
n2=0

��
n1 +

1

2

�
+
�
n2 +

1

2

���s�
n2 +

1

2

��s

and propositions 9 and 10, we get the following Bernoulli identity

X
p+q+r=m

m! 3q 2r

p! q! r!

B2p+q+1

2 p+ q + 1

B2r+q+1

2 r + q + 1

+
��B2m+2

2m+ 2

�� Z �3=2
0

(x2 + 3x+ 2)m dx

+

Z �3=4
0

(1 + 3 y + 2 y2)m dy
�

=
1

2
(2m � 1)

�
Bm+1

m+ 1

�2

+ 2m�1
� (�1)m (m!)2

(2m+ 2)!
+

1

(m+ 1)2

�
B2m+2

�1
2

�

+ 2m
[(m+1)=2]X

k=1

m!

(m+ 1� 2 k)! (2 k)! (2m+ 2� 2 k)

�B2k

�1
2

�
B2m+2�2k

�1
2

�
:

Remark 1. As shown above, the consideration of cases of several

variables leads to zeta functions with products of linear forms. Though

we have no general formula to evaluate their special values at negative

integers, it is possible to calculate these values case by case.

Remark 2. It is possible to further extend our arguments in this

section to the cases that

F (T ) =
P (T )

(1� T�1) � � � (1� T�r )
;
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with P (T ) not necessarily a polynomial and �1; : : : ; �r are not necessar-

ily n-tuples of non-negative integers. Indeed, we only need the following

considerations.

I) P (T ) is a �nite complex linear conbination of T
�1

1 � � �T �n
n

with

Re �j � 0.

II) For all 1 � j � r, �j = (�j1; : : : ; �jn) with �ji = 0 or Re

�ji > 0, but �j 6= 0.

Under the second condition, for 0 � Tj < 1, we have the expansion

P (T ) =

1X
m1=0

� � �
1X

mr=0

P (T )Tm1�1+���+mr�r

=

1X
m1=0

� � �
1X

mr=0

P (T )

nY
j=1

T
m1�j1+���+mr�jr

j
:

Hence it is easy to write down ZF (s) as a sum of zeta functions associ-

ated with products of n linear forms. By employing the same arguments

as in Proposition 8 we obtain more identities. As an example we con-

sider the function

F (T ) =
T
(u
p
�+v("+i

p
�))

(1� T
p
�) (1� T "+i

p
�)

;

where " > 0, 0 < u, v < 1 and �, � > 0 with �� = �
2. Calculating

the residues and separating the real and imaginary parts we obtain the

following known (cf. [1, volume II, p. 276]) identity

22m
m+1X
k=0

B2n�2k+2(u)B2k(v)

(2n� 2 k + 2)! (2 k)!
�
m+1�k (��)k

= �
1

2
�
�m

1X
k=1

cos (2 k � v) (e2ku� + e
2k(1�u)�)

k2m+1 (e2k� � 1)

+
1

2
(��)m

1X
k=1

cos (2 k � u) (e2kv� + e
2k(1�v)�)

k2m+1 (e2k� � 1)
:
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Part II

Minking Eie

Throughout the rest of the paper, we use the following notations:

p is an odd prime number, m;n are integers such that p � 1 is not a

divisor of m, N is a positive integer or zero.

6. An identity for zeta functions.

We apply the method of Part I to establish an identity for zeta

functions.

Proposition 11. For any prime number p and complex number s with

Re s > 1, one has

(1� p
�s) �(s) = p

�(N+1)s
X

(j;p)=1

1�j<pN+1

�

�
s;

j

pN+1

�
:

Proof. Consider the zeta function ZF (s) associated with the rational

function

F (T ) =
1

1� T
�

1

1� T p
:

It is easy to see that for Re s > 1

ZF (s) =

1X
k=1

k
�s �

1X
k=1

(k p)�s = (1� p
�s) �(s) :
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On the other hand, we have for any nonegative integer N ,

F (T ) =
T � T

p

(1� T ) (1� T p)

=
T + T

2 + � � �+ T
p�1

1� T p

=
(T + T

2 + � � �+ T
p�1) (1 + T

p + T
2p + � � �+ T

p(pN�1))�
1� T

p
N+1 �

=
X

(j;p)=1

1�j<pN+1

1X
k=0

T
j+kpN+1

:

It follows that for Re s > 1,

ZF (s) = p
�(N+1)s

X
(j;p)=1

1�j<pN+1

�

�
s;

j

pN+1

�
:

Note that ZF (s) is determined by F (T ) uniquely through the integral

formula

ZF (s) �(s) =

Z 1
0

t
s�1

F (e�t) dt ; Re s > 1 ;

where �(s) is the classical gamma function. Thus our identity follows.

As a consequence, we have the following.

Proposition 12. Suppose m is a positive even integer and p is an odd

prime with p� 1 not a divisor of m. Then

(1� p
m�1)

Bm

m
� C0(m) + C1(m) (mod pN+1) ;

where

Cl(m) =
1

m

X
(j;p)=1

1�j<pN+1

j
m�l

�
m

l

�
Bl p

(N+1)(l�1)
; 0 � l � m:
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Proof. We begin with the identity in Proposition 11. Both the Rie-

mann zeta function �(s) and Hurwitz zeta functions

�

�
s;

j

pN+1

�
; j = 1; : : : ; pN+1

;

have analytic continuations in the whole complex plane. So that the

identity I) is true for all s. In particular, we can set s = 1�m in the

identity to yield

(1� p
m�1)

Bm

m
=

1

m

X
(j;p)=1

1�j<pN+1

p
(N+1)(m�1)

Bm

�
j

pN+1

�

=
1

m

X
(j;p)=1

1�j<pN+1

mX
l=0

�
m

l

�
Bl j

m�l
p
(N+1)(l�1)

=

mX
l=0

Cl(m) :

Note that the exponent of p occurs in l! is not greater than

l

p
+

l

p2
+ � � �+

l

pl
+ � � � =

l

p� 1
�
l

2
:

Also pBl is p-integral for all l and

Cl(m) = (m� 1) � � � (m� l+ 1)
X

(j;p)=1

1�j<pN+1

j
m�l 1

l!
(pBl) p

(N+1)(l�1)�1
:

Thus Cl(m) � 0 (mod pN+1) provides that

�
l

2
+ (N + 1) (l� 1)� 1 � N + 1 :

This is equivalent to

(N + 1) (l� 2) �
l

2
+ 1 :
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But N is a nonnegative integer, the inequality holds provides that

l � 2 �
l

2
+ 1 :

This is equivalent to l � 6. Thus it follows

(1� p
m�1)

Bm

m
�

5X
l=0

Cl(m) (mod pN+1)

� C0(m) + C1(m) + C2(m) + C4(m) (mod pN+1) :

Next we prove

C2(m) � 0 (mod pN+1)

and

C4(m) � 0 (mod pN+1) :

Note that

C2(m) =
m� 1

2
B2

X
(j;p)=1

j
m�2

p
N+1 =

m� 1

12
p
N+1

X
(j;p)=1

j
m�2

:

If p 6= 3, then
m� 1

12
p
N+1

;

is p-integral and divisible by pN+1. However the case p = 3 is impossible

under the assumption that p� 1 is not a divisor of m. This proves that

C2(m) � 0 (mod pN+1) :

Now consider the case l = 4,

C4(m) =
(m� 1) (m� 2) (m� 3)

24
B4

X
(j;p)=1

j
m�4

p
3N+3

= �
(m� 1) (m� 2) (m� 3)

720
p
3N+3

X
(j;p)=1

j
m�4

= �
(m� 1) (m� 2) (m� 3)

24 32 5
p
3N+3

X
(j;p)=1

j
m�4

:
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Obviously C4(m) is p-integral and divisible by pN+1 for any odd prime

p. Hence we can drop the last two terms in our congruence relation and

it completes our proof.

7. Congruence relations of C0(m).

Recall that for 0 � l � m,

Cl(m) =
1

m

X
(j;p)=1

1�j<pN+1

j
m�l

�
m

l

�
Bl p

(N+1)(l�1)
:

As shown in Proposition 12, Kummer's congruences are equivalent to

C0(m) + C1(m) � C0(n) + C1(n) (mod pN+1) :

However

C1(m) = �
1

2

X
(j;p)=1

1�j<pN+1

j
m�1

:

So it is easy to see that if m � n (mod (p� 1)pN ), then

C1(m) � C1(n) (mod pN+1) ;

since

j
m�1 � j

n�1 (mod pN+1) ;

for all integer j relative prime to p. Consequently, Kummer's congru-

ences are equivalent to

p
�(N+1)

m

X
(j;p)=1

1�j<pN+1

j
m �

p
�(N+1)

n

X
(j;p)=1

1�j<pN+1

j
n (mod pN+1) :

To simplify the notation we write

X
(j;p)=1
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for X
(j;p)=1

1�j<pN+1

:

Our proof that

C0(m) � C0(n) (mod pN+1) ;

employs the classical theorems of Fermat ([6, Theorems 71, 88]).

Proposition 13. Suppose that m, n are positive even integers and p

is an odd prome with p� 1 not a divisor of m. Then

C0(m) � C0(n) (mod pN+1) ;

if m � n (mod (p� 1) pN ).

Proof. By the fundamental theorem of �nite abelian group ([11]), we

can decompose the multiplicative group G = (Z=pN+1Z)� into a direct

product

G0

�Y
i=1

Gi ;

where G0 is a cyclic group of order p � 1 and Gi (i = 1; : : : ; �) is a

cyclic group of order pei with

e1 + � � �+ e� = N :

Such a decomposition is possible since Z=pN+1Z contains Z=pZ as a

sub�eld and the multiplicative group (Z=pZ)� is a cyclic group of order

p� 1 ([8]).

Suppose that g; g1; : : : ; g� are generators of G0; G1; : : : ; G�; respec-

tively. It follows

C0(m) =
p
�(N+1)

m

X
(j;p)=1

j
m

=
p
�(N+1)

m
(1+gm+� � �+gm(p�2))

�Y
i=1

(1+gm
i
+� � �+gm(pei�1)

i
) :

Note that gm 6= 1 since p� 1 is not a divisor of m. So

1 + g
m + � � �+ g

m(p�2) =
g
(p�1)m � 1

gm � 1
:
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For each 1 � i � �, if gm
i
= 1, then we automatically have

1 + g
m

i
+ � � �+ g

m(pei�1)
i

= p
ei :

If gm
i
6= 1, we have

1 + g
m

i + � � �+ g
m(pei�1)
i

=
g
mp

ei

i
� 1

gm
i
� 1

:

But

g
mp

ei

i
� 1 (mod pei) :

Consequently the sum

1 + g
m

i + � � �+ g
m(pei�1)
i

;

always has the divisor pei .

With a possible permutation in the indices, we suppose that gm
i
= 1

for 1 � i < q and gm
i
6= 1 for q � i � �. Then we rewrite C0(m) as

C0(m) =
p
�(N+1)

m

g
m(p�1) � 1

gm � 1

q�1Y
i=1

p
ei

�Y
i=q

g
mp

ei

i
� 1

gm
i
� 1

:

Suppose that gp�1 = 1 + k p, then it is a direct veri�cation that

(gm(p�1) � 1)=(mp) is p integral and

1

mp
(gm(p�1) � 1) � k (mod p) :

It follows

1

mp
(gm(p�1) � 1) �

1

n p
(gn(p�1) � 1) (mod p) :

Also gm�1 and gm
i
�1 (i = q; : : : ; �) are invertible elements of Z=pN+1Z

and

g
m � 1 � g

n � 1 (mod pN+1) ;

g
m

i
� 1 � g

n

i
� 1 (mod pN+1) :
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So that

(gm � 1)�1 � (gn � 1)�1 (mod pN+1) ;

(gm
i
� 1)�1 � (gn

i
� 1)�1 (mod pN+1) :

Multiply all these congruences together, we get

C0(m) � C0(n) (mod pN+1) :

8. von Staudt's Theorem.

Our proof of Proposition 13 is analogous to the proof of von

Staudt's Theorem in [2, p. 384]. Indeed we are able to give another

proof of von Staudt's Theorem by the identity (II) with N = 0. In other

words, we are able to kill two birds with one stone.

Proposition 14 (von Staudt's Theorem). Suppose that m is a positive

even integer and p is an odd prime. Then

a) Bm is p-integral if p� 1 is not a divisor of m,

b) if p� 1 is a divisor of m, then pBm is p-integral and

pBm � �1 (mod p) :

Proof. We begin with the identity (II) with N = 0.

(1� p
m�1)

Bm

m
=

1

m

p�1X
j=1

mX
l=0

�
m

l

�
Bl j

m�l
p
l�1

:

Multiply both sides by m, we get

(1� p
m�1)Bm =

p�1X
j=1

mX
l=0

�
m

l

�
Bl j

m�l
p
l�1

=

p�1X
j=1

m�1X
l=0

�
m

l

�
Bl j

m�l
p
l�1 + p

m�1 (p� 1)Bm :
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It follows

(1� p
m)Bm =

p�1X
j=1

m�1X
l=0

�
m

l

�
Bl j

m�l
p
l�1

:

Now we shall prove our assertion by induction on m.

Suppose that pBl is p-integral for all 1 � l < m� 1. Then

�
m

l

�
Bl p

l�1 =

�
m

l

�
(pBl) p

l�2

is p-integral provide that l � 2. Hence we have

(1�pm)Bm�
1

p

p�1X
j=1

j
m�

m

2

p�1X
j=1

j
m�1+

m (m� 1)

12
p

p�1X
j=1

j
m�2 (mod p) :

Note that p 6= 2 or 3, so that the third term on the right hand side is also

p-integral and divisible by p. So we can drop it in our consideration.

If (p � 1) is a divisor of m, then jm = 1 for all 1 � j � p � 1. It

follows

(1� p
m)Bm �

p� 1

p
�
m

2

p�1X
j=1

j
m�1 (mod p) :

Thus pBm is p-integral and

pBm � �1 (mod p) :

On the other hand, if p� 1 is not a divisor of m, we choose an element

g of order p� 1 in (Z=pZ)�. Then

(1� p
m)Bm �

1

p

p�2X
j=0

g
mj �

m

2

p�1X
j=1

g
(m�1)j (mod p)

=
1

p

g
(p�1)m � 1

gm � 1
�
m

2

p�1X
j=1

g
(m�1)j (mod p) :

Suppose that gp�1 = 1 + �p. Then

g
(p�1)m � 1 +m�p (mod p2) :

Thus
1

p

g
(p�1)m � 1

gm � 1
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is p-integral. This proves that Bm is p-integral.

9. A slight generalization of Kummer's congruences.

Here we reformulate Kummer's congruences in a general form.

Theorem 15. Suppose that m;n are positive even integers and k is

a positive integer such that p � 1 is not a divisor of m for all prime

divisor p of k. Then

Bm

m

Y
pjk

(1� p
m�1) �

Bn

n

Y
pjk

(1� p
n�1) (mod k) ;

if m � n (mod '(k)), here ' is the Euler '-function.

Proof. Suppose that

k =

�Y
i=1

p
Ni+1
i

;

with p1; : : : ; p� are distinct prime numbers and N1; : : : ; N� are non-

negative integers.

Consider the zeta function

�k(s) =
X

(n;k)=1
n�1

n
�s
; Re s > 1 :

�k(s) has the Euler productY
pjk

(1� p
�s) �(s) :

As usual, �k(s) has its analytic continuation and its special value at

s = 1�m is given by

�k(1�m) = �
Bm

m

Y
pjk

(1� p
m�1) :

On the other hand, �k(s) is the zeta function associated with the ratio-

nal function

F (T ) =
1

1� T
�

�X
i=1

1

1� T pi
+
X
1�i
l��

1

1� T pipl
+ � � �+ (�1)�

1

1� T p1���p�
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by the well known inclusion-exclusion principle. Also for jT j < 1, F (T )

has the power series expansion

F (T ) =
X

(j;k)=1
1�j<k

1X
l=0

T
j+lk

:

Thus it follows

�k(s) = k
�s

X
(j;p)=1
1�j<k

�

�
s;
j

k

�

and hence

�k(1�m)=�
k
m�1

m

X
(j;k)=1
1�j<k

Bm

�
j

k

�
=�

1

m

X
(j;k)=1
1�j<k

mX
l=0

�
m

l

�
j
m�l

Bl k
l�1

:

Set

Cl(m) =
1

m

X
(j;k)=1
1�j<k

�
m

l

�
j
m�l

Bl k
l�1

:

Note that for each 1 � i � �

Cl(m) �
1

mp
Ni+1
i

X
(j;k)=1

1�j<pNi+1

�
m

l

�
j
m�l

Blk
l�1 (mod pNi+1

i
) :

By our proof Proposition 2, we have for l � 2,

Cl(m) � 0 (mod pNi+1
i

) ; i = 1; : : : ; � :

By Chinese remainder's theorem, we get for l � 2.

Cl(m) � 0 (mod k) :

This implies

Bm

m

Y
pjk

(1� p
m�1) �

1

mk

X
(j;k)=1
1�j<k

j
m �

1

2

X
(j;k)=1
1�j<k

j
m�1 (mod k) :
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Consequently our assertion is equivalent to prove

1

mk

X
(j;k)=1
1�j<k

j
m �

1

n k

X
(j;k)=1
1�j<k

j
n (mod k) :

But it follows from the fact that

1

mk

X
(j;k)=1
1�j<k

j
m �

p
�(Ni+1)
i

m

X
(j;k)=1

1�j<pNi+1

j
m (mod pNi+1)

and our previous identity

p
�(Ni+1)
i

m

X
(j;k)=1

1�j<pNi+1

j
m �

p
�(Ni+1)
i

n

X
(j;k)=1

1�j<pNi+1

j
n (mod pNi+1) ;

for all 1 � i � �.

10. p-adic interpolation.

Let p be a prime number. Zp and Qp are the ring of p-adic integers

and the �eld of p-adic numbers, respectively. 
p is the algebra com-

pletion of Qp . For a �xed positive integer k, we let Xk be the inverse

projective limit of Z=k pN Z, i.e.

Xk = lim
 �

Z=k pN Z ;

where the map from Z=k pM Z to Z=k pN Z for M � N is the reduction

modulo k pN . Denote by a+ k p
N Zp the set of x in Xk which map to

a in Z=k pN Z under the natural projection map from Xk to Z=k pN Z.

Fix a r-th root of unity " with r relative prime to k. Also suppose

that " is not a pN -th root of unity for any N . De�ne

�"(a+ k p
N Zp) =

"
a

1� "kp
N

and

�(a+ k p
N Zp) =

X
"
r=1
"6=1

�"(a+ k p
N Zp) :
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The above p-adic measure was given in [6] and it is also known as

Mazure measure.

Note that

Xk =
[

0�a<k

(a+ kZp)

is a disjoint union of k topological spaces isomorphic to Zp. Also we

have

a+ k p
N Zp =

[
0�b<p

((a+ b k p
N ) + k p

N+1 Zp) :

The above is a disjoint union of p compact open sets. It is easy to verify

directly that

�(a+ k p
N Z) =

p�1X
b=0

�((a+ b k p
N ) + k p

N+1 Zp) :

For any continuous function f : Xk �! 
p, we de�ne

Z
Xk

f(x) d�(x) = lim
N�!1

X
0�a<k pN

f(a)�(a+ k p
N Zp) :

Consider the integration of the exponential function etx and follow the

general procedure of [6], we obtain the following.

Proposition 16. For any positive integers m and k, we have

Z
Xk

x
m�1

d�(x) = (1� r
m)

Bm

m
:

Proposition 17. Let X�
k
be elements of Xk which map onto (Z=kZ)�,

the invertible elements of Z=kZ. Then for any positive integer m,

Z
X�

k

x
m�1

d�(x) = (1� r
m)

Bm

m

Y
pjk

(1� p
m�1) :

Proof. By the inclusion-exclusion principle, we decompose the inte-

gration into the following:

Z
X�

k

=

Z
Xk

�
X
pijk

Z
piXk

+
X
pipj jk

Z
pipjXk

+ � � �+ (�1)�
Z
p1���p�Xk

:
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Here p1; : : : ; p� are distinct prime divisors of k. To prove the proposi-

tion, it su�ces to prove thatZ
�Xk

x
m�1

d�(x) = (1� r
m)�m�1

Bm

m
;

for any integer � which is a prime divisor or a product of distinct prime

divisors of k.

Again we consider the integration of etx,Z
�Xk

e
tx
d�"(x) = lim

N!1
(1� "

kp
N

)�1
X

0�b<kpN=�

(" et)�b

= lim
N!1

(1� "
kp

N

)�1 (1� (" et)kp
N

) (1� "
�
e
�t)�1

= (1� "
�
e
�t)�1 :

Since r is relative prime to �, the mapping " to "� causes a permutation

among r-th roots of unity. Hence

Z
�Xk

e
tx
d�(x) =

r � (1 + e
�t + � � �+ e

(r�1)�t)

1� er�t

=
r

1� er�t
�

1

1� e�t

=

1X
m=1

(1� r
m)Bm(� t)

m�1

m!
:

By comparing the coe�cients of t, we get our assertion.

Now we are ready to given another proof of the theorem in Section

9.

Proof of Theorem 15. For any element x in (Z=kZ)�, we have the

congruence relation

x
m�1 � x

n�1 (mod k) ;

since m � n is a multiple of '(k). Hence for any prime divisor p of k,

with the p-adic measure �(x) de�ned on Xk, we haveZ
X�

k

x
m�1

d�(x) �
Z
X�

k

x
n�1

d�(x) (mod p�) ;
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where � = �p(k) is the highest power of p dividing k. On the other

hand, we have rm � 1 2 (Z=kZ)� since rm � 1 2 (Z=p�Z)� for any

prime divisor p of k. Also we have

r
m � 1 � r

n � 1 (mod k) ;

since (r; n) = 1 and m � n (mod '(k)). Hence

(1� r
m)�1

Z
X�

k

x
m�1

d�(x) � (1� r
n)�1

Z
X�

k

x
n�1

d�(x) (mod p�) :

This is equivalent to

Bm

m

Y
pjk

(1� p
m�1) �

Bn

n

Y
pjk

(1� p
n�1) (mod p�) :

Thus it follows

Bm

m

Y
pjk

(1� p
m�1) �

Bn

n

Y
pjk

(1� p
n�1) (mod k) :

11. Congruences among Bernoulli polynomials.

We are able to apply our previous arguments in Section 6 to derive

congruences among Bernoulli polynomials or in general, the special val-

ues at negative integers of zeta functions associated with rational func-

tions as considered before. Here we give a simple example to illustrate

the general procedure.

Proposition 18. For a �xed prime odd number p (p � 5) and any

positive integer k relative prime to p. Suppose that �, � are positive

integers such that 1 � �, � < k and � + j0 n = � p for some positive

integer j0 with 1 � j0 � p � 1. Then for all complex number s with

Re s > 1,

�

�
s;
�

k

�
� p
�s
�

�
s;
�

k

�
= (pN+1)�s

X
1�j�kpN+1

(j;p)=1
j�� (mod k)

�

�
s;

j

k pN+1

�
:
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Proof. Consider the zeta function ZF (s) associated with the rational

function

F (T ) =
T
�

1� T k
:

Obviously, we have

ZF (s) = k
�s
�

�
s;
�

k

�
:

Also from the identity

F (T ) =
T
�(1 + T

k + � � �+ T
(p�1)k)

1� T kp
;

we conclude that

ZF (s) = (k p)�s
p�1X
j=0

�

�
s;
�+ j k

k p

�

= (k p)�s�
�
s;
�

k

�
+ (k p)�s

p�1X
j=0
j 6=j0

�

�
s;
�+ j k

k p

�
:

On the other hand, we also have

F (T ) =
T
� (1 + T

k + � � �+ T
(p�1)k) (1 + T

kp + � � �+ T
kp(pN�1))

1� T kpN+1
:

Thus it follows also that

k
�s
�

�
s;
�

k

�
� (k p)�s �

�
s;
�

k

�
= (k p)�s

p�1X
j=0
j 6=j0

�

�
s;
�+ j k

k p

�

= (k pN+1)�s
X

1�j<kpN+1

(j;p)=1
j�� (mod k)

�

�
s;

j

k pN+1

�
:

Multiply the factor k�s on both sides, we get our assertion.
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To simplify notation we write

X
j�� (mod k)

for X
1�j<kpN+1

(j;p)=1
j�� (mod k)

:

Proposition 19. Under the assumptions of the previous proposition

and suppose that m;n are positive integers such that p � 1 is not a

divisor of m. Then

1

m

�
Bm

�
�

k

�
� p

m�1
Bm

�
�

k

��

�
1

n

�
Bn

�
�

k

�
� p

n�1
Bm

�
�

k

��
(mod pN+1) ;

if m � n (mod (p� 1) pN ).

Proof. Set s = 1�m in the identity of Proposition 7, we get

1

m

�
Bm

�
�

k

�
� p

m�1
Bm

�
�

k

��

=
1

m

X
j�� (mod k)

mX
l=0

�
m

l

�
Bl j

m�l
p
(N+1)(l�1)

k
l�m

:

With exact the same argument as in Proposition 2, we get

1

m

�
Bm

�
�

k

�
� p

m�1
Bm

�
�

k

��

�
1

mkm pN+1

X
j�� (mod k)

j
m �

1

2

X
j�� (mod k)

j
m�1

k
1�m (mod pN+1) :

Thus our congruences are equivalent to

1

mkm pN+1

X
j�� (mod k)

j
m �

1

n kn pN+1

X
j�� (mod k)

j
n (mod pN+1) :
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Note that k is relative prime to p, so the mapping x 7�! k x + � is an

one to one mapping from Z=pN+1Z into Z=pN+1Z. Thus we have

X
j�� (mod k)

j
m �

X
1�j<pN+1

(j;p)=1

j
m (mod pN+1) :

Hence our congruences follow by the same argument as in Proposition

13.

Remark. It is possible to construct another p-adic measure on the

space Zp so that the integration of the monomial xm�1 over Z�
p
yields a

sum of Bernoulli polynomials. Hence, we have the p-adic interpolation

of Kummer's congruences on Bernoulli polynomials. We'll discuss this

in another paper.
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