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Complete interpolating sequences

for Paley-Wiener spaces and

Muckenhoupt’s (A,) condition

Yurii I. Lyubarskii and Kristian Seip

Abstract. We describe the complete interpolating sequences for the
Paley-Wiener spaces L2 (1 < p < 00) in terms of Muckenhoupt’s (A,)
condition. For p = 2, this description coincides with those given by
Pavlov [9], Nikol’skii [8], and Minkin [7] of the unconditional bases
of complex exponentials in L?(—n, 7). While the techniques of these
authors are linked to the Hilbert space geometry of L2, our method of
proof is based on turning the problem into one about boundedness of
the Hilbert transform in certain weighted LP spaces of functions and
sequences.

1. Introduction.

In this paper we study interpolation in the Paley-Wiener spaces LP
(1 < p < 00), which consist of all entire functions of exponential type at
most m whose restrictions to the real line are in LP. The Paley-Wiener
spaces are Banach spaces when endowed with the natural LP (R)-norms.
We want to describe those sequences A = {A;}, A = & + ¢, in the
complex plane C for which the interpolation problem

(1) fOx) = ax,
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has a unique solution f € LP for every sequence {ay} satisfying

(2) > law PP (1 4 frg]) < oo
k

Such sequences A are termed complete interpolating sequences for L.
A classical example of a complete interpolating sequence for LP (1 <
p < 00) is the sequence of integers Z.

In the case p = 2 this problem is equivalent to that of describing
all unconditional bases in L?(—, ) of the form {exp (i Axt)}. We refer
to [4] for an account of this problem, including a detailed survey of
its history. The unconditional basis problem was solved by Pavlov [9]
under the additional restriction sup |[Im A\gx| < oo and by Nikol’skii [8],
assuming only inf Im A\, > —oo. Finally, Minkin [7] solved the problem
without any a priori assumption on A.

The methods of [4], [7], [8], [9] are of a geometric nature and make
crucial use of the Hilbert space structure of L2. In this paper, we shall
give a simpler proof, which works equally well for all p, 1 < p < o0.
Incidentally, our method of proof shows that for p = ccor 0 < p <1
there are no complete interpolating sequences. (See also [2], which
“explains” this curious phenomenon). The core of our approach is a
careful study of properties of the Hilbert transform in weighted spaces
of functions and its discrete version in weighted spaces of sequences.
More precisely, we turn our problem into one about boundedness of the
discrete Hilbert transform in a weighted space, defined on a subsequence
of A located in a horizontal strip, where the weight is expressed in terms
of certain infinite products involving all the points of A.

As an application of our main theorem, we prove a counterpart of
the well-known Kadets 1/4 theorem.

2. Preliminary observations and statement of the main result.

Suppose that A is a complete interpolating sequence for L2. By
a classical theorem of Plancherel and Pdlya (see [6, Lecture 7, Theo-
rem 4)),

(3) /_oo [f(@+ia)P de < el ],

for every function f € LP and each a € R, and so exp (i7z) f(2)
belongs to the Hardy space H? of CI := {z € C : Imz > a} for each



COMPLETE INTERPOLATING SEQUENCES FOR PALEY-WIENER SPACES 363

a € R. Hence the sequence A N C} is HP-interpolating in C} (see [5,
Chapter 9]). Similarly, A N C, is HP-interpolating in the half-plane
C, :={z€C:Imz < a}. So the sequences ANC} and ANC, satisfy
the Carleson condition in the corresponding half-planes, i.e.,

i — A
inf ‘ iz ‘ >0,
ImA;>a H AJ—Ak—Z2G
Imk);;g?a
J
(4) N — A
inf ] ‘ i Ak ‘ > 0.
ImAj;<a )\J—)\k—7,2a
Im)\k<a
K

As a side remark, we mention that this condition may be expressed in
different ways. For instance, by manipulating the Carleson condition
in much the same way as in [1, p. 288-290] (we omit the details), we
obtain the following equivalent condition

(5) sup 3 (1 + ;) (1 + |mw])

Trivially, the inequalities in (4) imply that for each a € R

Aji— A

inf i~ ‘ >0,
ImA;>a AJ — )\k —12a
ImAr >a

k#j

. Aji— A

inf 7 k. ‘ > 0.
ImAj;<a AJ — )\k —12a
Im )\k<a

ki

Choosing respectively a = —1 and a = 1 in these two inequalities, we

deduce that for some € > 0 the disks
KMX)={z: |z— M| <10e (1 + |mx|)}

are pairwise disjoint. (We fix this value of £ until the end of the paper.)
Moreover, (4) implies that the measure

pE =D Mk,

Nk >0
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(0 is the unit point measure at A) is a Carleson measure, i.e.,

/ P dut < C 1 f i
Cc+

for each function f in the Hardy space H*(C"), s > 1 (see [1, p. 63]).
Similarly, A generates a Carleson measure in the lower half-plane as
well as in each of the half-planes C .

If A is a complete interpolating sequence for L? then

/
©) e < (T rare i arm)) ™, rerz.
k

Indeed, since the interpolation problem (1) has a solution f € L? when-
ever (2) holds, the operator

T f — {f(M) e ™™ (14 |ng))'/?}

is bounded from L? onto [P. By the uniqueness of the solution of the
interpolation problem, we have ker T' = {0}, and it suffices to apply the
Banach theorem on inverse operators.

Given z € R, r > 0, let Q(z,r) be the square with center at z,
side length 2r, and sides parallel to the coordinate axes. We say that
a sequence A C C is relatively dense if there exists ry > 0 such that

ANQ(z,r0) # @ for each z € R.
If A is a complete interpolating sequence for LP, (6) forces A to be

relatively dense: if this is not the case and there exist sequences {z;} C
R and r; = oo such that Q(z;,7;) N A = &, then, setting

.
sin o (z — ;)

fi(z) = ——,

Z — .’L‘j
we find that

S LR P el (14 ) — 0, j — oo,
k

while || f;||z» is independent of j.



COMPLETE INTERPOLATING SEQUENCES FOR PALEY-WIENER SPACES 365

Suppose that A is a complete interpolating sequence for L?. Take
r > 1o, where rg is as above, define

Qj:Q(4Tj7r)7 jEZ,

and pick a sequence I' = {y;} C A such that v; € Q;. Let ¥ = {o;} be
another sequence with |y; — ;| = €. Suppose w = {w;} is a positive
weight sequence. Associate with it the weighted space [F, consisting of
all sequences a = {ay} satisfying

lall?, , = lax/Pwg < co.
k

We are interested in the boundedness of the discrete Hilbert operator
Hr,x defined by the relation

ag

M)
05 — Yk

Hrs:a={a;} — {(Hrza);},  (Hrza);=)
k

on [P . The following definitions are needed. We say that w satisfies the
discrete (Ap) condition if

k+n k+n

INES SEBIES ST o

kEZ = =
nS0 j=k+1 1=k+1

This condition is analogous to the classical continuous (A,) condition
for a positive weight v(z) > 0, z € R,

(7) Sl}p (ﬁ/jvdaz) (%/Iv_l/(p_l) da:)p_l <00,

where I ranges over all intervals in R (see [3]). Recall that the latter
condition is necessary and sufficient for boundedness of the classical
Hilbert operator

Hofos 1) = L [ LT g,

X t—T1

on the weighted space of functions LP(RR;v) consisting of all functions
f satisfying

1z, = / P olt) di < oo.
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We shall need the following lemma.

Lemma 1. If Hr s is bounded from IF to IP, then w satisfies the
discrete (Ap) condition.

PrOOF. We adopt the proof for the continuous case (see [3]). Let k € Z
and n > 0 be given. For convenience, put Iy = {k+1,k+2,...,k+n},
I, ={k+2n+1,k+2n+2,...,k + 3n}. Suppose that a positive
sequence a is supported on I;. Then, for j € I, we have

= Z ap ,
where C' is independent of k and n. Putting a; = 1, we get thus

ijgCZwl,

J€I2 leIl

(8) 'Hr 2(1 | > Zal

\U —%|2

and by symmetry

(9) Z’U}szwl.

jEIl l612

Here and in what follows the sign < means that the ratio of the two
sides lies between two positive constants. Now we put a; = wj* for
l € I and a; = 0 otherwise, and get from (8) and the boundedness of

Hr =
(Sw) (X ur) <03 wie.

J€E€I lel mel,

Finally, we put o = —1/(p—1) and invoke (9), and the lemma is proved.

The converse of Lemma 1 is also true, but we will not need that
fact. Note also that the boundedness of the operator Hr x is indepen-
dent of the choice of sequence X, provided the condition |y; — 0| = ¢
holds.

Let A be a complete interpolating sequence for L2. It may be that
0 € A, in which case we assume that A\g = 0. If the function f, € L?
solves the interpolation problem fo(Ag) = ok, k € Z, then fo(u) # 0
for u € C\ A, since otherwise the function (z — Xg) (z — p) "1 fo(2)
belongs to L? and vanishes on A, contradicting the uniqueness of the
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solution of the interpolation problem (1). Since fo € L2, fy belongs to
the Cartwright class C (see [6, Lecture 15]) and, in particular, the limit

(10) S(z)=(z=X) lim ] (1_ i)

R—o0 Ak

exists and defines the generating function of the sequence A. Besides,
the solution f; € LP of the interpolation problem fi(A,) = 0 has
the form

S(2)

We may now formulate our main theorem.

Theorem 1. A = {\;}, where A\, = i+, is a complete interpolating
sequence for LY if and only if the following three conditions hold.

i) The sequences AN CT and AN C™ satisfy the Carleson condi-
tion in Ct and C respectively, i.e. (4) holds with a = 0, and also
infk?gj ‘)\k - )\J| > 0.

ii) The limit S(z) in (10) exists and represents an entire function
of exponential type m.

ili) There exists a relatively dense subsequence I' = {~;} C A such
that the sequence {|S’(v;)|P} satisfies the discrete (A,) condition.

Defining F(z) = |S(z)|/dist(z,A) (z € R), we may replace state-
ment iii) by the following:

iii’) FP(z) (z € R) satisfies the (continuous) (Ap) condition.

Note that that condition i) is equivalent to the statement that, for
each a € R, the sequences A N CF satisfy the Carleson condition (4).
Another, more compact way of expressing i), is given by (5).

3. Proof of Theorem 1: necessity.

We have already proved the necessity of i) and ii), and also the
existence of a relatively dense sequence I' = {v;} C A. We prove now
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that iii) is necessary as well. Let ¢ be as above. Then, for every j, we
can find a point ¢; with |o; — ;| = € and

[S(5)| = €S (v)]-

This follows from the fact that S(z) (z — ;)™ # 0 for [z — ;| < ¢,
hence

min_[S(2) (z =) 7| < [8'() < max |S(=) (= — 7).

lz2—;|=¢ [z2—v;|=¢

Set ¥ = {o;}. The Plancherel-Pélya inequality (see [6, Lecture 20])
yields

(12) D <Clflf., felk.
i

Now let a = {a;} be a finite sequence. By (11), the unique solution of
the interpolation problem f(v;) = a;, f(Ax) =0, Ay € I' has the form

z)

V)

_ aj S(
f(Z)_Zj:S/(,Yj) (Z—
By (6) and (12), we have

Y If@)P < CY ol

Now, by our particular choice of the sequence ¥, we obtain iii) by
observing that Lemma 1 applies with w; = [S'(~y;)[?.
To prove that iii) implies iii’), we need the following lemma.

Lemma 2. Suppose x € R and Rey; < x < Re~;11. Then there exists
an a = o(z) € [0,1] such that

/ Nla| Q! . l-a _ |S(ZC)|
S/ ()11 () 7 = s

uniformly with respect to x € R.

In fact, assuming this lemma to hold, we see that (7) with v = FP
follows from iii) and the inequality t*s'=® <t +s,t,5 >0, a € [0, 1].
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PrROOF OF LEMMA 2. We assume that € [Re~;, Rev;41] and, for
simplicity, & A. Set A(z) = {A € A: |\ —x| < 30r}. (Here r is the
number used for constructing I'.) For « € [0, 1] we have

_ S")IS (i) [P
' |S(z)| dist(z, A)~1

o )

: )

B ( 77 A @\ s} k

- xr

I (1-5)
AEA(z)
1 (1 —7"“) T dist(z, A
"7‘+1 H Y ‘ ist(a, A)
ITE XA @)\ {741}

1 i = Akl — )\k|1_a)
AkEAA()
= II; (z) Iy(x) .
Writing

1Y — Yi+1]
11, (z) =
1) = (e = o o — 11])

I Ak — 73] = Y41t
‘.’E — Ak|

b

A €EA@)\{j,vi+1}

we see that II;(x) < 1 uniformly with respect to « € [0, 1].
To estimate II5(z), we begin by writing

Vi =TTy, Vil = T i+ iy

The values x; and z;4; depend on x and also satisfy the inequalities
0 <z, zj4+1 < 8r. Recall also that |y;| < r for all j. We may then
write

9 _ (z =25 — &) + (y; —m)*)®
11 (z — &) + i

(& + i — &)+ (Y — )P
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. _2$j($—£k)+2yjnk+0(1) @
- G Goari )

. (1 4 2% (@ = &) = 2y + O (U)l“‘
(= &)% + g
Choosing @ = a(z) so that az; — (1 — @) zj41 =0, i.e.,

Tj+1

a=-——
(zj +xj41)

we find that

[k | 2
K <
e <Cl Ak%ZA(m) (&= &) +771%) =7

|7k |
<K E
- ZGXP(QM%A(IE) ( — &k)? +7h%)

for some ¢y, co, K1, Ko independent of z. By Carleson’s condition (5),
the sum is uniformly bounded, and we are done.
4. Proof of Theorem 1: sufficiency.

We will now prove that i), ii), iii’) imply that A is a complete

interpolating sequence.
To begin with, note that

(13) / Fa)y —L <

and

(14) /(F(x))p dr = 0.

The first relation follows from the fact that [(F'(z))P|H f(z)|P dz < oo
for each bounded finite function f; it suffices to take f = X[0.1]" The
second is a direct consequence of [3, Lemma 2]. (Alternatively, we may

apply the operator H to an appropriate d-sequence {d,(z)}.)
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First, we check that A is a uniqueness set. To this end, we need to
estimate |S(z)| from below.

Lemma 3. Let as above € > 0 be such that the disks
K\g):={z:|z— M| <10e (1 + |ne|)}
are parrwise disjoint. Then

(15) [S(2)] > C(1+]|z|)~Y/P emItm=l for dist(z,A) > e (1+|Im z|) .

PROOF OF LEMMA 3. Put A’ = AN{z: [Imz| < ¢} and consider the
auxiliary function

Z2—A+2i5¢
S](Z) = S(Z) H ? .
AEA’
It is plain that
(16) 151(2)| < 15(2)], Imz| > 3¢,

and, besides, iii’) implies that |S;(x)|P satisfies the (A,) condition be-
cause |S1(z)| < F(x).

The function e**S1(z)/(z + 4) belongs to HP of the upper half-
plane, as follows from (13), ii), and the Plancherel-Pélya theorem (3).
Hence we have the following inner-outer factorization of S

(17) S1(2) = e"*G(2) B1(2), Imz > 0.

Here the Blaschke product B; corresponds to the Carleson sequence
(ANC*t)\ A’ and, in particular,

(18) |B1(z)| > ¢ >0, for dist(z, A) > ¢ [Im z|.
Moreover, G is an outer function and |G(z)[P satisfies the (A4,) con-

dition. Therefore, |G(x)|™? is an (A,) weight (here 1/p +1/q = 1),
G(z) (1 + |z|)~! € LY(R), and thus

1 1 1 dt
m:%/(t‘l'i)G(t)t—z’ Imz>0.
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It follows that

1
|G(2)]

(19) <C 1+ |27,

Combining relations (16)-(19), we obtain (15) for Imz > 3e. The
estimate for Im z < —3 ¢ is similar, and to fill the gap —3¢e < Imz < 3¢,
we may repeat the construction, taking another horizontal line instead

of R.

By (14) and the fact that |Sq(z)|P is an (A,) weight, we have

/|sl(a:)\pdx - .

Applying the Plancherel-Pélya theorem (3) to the function f(z) =
S1(z 4+ ia), we therefore obtain

/|Sl(a:—|-ia)|pd:c:oo, a €R.

Hence, by (16),
/|S(x+i)\pd:c= oC .

By a second application of the Plancherel-Pélya theorem, we find that

(20) / S(@)Pdz = oo.

We are now in position to prove the uniqueness. Indeed, if f € L2
and f(A) =0, A € A, then ¢(z) = f(z)/S(z) is an entire function of
exponential type 0. By (15) and the pointwise bound

F(R)] < Cp | fllee(1+ Im z|) ~1/P gmltm=l

it follows that |¢(z)| is uniformly bounded for z satisfying dist(z, A) >
e(|lmz| + 1). By the classical Phragmén-Lindel6f theorem, we get
¢(z) = C, which is incompatible with (20), unless C = 0.

It remains only to check that we can actually solve the interpolation
problem (1) for each sequence a = {ay} satisfying (2). It suffices to
consider a finite sequence a and bound the norm of the solution by a
constant times the left-hand side of (2). After doing so, we can apply
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a limit procedure. If a is a finite sequence, then, by (13), the unique
solution of the interpolation problem (1) has the form

_ a S(z)
(21) f(z) = Xk: S’(ik) (z = Ap) :

We split the sum (21) into two parts, corresponding to points lying
in Ct UR and in C~, respectively. We may estimate the norm of
each sum separately, so let us assume that all the A\ corresponding to
ar # 0 are in CT UR. Clearly, we may estimate the LP integral along
Im (z) = —1/2. Let us, however, for conventional reasons, estimate it
along R and assume all the points A, satisfy np > 1/2. Now let

Writing S(z) = B(z) e"*"*G(z), where G is an outer function in Ct, we
observe that iii’) is equivalent to |G(z)|P satisfying the (A4,) condition.
Since

— 4T A A — s
S' () = G(Ag) — e R
(k) (k)z(l‘l"flk)J]‘;[kAk—)\j-I-i
the Carleson condition (4) implies

e"rnk

15" (M) = [G(AR)| o

Thus it is enough to consider the LP boundedness of

- ag e "™ G(x)

flz) = TG0 -
By duality,
- ag e " [ G(x) h(z)
17y = sup / d
T bl G)Jr o= A |
heH
< ak ke "™ (HGR) (A )‘
S Sup_ G()\k) k
e
e\ 1P HGh)(Ag) |2 \ 14
S||:|1|1p1(z|ak|pnke ) (Z‘ﬁ m)
q= k k

heH1?
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Since |G(x)|~? satisfies the (A4) condition, G is an outer function

in Ct, and h € HY, | k|, < 1, we have (HGh)(z)/G(z) € H?, and

|(HGh)(2)/G(z)|lq < C. Since ), mx 6x, is a Carleson measure, the

last sum is uniformly bounded, and we get the desired conclusion.
The sum corresponding to points in C~ is treated similarly.

5. A stability result.

We will now show how Theorem 1 can be used to obtain a result
similar to the Kadets 1/4 theorem. The same technique implies more
sophisticated stability results for L? | similar to the theorems of Avdonin
and Katsnelson for L2; see [4] for the latter results.

For 1 < p < oo we denote by ¢ the conjugate exponent, 1/p+1/q =
1, and put

p’ = max{p,q}.

We may now prove:

Theorem 2. Suppose {0k }rez is a sequence of real numbers, and put
Me =k+0k, k€ Z. If |0k| <d <1/(2p) for every k, then A = { A }kez
is a complete interpolating sequence for LY . If merely |0x| < 1/(2p") for
every k, then A = {Ar}rez is not necessarily a complete interpolating
sequence for LP.

Note that for p = 2 this is precisely the Kadets theorem (see [4]).

PrROOF OF THEOREM 2. We prove first that the inequality

1
10k| < 2—p’

is not sufficient. If §o = 1 and otherwise d; = sgn (k)d, —1 < 0 < 1,
standard estimates of infinite products yield

F(z) =< (1+[z)7.

For 1 < p < 2 we choose § = —1/(2q). Then

1 /m 1 /“c I 1
— FPdt| — F~4dt > C(log(1+ |z|)?
) (m 0 ) (log (1 + |z))
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and the (Ap) condition fails. We obtain the same conclusion if || <
1/(2q) and dj tends sufficiently fast to sgn (k)/(2q) as k tends to +oc.
If 2 < p < oo, we put § = —1/(2p), and argue similarly.

With A as required in the theorem, define

)‘Ot,k =k+ adg and A, = {)‘Ot,k}7

where « is a real number. Suppose that § < 1/2 and |a|d < 1/2, so
that the distance between any two distinct points of A, and likewise
the distance between any two distinct numbers of A, exceeds a certain
positive number. Then estimates of infinite products show that

(22) Fo(z) =< (F(2))*,

where Fy(x) = |Sq(x)|/dist(z, Ay) and S, is the generating function of
A,

Suppose first that 1 < p < 2. If d < 1/(2q), then qu/2 satisfies
the (Az) condition, according to the classical 1/4 theorem. By (22), it
means that F'9 satisfies the (A3) condition, which implies, by Holder’s
inequality, that FP satisfies the (A,) condition.

If 2 < p < 00, put @ = p/2 and argue similarly.
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