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The phase of
the Daubechies filters

Djalil Kateb and Pierre Gilles Lemarié-Rieusset

Abstract. We give the first term of the asymptotic development for
the phase of the N-th (minimum-phased) Daubechies filter as N goes
to +00. We obtain this result through the description of the complex
zeros of the associated polynomial of degree 2N + 1.

0. Introduction.

The Daubechies filters my(§) are defined in the following way [2]:
i) my (&) is a trigonometric polynomial of degree 2N + 1

2N+1

(1) my(€) = ) awpe ™
k=0

with real-valued coefficients an k.

ii) vV2mpy (&) and v/2 e =% Ty (E+7) are conjugate quadrature filters

(2) Imn (&) + my(E+7m)*=1.
iii) my (&) satisfies at 0 and =

(3) my(0) =1,
or

(4) 6—§pmN(7r):0, for p € {0,1,...,N}.
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246 D. KATEB AND P. G. LEMARIE-RIEUSSET

The importance of those filters is due to the following facts: the asso-
ciated wawvelet ¢ defined by

i) == () [T (5.
j=2

generates an orthonormal basis of L2(R) {27/2¢n (272 — k)} jez kez and
satisfies the cancellation properties

[arun@dz=0,  forpe oL N},

and has a support of minimal length among all orthonormal wavelets
satisfying (6).

Conditions (1) to (4) don’t define my in an unique way. As a
matter of fact, there is exactly 2{V+1/2 solutions my (where [z] is
the integer part of z). Indeed, conditions (1) to (4) determine only the
modulus of my

(7) imn (€)]? = Qn(cos€),
1+ X\ N LN+ k) (1-X\*
N > o [

We are going to check easily the following result on the roots of Qx.
Proposition 1. The roots of Qn are X = —1 with multiplicity N + 1
and N roots Xn 1, -+, XN N with multiplicity 1 such that

i) for1 <k <N,ReXni >0 and Xy nt1-k = XNk

ii) for 1 <k <[N/2],Im Xy > 0,

iii) if N is odd, XN,(N+1)/2 > 1.

With help of Proposition 1, we may easily describe the solutions
my of (1) to (4) Indeed, if XNJ{; = (zN,k + 1/ZN,k)/2 with |ZN,k| > 1,
then we have

[(N+1)/2]

(9) my@©) = ][ SN,k(ﬁ)(T
k=1
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where, for 1 < k < [N/2],

(7% — zni) (67 — ZN k)

SN,k(g) = |1 _ ZNk|2
1o (1 ) (1 —Znge ™)
— ZN.k € — ZN. k€
Sn(€) = ’ ’ .
or N,k(g) ‘1 _ ZN,k:|2
If N is odd,
e % — 2
SN,(N+1)/2(§) — N,(N+1)/2

1 —zn,(Nvt1)/2
(1) B
1—2zn(Nvt1)2€

or S 6 =

N,(N+1)/2(§) 1= Znn41)/2
The case where all the roots of My(z) (the polynomial such that
my(€) = My (e~ %)) are outside the unit disk is the minimum-phased
Daubechies filter

1+ e"f)NH ﬁ e — 2nk

(12) mn(©) = (—

1—2
P N.k

The aim of this paper is to describe the phase of the Daubechies filters
as N goes to +o00. Indeed, the modulus of my is described by (7) and
(8) and one easily checks that

—_

if [£] <

bl

T

(13) lim |my(§)| = if |¢] =

N—+oco 2 ’

s
, if — < ¢ <.
if o <lg<m

)
S ‘
N

The phase of mpy, on the other hand, is much more delicate to study:
it depends of course on the choice of the factors Sy j in (9), but even
for the case of minimum-phased filters we are not aware of any previous
results on the behaviour of the phase.

We are going to give an approximate value of zy j which allows
the determination of the phase of mpy. More precisely, if Z;,..., Zy are
N complex numbers such that for k € {1,...,N}, |Zx| # 1 and if

N

M7, Z0)(©) = [

k=1

e_ig—Zk
1-2;
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we define the phase w(Z1,...,Zn)(§) as the C*° real-valued function
such that w(0) = 0 and

—i€ _ VA
H(Zla . -a H ‘ 1 — Zk: : ‘ _Zw(ZI,“.,ZN)(g) .

This function is easily computed as

—18
(14) W(Z1,..., Zn) (¢ __1n1 ds).
Oklezs_ k

Theorem 1. Let Qn(X) be given by (8), Xn1,..., X~ n be its roots
which are not equal to —1 ordered by:

o for1 <k < [(N—I—l)/Q], ImXN’k >0 and XN,N+1—I<: = XN,k;

- <[ X vty /2]
and let zn i be defined by Xy = (2n gk +1/28k)/2 and |zn k| > 1.
For1 <k < N, we approzimate zn x by Zn 1 where:

l) fOT 1< k < [(N1/5)/LOgN]7 ZN,k =1— %/\/N7 where Y1572,
c s Vks -+ are the Toots of erfe(z) = 1 — (2//T) [y e=" ds, such that
Im~ > 0 and ordered by |v1| < |y2| < -+ < |v| < ...,

i) for [(NY®)/Log N] < k < [(N+1)/2], Znx = On g+ 0%k — 1,

where
(15.a) ImOny >0,

1 .
(15.b) 1-— 012\,’,C = (1 + N Log (21/2N7sin SON,k)) e~ 2Nk

and

8k —1

16 _
(16) PNEZ oN 16

111) for [(N-l— 1)/2] <k<N, ZN,k = 7N,N+1—k-

Then for any choice
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of the Daubechies filter my (where e = £1 and eny1- = €k), the
approzrimation

1+ e %\ N+1
) (2R, 28

(€)= (—

satisfies

(Log N)?

(A7) w(zNs - 2Nn)(€) = w(ZN s - 2NN (€] < Co—gs—

for all £ € R, where Cy doesn’t depend neither on N > 2 nor on £ nor
on the €y, ’s.

Thus, due to Theorem 1, we may give the phase of my with an
0 (1) precision! Of course, we need the knowledge of the roots of the
complementary error function; these roots are described in [3] and our
results give again the same estimates, as we shall see.

We may greatly simplify the approximating Zy ’s if we accept
to get a greater error. For instance, we may characterize easily the
minimum-phased filters with an O (v/N) error:

Theorem 2. Let

1+ e—i€>N+1

ma(€) = (~ M(zw,t, - 2nw) (€)

be the N -th minimum-phased Daubechies filter. Then the phase
w(zn1,---,2n8,n5)(§)

satisfies

(18)  |w(zn1,---2vN)(€) — Nw(€)| < CoVN,  forall € €R,

where Cy doesn’t depend on & nor on N and where

+oo

— sin £)2k+1
(19) () = 5 (Lia(~sing) ~ Lis(sing)) = — > % -
k=0
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The Lis function is the polylogarithm of order 2

1 1
:/ — Log du .
0o U 1—u

The function (Liz(z) — Liz(—2))/2 is known under the name of Legen-
dre’s x, function.
Theorem 2 will be proved by approximating my by

S| %

(20) Lip(z) = )

k=1

~ 1+e € \N+1 ~
my(§) = (T) 7(ZNnjs. . Znn)(€)
with
- . - 16k — 2
VA = \/ —i0N,k 1 —i0N,k ] - _
N,k e +\/ +e ) N,k W+8N—}—67T’

Then w(ZN,l, .. .,ZN,N)/N is identified with a Riemann sum for the
integral
1 4 1

—1 L
27 t — 08 \/e—i9+\/1+e—i9_e—i§

o = w(é).

This approximating Z ~.k is a simplified version of the approximating
Zn i of Theorem 1, obtained by neglecting the term

1
N Log2+\/2Nmsinpn i -

We will be also able to give a description of a family of almost linear-
phased Daubechies filters:

Theorem 3. Let

1+e % ) N+1

ma(€) = (~ TR 2R ©)

be the N-th Daubechies filter with N = 4 q and with the following choice

of eng: for 1 < p < q, eNap-3 = eNap =1 and engp2 = E4p—1 =
—1 (so that ey Nt1-k = €Nk). Then the phase w(zy; .-, 25w )(€)
satisfies:

EN,1 EN,N ]'
(21) w(2y 1 7""ZN,N)(£)_§N§ < Cy, forall £ € R,
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where Cy doesn’t depend on & nor on N.

We are now going to prove Theorem 1 (and obtain theorems 2 and 3
as corollaries). Of course, it amounts to give a precise description of the
roots Xy of Qn(X). If we neglect the term Log2 /2N7sin gy /N
in Zn, we obtain as a first approximation that the zyy are close
to the arc {|z — 1| = v/2, Rez > 0} (which can be parameterized as
{Ve=# + /1 +e=® —r < < 7}), or equivalently that the X  are
close to the half-lemniscate {|1 — X3 .| = 1,Re X 3, > 0}. This will be
obtained by representing @ n(X) as a Bernstein polynomial on [—1,1]
approximating the piecewise analytical function X[0.1]

(22) Qn(X) = 2§1 (2Nk+ 1)(1‘;X)k(1—2X)2N+1—k

k=N+1

(a formula pointed by many authors [1], [6], [11]). In that form, Qn(X)
corresponds to a Herrmann filter [4] and it is precisely the figure in
Herrmann’s paper representing the zy x’s for (Q2; which lead us to con-
jecture the behaviour of the zy 1 ’s.

A classical theorem of Kantorovitch [5], [7] on the behaviour of
Bernstein polynomials of piecewise analytical functions ensures that
QN (X) converges to 0 uniformly on any compact subset of the interior
of the half lemniscat {|1 — 22| < 1, Rez < 0} and to 1 uniformly on
any compact subset of {|1 — z%| < 1, Rez > 0}. We will use similar
tools to study Qn(X) outside of the convergence subsets.

Near the critical point X = 0, the approximation by points on
the lemniscat is no longer precise enough, and we will show that for
the small roots X g, —V/NX N,k is to be approximated by a root of
the complementary error function. Such an approximation occurs for
instance in the study of the (spurious) zeros of the Taylor polynomials
of the exponential function [12] and we will use quite similar tools to
get our description. The main difference, however, is maybe that we
are dealing with a divergent family of polynomials.

NoTAaTIONS. We will define as usually Logz and \/z as the reciprocal
functions of

z=Logwe{zeC:|Imz|<7}r—w=e*€{weC:w¢(—o0,0])},

z=ywe{z€C:Rez>0}—w=22c{weC:w¢g(—oc0,0]}.
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The paper will be organized in the following way:

@~ as a Bernstein polynomial and other preliminary results.
Small roots of Qn: first estimates.

Big roots of Qn: first estimates.

Big roots of (Qn: further estimates.

Small roots of QQn: further estimates.

The phase of a general Daubechies filter.

Minimum-phased Daubechies filters.

Almost linear-phased Daubechies filters.

Y

1. @n as a Bernstein polynomial and other preliminary re-
sults.

We begin by proving a first localization result:
Result 1. For N > 2 and t # -1, if Qn(t) =0 then |1 —¢ |< 1.

ProoF. This will be the only time where we use the Daubechies formula
(8) for Qn(X). This formula gives that if Qn(t) = 0 and t # —1, then

(23) Z%(N;:k)u—t)’“:o.

k=0
If we define ay, as ax = (V*)/2%, 0 < k < N, then we have obviously
0<ay<a; <---<any-1 = an, and we may apply a very classical
lemma of Enestrom, Kakeya and Hurwirtz (quoted by G. Pélya and
Szego [10, Exercise I11-22)):

Lemma 1. I[f0<ag<ai; <---<any_1=an and ifzgzoaksk =0
then |s| < 1.

PROOF OF THE LEMMA. If s > 0 then Zszo ars® > 0; if s & [0, +o0),

then
N

N
‘“0 + (ar - ak—l)sk‘ <ao+ ) (ax—apa) sl
k=1 k=1

thus if [s| > 1 (so that |s|* < [s|V*1) and s & [0, +00), we get

N N
‘(1 —5) Zaksk‘ > |s|VH (aN - Z(ak —ak-1) — ao) =0.
k=0

k=1
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Thus, we have shown that the roots t of Q) such that t # —1 are located
in the open disk of radius 1 and of center 1, and that the associated
values 1 — t2 are located in the interior of a cardioid.

From now until the end, we will use formula (22) instead of formula
(8) to represent . The main interest in the representation of Qy as
a Bernstein polynomial is that @y is easily differentiated: (22) gives

Lo = AT L0 ey,

(24) AN(NDZ 2

This expression can be easily related to the expression of Qn(cos&)
given by Y. Meyer ([8])

cosE (9N 4+ 1)1 1

an(eos) = [ BT -V
TEN+)T .

:/g NNz g Bme) e

We will use intensively formula (24) in the following. If ¢ is small, we
approximate Qn(t) by Qn(0) = 1/2 and obtain

(25) On(t) = %(14— %/0 (1—s3)N ds),

while for a bigger ¢ (with Ret > 0) we approximate Qn(t) by Qn(1) =1
and obtain

M/1(1—82)Nd8.

1

Stirling’s formula N! = (N/e)Nv27xN(1+1/(12N) + O (1/N?)) allows
one to simplify formulas (25) and (26)

o S =2V 7 (10 ()

Thus @Qn(t) = 0 may be rewritten as

9 VNt s2\ N VN 4N(N1)? 1
(28) 1+ﬁ/0 <1_N) ds=1-2" 0 o =0 (5)
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(29) \/N/t (1—32)Nds=2%:ﬁ+0(%>.

Formula (28) will be used for the small roots (sections 2 and 5) and
formula (29) for the big roots (sections 3 and 4).

We mention a further application of (24) (which will not be used
in the following): we may compute explicitly the generating series for
Qn(t) when Ret < 0:

Proposition 2. Assume that Ret < 0 and [(1 —t?)u| < 1. Then
1—1?

T—u(l—t2) (—t++/1—u(l—1t2)

PROOF. We differentiate 3" 1>, Qn(t) uV with respect to t. Then (24)
gives

DN | =

+oo
30) D Qnt)uN =
N=0

8 /<X N SR TN+ (1= 2)u)N
_(QQN(”“ >:J§§(4NN!) ! N!) )

(1—u(l-1%)7%2,

(NN

hence

o0 t
1 ds
QN t ’U,N =/ = .
P I e I
On the other hand, if we differentiate ¢/(1 — u (1 — t2))1/2, we get

0 t Cl-u(1-8) —tu 1-—u
a((l—u(l—ﬁ))l/z) (I —u(1—12)3/2  (1—wu(l—1t2))3/2"

Thus we have

= N 1 t
Nz::OQN(t)“ :2(1—u)((1—u(1—t2))1/2+1>
1 1—u(l—t%)—+2
S 2(1—w) (1 —u(l—2)2((1 —u(l—12)/2 —¢)
1 12
2 (l-u(l- )V —u(1-2) 2 —1)
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As a corollary, we get:
Result 2. Ift € C is such that |1 —t?| > 1, then

limsup |Qn (t)| = +o0.
N—+4o0

PrOOF. If Ret < 0, this is obvious by formula (30); the right-hand
term of equality (30) has 1/|1 —¢2| as its radius of convergence in u, so
that

limsup [Qn (8)[VN = |1 -]
N—o+4o0

If Ret > 0, then Qn(t) =1 — Qn(—t) so that again

limsup [Qn (£)[VY =1 - ¢%].
N—>+o0o

If Ret =0 and t # 0, then
1 [N [ SN
Qn(H)] ~ 52 ?/ (1+ )V dp — +00, as N — +o0.
0

A last (and direct) application of formula (24) is Proposition 1.

Result 3.
i) If t is a root of Qn(t) and t # —1, then t has multiplicity 1.
ii) If N is even, t = —1 is the unique real root of Qn .

iii) If N is odd, QN has only one other real oot TN,(N+1)/2 F — 1L,
and TN,(N+1)/2 > 1.

PROOF. By (24), we know that the only roots of dQy/dt are 1 and
—1, so i) is obvious. Moreover, if N is even, dQy/dt is non-negative
on R and thus ) is increasing: —1 is the unique real root of Qn. If
N is odd, then @y decreases on (—oo, —1], vanishes at —1, increases
between —1 and 1, and decreases again from the value 1 at ¢t = 1 to the
value —oo at ¢ = +00: @ has another real root zn (n11)/2 > 1.

Results 1 and 3 imply obviously Proposition 1.
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2. Small roots of Qn: first estimates.

In this section, we are going to prove the following result:

Result 4. Let g9 € (0,1/2) and K = [egLog N/(2w)]. Then, if N

is big enough, the number of roots t of Qn(t) such that Imt > 0

and |t| < y/2Kn/N is exactly K. Moreover, if we list those roots

as TN 1,-- -, TN,k With |Tn k| < |Tn k41| and fiz er € (eo,1/2), we have
1 1

€1) V(7= o
VN VN N

where y1,...,vk are the K first roots v of erfc(y) = 0 with Im~y > 0.

(31) ‘xN,k + 719‘ < C(eo,

PROOF. Assume that |t| < y/ay Log N/N for some fixed a; > 0. Then,
using formulas (25) and (27), we write

Qu(t) = <%+77N)(1+77§v+%/0mt (1-2)"as).

where ny, 0 are two constants (depending only on N) which are
O (1/N?). Now, if |u| < /a; Log N, we have

@ < o2 (Log N)? _

N SN o(1),

hence one may find Cy > 0 so that for N big enough (N > Ny where
Ny depends only on «aq)

e

Hence we get for fixed a; > 0 and for N > Ny(a)

2 ut , (Log N)?
< Cole™ | < Goot T

(Log N)/*

(32) ‘(1 + nN)_lQN(t) - erfc(—\/ﬁt)‘ <O e

2
for |t| < \/a; Log N/N, where C; depends only on «;.
Now, assume that  is such that Qx () = 0 or erfc(—v/N ) = 0
and that || < /a3 Log N/N; in every case we have

(Log N)5/2

lerfc(—VNO)| < Cy N
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We are going to show that for &y small enough, erfc(—v/N 0 + 2) is not
too small on |z| = dp. Indeed we have

2 z
lerfc(—V N 0 + z) — erfc(—V N 0)| = T‘ / e NE VN 05— g
m™Jo

1 2 2 1
>_ e N > N~
> 5 o= Tl 2 N,
provided that
1
z<min{2 ay Log N, },
2l < 1H08 8 Cyy/a1 Log N

where Cy = max|, <1 |(e” —1)/w|.

Thus, if |0 < \/asLog N/N, where ay < a; < 1/2, and if N is
big enough so that

Log N 1 Log N

< -
N VT8Co/aNTogN VU N

(6%

and

¢y v/ L8N ! 2/arLog N
VT g < 8Co/aTog N = -V orhoel,

we obtain that Qx(t) and erfc(—/Nt) have the same number of ze-
ros inside the open disk D(6, C1+/7 (Log N)®/2/N3/2=221) (by Rouché’s
theorem).

In order to conclude, we need some information on the zeros of
erfc(z). A theorem by Fettis, Cuslin and Cramer ([3]) gives a develop-
ment of 7

Thus if My is a fixed number in (—7/4,3m/4), the number of roots =y
of erfc(y) = 0 such that Im~y > 0 and |y| < /2km + M, is exactly k
when £k is large enough.
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Now we may prove Result 4. Let g < 1/2 and K =[goLog N/(27)].
For each root ¢t of Qn(s) such that |[Im¢| > 0 and |t| < /2K7/N <

/eoLog N/N there is a root # of erfc(—v/N s) such that

(Log N)5/2

0=t < OWT e

(where g < &1 < 1/2 and N > Ny(e1)). Then we have

Loe N 5/2
VN 0| < V2K + Civ/r (](\’[gTZl
T
<V2KTm+ —F—
- 16V2Km
< (2K+ %)7‘&'

provided that N > N3 (e1). But we know that there are exactly 2K roots
of erfc(—v/N s) inside the disk D(0, /(2K + 1/4)n/v/N). Conversely,
if # is a root of erfc(—v/N s) such that

[2KT (Log N)®/2 Log N
<y B = —2r 7 <L

there is a root t of @Qn(s) such that

(Log N)5/2

0—t] <Oy i

hence |t| < /2K 7/N; moreover for N > Na(e1) we have

(Log N)®/2 ™ 1
V2KT — o S VoK ——— 2K — =
AR ovarcs > V(2 g)m

so that we have again 2K roots of erfc(—/N s) such that

[2K T (Log N)®/2
0] < N Clﬁw :

Finally, we conclude by noticing that (33) shows us that if erfc(—v/N6;)
=0,7=12, 60, # 6 and |0;| < /(2K + 1/8)7/N then [6; — 0| >
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Co/VKN and [Im0;| > Cyy/K/N for some positive Cy which doesn’t
depend on K nor N; hence the balls

(Log N)®/2
D0 1V )

are disjoint and don’t meet the real axis (for NV large enough). Thus
(31) is proved, if we notice that

(Log N )®/2 1
Ni—zer S Ni-2e)

for e1 <€} < 1/2 and N large enough.

3. Big roots of Qn: first estimates.

In this section, we are going to devote our attention to formula
(26). A straigthforward application of (26) is the following one:

Result 5. For N large enough, ift#—1 and Qn(t)=0, then |[1—t2|>1.
ProoF. If Qn(t) = 0, then we have \/thl(l — )N ds = /7 (1+nn)

with nny = O (1/N?). Now, since Ret > 0 (due to Result 1), we may
write

1( 2)N -t N dw
1—s ds = / w ————
/t 0 2\/ 1—w

= (1 —tZ)N“/lAN A
o 2

VI—X1—-12)

We write Q =1 — 2. If || < 1 then we will prove that

inf [1-AQ> = [1-0).
A€[0,1] 2

This is obvious if Re2 < 0: we have |1 — AQ[ > 1 and [1 - Q| < 2.
IfReQ2>0,Q2=pe” (0< p<1, ¢ € (—7/2,7/2)), we distinguish
the case p < sing and p > sinp. If p < sin ¢, it is easily checked
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that |1 — AQ| > |1 — Q|. If p > singp, we have |1 — AQ| > sinp and
11— Q| < |1 - €| =2]sin(p/2)|; hence

|1—)\Q\2‘cos—‘|1—Q\>£\1—Q|

Thus, we have for Ret > 0 and |1 — 2| < 1

N+1 t| = VN

If [tV N| > 2//7, we get
' 1
‘\/N/ (1—52)Nds‘ < 5\/77,
¢

and thus Qn(t) # 0 (for N large enough so that |nn| < 1/2). If
VN |t| < 2/y/7, then t ~ —5/+/N for a root 7 of erfc(z) such that
lv| < 2/+/7; but the roots of erfc(z) satisfy 7/2 < |Argy| < 37/4 so
that (for N large enough) |Argt| > m/4 and t cannot lie inside the
lemniscate |1 — 2| < 1.

We may now enter the core of our computations. We are going to
give a precise description of [, tl(l — 52)N ds. Integration by parts gives
us

/1(1 2)N s (1 o tZ)N+1 1 (1 - 32)N+1 s
— 8 - @@ @ A
t 2WINTD) ), 2N D

_ (1 _t2)N-|-1 (1 —t2)N+2 1 )\N+1 d)\
T 2t(N+1) AN+1) /0 I A(1—¢2))32"

We then define 7(t) as

#]

f 1= A1-¢t3)"
Aér[hl‘ ( )|

(34) n(t) =

We have

O B A T (e
(35) /t (=" ds = v+ (1+2(N+2)t2 ()
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for Ret > 0 with

(36) lun ()] < n(t)>/2.

Of course, (35) is a good formula if pn(t) cannot explode. As a matter
of fact, we will show that in the neighbourhood of the roots of Qn(s)
we have |n(t)| < Cy where Cy doesn’t depend on N nor t; but we are
still far from being able to prove it! The only obvious estimations on
n are the following ones: if Ret? > 1, we have of course |n(t)| = [¢t?|,
while if Ret? < 1 and |1 — #?| > 1 we have

In(t)| = |sin (Arg (1 — 2))]

With help of formula (35) and a careful estimate of n(t) in (36), we are
going to prove:

Result 6. Let oy = (8k —1)7/(8N +6). Then for N large enough,
the roots N 1,...,xNn,N of QN such that xn i # —1, ordered by

o for1 <k < [(N-i— 1)/2], Rea:N,k >0 and TN,N+1-k = TNk

o lzna| <|znpe < <|znNt1)/2]

satisfy

‘-’EN,k - m ei(”/4—<PN,k)/2

(13T /4-30x,1/2)
— Log (2 2N7rsin<pN’k)‘

2N /2sin Nk

(37)

1 (1+Logk)? (1+LogN +1—k)?
< [
_C\/Nma.X{ k3/2 ) (N+]_—k)3/2 }’
where C' doesn’t depend on k nor N.

PROOF. Since oy Ni1-k = T — @Nk, it is enough to prove (37), for
1<k <[(N+1)/2], i.e. for the roots which lie in the upper half-plane.
The proof is decomposed in the following steps: one first proves that
Arg (1 — z%; ;) cannot be too small, so that we have a first control on
UN (TN E); then one gives through (35) a first estimate on ~,k and on
the related error; this gives us a more precise information on Arg (1 —
:E?V ) and thus we may conclude with our final estimate.
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Step 1. We want to estimate Arg (1 — z% ;). We fix 6y € (n/4,7/2)
so that the sector {z : 7/2 < |Argz| < 7 — 6y} contains no zero of
erfc(z) (remember that limg_, o Argyxy = 37/4). We now distinguish
the cases Argzy i € [0,6] and Argzn , €]6, w/2[. If Rel — m%\,’k <0,
we know that n(zn ) < |znk|? < 4. IfRel —va,k > 0and Argzy i €
[0, 7/4], then we see that [z |* < [tan Arg (1 — 23 )| (because w =
1 — a3, satisfies Rew € (0,1] and |w| > 1 so that |sin Argw| < [1 —
w| < |tan Argw|); moreover we have |z x|? < 4; thus if | tan (Arg (1 —
2% 1) < 4, then we have

| tan (Arg (1 — 23 )] S N k|2

- \/1+tan2(Arg (1—=a% ) TVIT

|sin (Arg (1 — 2} 1))

and 7(zn k) < V17. On the other hand, if |tan (Arg (1 — 23 ,))| > 4,
then we have |Arg (1 —z3; )| € [Argtan4, /2] and thus

. . 4 |-7:Nk; 2
sin (Arg (1 — z2 > sinArgtan4 = 2
| sin (Arg ( NE))| > g N TEIRiT

and n(zn k) < V17 again.
If Arg(zn ) € [7/4,00], we have

Im (1= 2y g)| = o] [sin2 Arg o il

so that
m (1 — % )| > [ovef2] sin200],

while

Im(1—=z 1

|sin Arg (1 — x?\,’k)\ = fm ( 5 v > - [Im (1 x%v,k)‘ 5
11— TN, 3
so that 5
<
n(@ng) < | sin 2 |

The difficult case is when 6y < Argzy, < 7/2 (as a matter of fact, we
will see in step 3 that this case never occurs when N is big enough!).
For the moment, we will show that we have necessarily for such an zn 1
(and provided N is large enough) the inequality

4 |cosbl
= 100 C2

Nz g =€,
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where C) is given by

02+ Log (1 —0?) le? — 1]
: , Sup }
o o<1 o]

Co = max{ sup
lo|<1/2

Indeed, let Ay > 0 be large enough so that for A > Ay, 34 cos (260)/4
(1 + A%/2) < 1/100 (remember that cos26, < 0), 4/(A?|cos26y|) <
1/100 and A eA” <05 (200)/4 < 1/100. If /N |z 4| > Ao and N |z x| <
€1, We write

Qn(zNE) = <1+O N2 \/7/ (1—sH)Nds

and thus

\QN(xNkl_lof‘/ (1—s% ds‘—%.

We write
1- 32)N _ e—NSQeN(SQ—LOg(l—S2)) ’

since |s| < y/e1/N /4, we have |s| < 1/2 for N large enough, thus

1
N (s> —Log (1 — < Co|N st < — |
[N (%~ Log (1 - 5*)| < ColN s < 55

thus
‘eN(s2—Log(1—82)) — 1| < CZ|Ns%|.

Thus, writing zx . = pn .k €PNk, we get
) , PN, s

zN k 2
QN (zNE)| > — 10 ‘/ e ? ds‘

\/_ka 4 1

2
_ P cos261\”c ds — =

N 2
Nz
1 [VNewe
> - —s ‘
<10 ‘/ e ds

3 (VNopni)®

10 N |cos20n x|
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VNpN.k 1
pe cos260n
. e : s\cosQGN,k|ds—§
0

1 \/N-TJN,k 9
> —‘/ e * ds‘
101/,

e NP cos (4 <mpN,k>4) 1
2V'N pn 10 | cos 2 6|

5

VNzN K
0

We have now to estimate e—%"ds. We write

VN(EN,k 2
/ e ° ds
0

10 New.e/2 —52e? 0Nk Now —s2e? 0Nk
= e"N:k ( e ds + e ds)
0 VNpn /2

= eigN’k (Il + IQ) .
We have |I;| < e~ NPk cos (26n.k)/4 ) /N /2, while

6_5262i6N’k VNonn /Npn . 6_82821‘9N1k
] VNonk/2 2 52e210N &
PNk VNpN,k/2

2 2310 2 23160 4
e~ Nok €Nk e~ Nk e N,k/ ,
= - — - — 13 .
—2VN py e?ne —/N py €26k

I = [—2 s 20N,k

We have

1
1 3
4(5 VN pN’k> | cos20n k|

3| <

\/ﬁpN,k 2
- / e cos29N,k2 S | cos 2 HN,k‘ ds
VNpn /2

6_Np?\’ﬂ’“ cos 20N i

1 3 )
4(5 \/NPN,k) |COS290|
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Thus we get
Qn(zn k)|
1 e_Np?V,k COs 291\{1];,
>
— 10 2\/NPN,k
4
{1-2 3Np?\,,k cos20n /4 _
< ¢ N piy | cos 26,
Cie
_ N 2 3Nph  cos 20N k/4 _ 0¢1
PNk € | cos 2 6|
_ 10\/NkaeNp?\]7k COS29N,k)
1 e~ NP,k 05 20N (1 2 1 1 1 10) o0
— 10 2\/NPN,I¢ 100 100 100 100 100 ’

which contradicts @Qn(zn k) = 0. Up to now, we have proved that if
argrn > 6o then either \/N|$Nk\ < Ap or Nlzyg/* > e1. But
if [zy x| < Ao/V/N and N is large enough, Result 4 ensures that
—VNzny is close to a zero of erfc(z). This is not possible for N
large enough since the distance between {z : 7/2 < |Argz| < m — 6y}
and {z : erfc(z) = 0} is positive.

Thus we must have N |z x|[* > e1. Write again oy 1 = pn i, €?0V:+;
since |zyr — 1| < 1 by Result 1, we have pni < 2cosOnpg; thus
2cosfn x> (e1/N)Y/* and

2

/4
\Imx%\,’k\ = \x%\,k| |sin2 6y k| > sin00<%) TN K

We thus have proved

[z k21— 23 4] 3N/A N1/4
n(Tnk) = = < = (]
Im 2% | (sinfp) 5:1[/4

We thus have proved

o if Arg:L‘N,k < 90,

lun(@ng)| < n(evge)®? < Oy,
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o if ArgJ,‘N,k > 0O,

lun(@ng)| < n(zwg)®?

< (01N1/4)3/2
(N [

= 0:13/2 (N (Jzn 5 )378
2
< Cj//s (N |-77N,k 2)3/4 ]
€1
In any case, we have
(38) v (@ g)| < C (N |y kl*)**.

(Remember that impy_, oo infx N |2y k|? = |71]% > 0).

Step 2. We are now able to give an estimate for z . Let us consider
a root y # —1 of Qn such that Imy > 0. We have

! aN . o AV(ND)?
/y(l—s) ds—QW,

hence from (35) and (36),

(1—gy?)NHt n(y)?®**\y _ 7 1
(39) 2(N+1)ﬁy(1+0( N2 ) =yx(1+0(5))
(where @ = O (e(N,y)) means that |a|/e(N,y) < C for a positive

constant C' which doesn’t depend neither on N nor on y). Taking the
(N + 1)-th root of the modulus of both terms of equality (39), we get

1 N+1
1—g?=14-— L0g<2\/N7r |y|)

N+1 N
+o(H%E) +o(5) <o (s

14 %Log(Z\/N—ﬂy\) +0((L°§7§[)2) +0(7]7\([§’7‘);|/§) .
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Now, we write 1 — y2 = pe™ (¢ € [0,7], p > 0), so that y =
1 — pe~*. We have found

3/2

1—p|= O(%Log(\/ﬁw)) +O((LO§[72V)2> +O(%)

= 0(% Log(\/my\)) :

(since 1/CN < Log (VN |y|)/N < CLog N/N, while n(y)*2/(N?|y|?)

<C/(N(Ny?)) <C'/N). Thus 1 —pe ™ =1—-e % + (1 —p)e ™

with .
‘(1 —ple?

1—petv

og (VN
:O(L g]5r|y1|\£|y|)>

and we find

. \/(1_6_w)(1+0(w))

Nlyl?

= (/2sin (g) ei(m/4—p/4) (1 + O<7LO§V\‘/;|_\£ y )) .

We insert this result in (39) and take the phase

™

: Log\/ﬁ\yl) +O(n(y)3/2) _

—2km
Nly|? Nly|?

—(N+1)p—

+240(

or

_ 8k-1 +O(Log\/ﬁ\m)+O(77(y)3/2>_

40 = —
S el N2 N[y

If we assume /N |y| > Ao where Ag is big enough so that
Log Ap 1
o) o)

is less than 47 /(4N + 3) (Ag being chosen independently from N), we
see that 0 < ¢ <« implies 0 < k < [(IV + 1)/2]; moreover since

. oz VN
ly| = 2sm<§> (1+O(L%V|7y]\\g‘y|)>
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we must have

m492§+q%%%%.

We take A2 = \/2K,m, where K is big enough; we then see that we
must have k£ > Kj.

If VN |y| < v/2Kom, we know that (provided N is big enough)
y ~ -7 /VN for k € {1,..., Ky}. We have moreover found candidates
yn,k for the remaining roots zn %, Ko < k < [(N + 1)/2], which are
given by

1 |
(1) 1-yd, = (1 + + Log2 /2N sin QONJC)e_ZWN*’“ ,

for Ko <k <[(N+1)/2] and ¢n = (8k — 1)7/(8N + 6).

More precisely, we have shown that if Qn(y) =0, Imy > 0, y # —1
and VN |y| > /2K, then for some k € {Ko+1,...,[(N +1)/2]} we
have

3/2

(LogN)2)+O(n(y)

8] Ng‘y‘2>+O(Log\/N\y|>_

2 _ 2
(42) 1-y° = 1_yN,k+O( N2|y|?
We are going now to prove that, provided that K is fixed large enough
(and provided thereafter that N is large enough), for each yu j there is
exactly one root y satisfying (42). Notice that |y} , — y% 41/ > Co/N
while

o 2 3/2 og VN
o("5E) +o(Rae) +o(Prape”)
1 /(LogN)? 1
<o N T man)

Indeed, let’s write s = 4 /3, — v where |v] = n9/N, 79 small enough.

We are going to estimate Qn(s). We know that

1 — g2)N+1 s
[ = STy (4o (i)

where 7(s) is bounded independently of s provided that |1 — s| < 1,
1 —s% > 1 and |Args| < 6y (where 6y € (7/4,7/2)). Thus, we are
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going to estimate |1 — s/, |1 — s?| and |Args|. We have obviously from
(41)

it s R G )

and such an estimate holds as well for s%. (We see also from (41) that

1
1—s?>1+ NLogQ V2N7sinpn gk — %

1 Mo
>14+ —Log2+\/4n Ky — —
> +N og i N

>1

provided 7)o is small enough). Thus we find that

Logk

™
Args? = = — PN,k +O<

. )<2%,

if Ky is large enough (so that O(Log Ko/Kj) < 26y — 7/2) and thus

™ 1
Args =2~ (
1gs=7"5 enk+ 0

Logk
k

) € (—0o,60) -

Moreover,

|s| = M(l +O(L0]ggk))

and this latter estimate gives |s| < 2 cos(Args): if oy > €0 (where g
is fixed small enough as we shall see below) and Ky and N are large
enough we have

VE;@RE(1+O(ka>)gvﬁ(L+CL¥x%)§\@(1+ﬁ%),

while
s Log Ky
2 A > 2 (— -C )
cos (Args) > 2cos 2 -
™ €o
> 205 (7 - 5)
> 2c08 (7 — 3

2¢9 &2
> 2(1 ———).
> /2 + 55
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On the other hand, if pn 1 < €9 we find

VZsingn (1 +0(L°§k)) < V2¢ \/1—|—C Lofg{KO < '\,
0

while 2 cos (Args) > 2cosfp; thus if ¢y is small enough to ensure g9 <
4/(3m) — 1/50 and €y < 4cos®0y/C"? we find |s| < 2cos(Args). But
this latter inequality is equivalent to |1 — s| < 1. Thus we found

— g2)N+1
avt) =1 (1+0(3)) ¥ Gorais (14 0(sm))

We have moreover:

v N+1
(=) = (1= g )V (14— )
YNk
Nv
= (1= )V (14 5 + O (V%))
YNk
2
v v
5= /s —v=unu(1- +0(—)).
ok 2y12V,k yﬁlv,k

This gives, since |s| has \/k/N as order of magnitude

Qn(s) = 1—(1 —1-0(

l)) (1 —yip)™

k77 2/ Nmyni
N 2
(1 o F O+ O ).
L=ynre 2Unk YNk
Moreover
8k —1 1
> 9 (1 (— L k))
vkl 22y g (LT O Los
and

o (S ) 7O 1.0 o)
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so that
(1 _y?v,k)NH
2VNT YN,k
1 8k — 1 N
<1+—L0g2\/2N7rsin( 71') )
N 8N +6 1
= * (1+O<—L0gk))
2\/2N sin(gk_1 ) k
T T
8N + 6

= (1 + O(% (Logk)2>)N(1 + O(% Logk))
and finally

Qn(s) = 1—(1 + O(% (Log k)2>)

’1)2

N
(14— 5 + O N + O ).
L—yNne 2Ung YNk

Now, we write

v Y — 5
L —yng L —yn i

Since |v| = n9/N, we have

Ry k(s)| = 77()(1 +O<L(])\g[k)) ;

while

_ (Logk)® "o 2
Qn(s) = Bui(s)| = 022 ) + O(F2) +0 ).
We choose 79 small enough to ensure that the O (n) term is smaller
than 79/2 (independently of N and k), and then choose K large enough
to ensure that O ((Log k)?/k)+O (no/k) is smaller than /4 for k > Kj.
For this choice of Ky, we get

Qn(s) — Rwls)] < 30 < [R(s)].
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Thus, by Rouché’s theorem, Qn(s) and Ry x(s) have the same number
of roots inside the domain {|y3; , — s%| <no/N, Res > 0}.

Step 3. We have thus found a number K so that for N large enough
we may list the roots T 1,...,ZN [(N4+1)/2) of @N With Ty # —1,
Imzng >0, [Nk < |TN k41| in the following way:

o for k < Ky, |zn k| < /2Kor/N and zn 1 ~ —%,/VN,

o for £ > Ky,

22—yt | = 0<77($N,k)3/2) +0(L0g(\/ﬁ\$mk|))
Nk~ YNk N2[zy 2 N2[zy 12 )
where yu  is given by (41).
Moreover, we have seen in step 2 that in that case we must have
Argzy < 6o, hence n(zn k) is bounded independently of N and k.
Moreover zy i is of order of magnituge /k/N, hence

"T%V,k - ylz\f,k| = O<L;gkk) .

Thus we find

1 8k —1
1 —aﬁv,k = <1+ NLOg2\/2N7TSin(8N+67T> )

e~ 2im(8k=1)/(8N+6) | () <L0g k)

(43)

and thus

"E]2Vk _ (1 _ e—2i7r(8k—1)/(8N—|—6))

o—2im(8k—1)/(8N+6) 8k —1
. (1 - N{1 = e 2in @1/ GNT0)) Log?2 \/2N7r sin <8N 6 7r)

)
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which gives

. 8k —1
— ¢i(n/4—(8k—1)n/(16N+12) [ o ( )
TNk = E \/ M sv e

oi(m/2—(8k—1)m /(8N +6)) \/ . (8k—1
.(H — gt b2y 2Nmsin (g )
4N sin (

8N 16
Logk
vo(55)).
which gives (37) for k¥ > K. For k < Ky, (37) says only that xn j is

O (1/v/N), which we already known since v'N |zy x| < v/2Ko.
Thus we have proved Result 6.

(44)

A nice corollary of Result 6 is that we may recover formula (33)
on the roots of erfc(z):

Corollary. The k-th root i of erfc(z) such that Im -y, > 0 is given by

g = 3/ (2k — %)ﬂ'
(45)

— %Log2\/7_r (2k— i)w#—()(@(z%k)z)) i

PRrROOF. It is enough to use formula (37) for zy , with N,k — 400 and
k < Log N/8: we have

a:N,k:—_—%—i-O(%) and %:O(

LOJ%[N)’

thus we find vg. The only thing to check is the exact number of roots
v such that |y| < v/2Kym (since we used formula (33) to give it). But
this is an old and classical result of Nevanlinna [9], and thus we may
recover formula (33) from formula (37).
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4. Big roots of (Qn: further estimates.

Though Result 6 is enough for the proof of theorems 1 to 3 (pro-
vided we improve result n° 4 for the smaller roots), we may give even
more precise estimations for the roots ;. For instance, we may inte-
grate by parts one step further formula (35) and thus get an O ((Log k)3
/Nk?) error instead of O (Logk/Nk) for 1 —z3, ;.

More generally, how far can we compute | tl(l — 52)N ds? We have

1 1 dA
/(1—32)Nds:(1—t2)N+1/ AN .
t MY e Yeprey

If we write )
1-1t
1—,\(1—t2):t2(1+t—2(1—,\)),
we see that if Ret? > 1/2 (so that |1 — 2| < t%), we may develop
(v/1—=X(1 —=1t2))7! as a Taylor series in (1 — ) and find (for Ret? >

1/2)

1 1% %! (1 —A) (1 —12)\*
:_Z(_l)k4k (( )( t)) ’

L-A1—12) ti= (k)2 12
which gives

. 1
for Ret > 0 and Ret? > 50

(46) - /7:(1—32)Nd3

(1 _ t2)N+1 +oo

:72(_

e (2k)! N!E! (1—t2>k
\ 2t — 4R (k)2 (N+k+ 1)1\ ¢2
Unfortunately, we are mostly interested in small ¢’s (remember that

znk = O (y/k/N)). (46) has to be replaced by an asymptotic formula
(which is obtained by repeatedly integrating by parts)

( for Ret > 0 and M € N,

/tl(l —sHN ds

(- & (2k)! NIk 1—t2\k
B 2t Z(—1)’“4k(k!)2 (N+k+1)!( t2 )

k=0

\ +RM,N(t) )



THE PHASE OF THE DAUBECHIES FILTERS

where the remainder

(2M +2)!
AMFI((M +1)1)?2
NI(M+1)! AN+MAL g\
(N + M +2)! /0 (1 = A(1 —¢2))1/2+M+1

RM,N(t) = (_1)M+1(1 _ t2)N+M+2

may be estimated by

) < [ty s
s M,N < 2t AMAL(M 4+ 112 (N + M +2)!
. ‘1 —2t2 M+1n(t)1/2+M+1_

t

M = 0 gave Result 6. M =1 gives the following result:

Result 7. Writing N = (8k — 1)w/(8N + 6) and

A = Log2+/2Nmsinpn ,

we have more precisely for all k € {1,..., N}

275

1 —.’Iﬁv,k = e 2ivNk
1 1 Ak A2 ie PNk
4 .(1 el VI A A — 1 )
(49) TN k+N2+N2+2N2+4N2sincpN7k(k )
+€N,k:7
where

1+ (Logk)3 1—|—L0g(N+1—k)3}

‘5N”“|Scmax{ Nk> ' N(N+1-k)?

and C doesn’t depend neither on N nor on K.

PROOF. We assume k < [(N +1)/2]. We write 1 —a3 , = 1 —y3 ; +v
and the problem is to estimate v. We already know v = O (Logk/(Nk)).

Furthermore, we know that

1 N 2 w
L (1= ") ds = % = \/; (1+0(33))

N,k
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and
1 1— 22 )N+ 1 — z2 1
[T L N R T )
TN 2(N+1)znk 2(N+2):r3NJc N TNk
Now, write
1 — z3 1 — g2 N
b v o) o)
2(N+2)zy,  2(N+2)yyy k k
_ L=y s O(Logk>
2(N+2)yx s k3
and
1- y?v,k e ek (Logk)
2(N+2)yky 2N +2)yky Nk
e~ 21PNk Logk
- . o(=5%),
2N(1 — e=2tn.k) T k2
so that
1o T L o( LYoyt Lok
2(N +2) 3, N2z /) ANsingyy k2 )

We now turn our attention to (1—z3 )V /(2 (N +1) zn,x). We have

1
=2 1+N>\/N7T y%v,k—v
1 , e 2PNk Log k
=2(1 —)\/N \/1— “2PNE — O( )
M ZASM ¢ N VRO

7 e 1PNk
1+ ——7—7-— )\N,k + O(

1 ‘
= 2(1 + N) VN« \/2 sin @ k et (m/4—pnN 1k /2)
( AN sin oy i

=)
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and
v N+1
(1- x%v,k)N+1 =(1- yj2v’k)N+1 (1 " 1_72)
YNk
(N+1w (Logk)?
N (1_y]2"”“)N+1(1+ 02 +O( o2 ))
YNk
. L k 2
= (]. —_ y?v’k)N—Fl (]_ -+ Nv 62'L<PN,k: + O(%)) .
Finally we have
(1= 13
2\/2N7sin pp j eX(7/4=¢n.x/2)
I+ 5 ANk N+1
+N+1 N,k+2(N 1)2 "Nk O N3

We have thus obtained

1 1
1+ 5) (1+0(7))
(1+3)(1+0(%
1_$2 N+1 1_332 1
:( N,k) (1_ N,k2 +O( — ))
2VNmN g 2(N +2) gy, N3N &
)‘N’k_i 2 ie PNk
N 2N NF  4ANsinpyy

)\N,k + Nv ezWN’k

P o~ UPN K Log k)3
+ Zei + O(&)
AN sin oy g k2

which gives the value of v with an O ((Logk)3/(Nk?)) error.

As a corollary, we find a further development of 7, which is exactly
the formula given in [3]:



278 D. KATEB AND P. G. LEMARIE-RIEUSSET

Corollary. If ux = (2k — 1/4)w, then
fyk:e_‘%”/‘l,/,u (1—7L0g2,/7r,u — Log2,/7r,u +
(Log k)?
PrOOF. From (31) and (49), we get

1—%:(1 '?\’;)(1—# Log2\/_\/_+ (Log2\/7_r\/,u_k—1))

ol )

hence
_ i i Log k)3
Y2 = —ip — Log2\/Tug + — Log2 /Ty — —— -l—O(#)
2,uk 2/,l,k k
and

—— U 1 Ty
Ve = —1 Uk (1 — 2—/1,kLOg2\/7ruk - m L0g2 Tl
k

1 1 9 (Log k)3
+ o g (Los2 Vi) +0<7k3 )

and the corollary is proved.

5. Small roots of QQn: further estimates.

We are now able to give a much better estimate for the small roots
of @Qn. Indeed, we used the rough estimate |e_N‘”?V:k\ < eNl=Nal which
is far from being good since zy j accumulates on the line z = y for k
big (and k2 = O (N)), so that e N~k is much smaller than eNlen.xI’:
indeed if k2 = O(N) we find that

mi]’k _ —%Log? 7r(2k— Z) + N(2k— Z)W—}—O(L](\)[glgk) )
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hence
6_N$?V,k| — eLog2\/7r(2k—1/4)7r eO(Logk/k)
1 Logk
N <2k—1)7r(1+0( ; ))
while

e (P E3))

Thus, we may improve Result 4 in an impressive manner: for a much
bigger set of indexes k, —7, /v N provides a very precise approximation
of N,k-

Result 8. There exist ng > 0 and Cy > 0 so that for N large enough
and k < noN'®/(Log N)?/% we have

(51)

~ 5/2
Te | < 1 k
ot YN = NN (3 +L0gk) '

PROOF. We write

Qn(t) = 4\/§ % Qn(t) = 1+0(%) —|—2\/§/Ot(1—32)Nds

and approximate (1—s2)Y by eV s’ (provided that Nt* remains bound-
ed: [Nt < Ayp)

(1—sH)*=¢V Log(1—s%) — g—Ns’ (1+ 0 (Ns*).

Thus
. 1 t 2
Qn(t) = erfc(—VN t) + O(ﬁ) + \/N/o e N0 (Ns*)ds.
Let 6 = Argt and assume 6 € (7/4,7/2). Then we have
t ) [t] )
‘\/N/ e V0 (Nsh) ds‘ < CN\/N\tF’/ e VAT cos20 ) g
0 0

—Nt? 3
ol EIVE e
- 2| cos26)|
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We have thus proved that for |[Ntt| < Ay and Argt € (7/4,7/2) we
have

_ 2
=]

~ 1
1Qn(t) — erfe(—VN t)| < C(ﬁ + VN |t m) :

Now, we write t = xnk + 0, 0] < do/N. Remember that we have

(hence we will look at k < /AoN/(27)) and

'e—itpN,k
Argen = Log (24/2N 7 sin <pN,k)>

4N sin YN,k

Log| 2/7 (2k—1)7r o k)2 i
B < 2(2k—i)7r4 ) +O((LICL2)>+O(N)’

hence if k£ > ko where kg is large enough so that

o(“5%) +o(x) = o(“EE) +o(3)

is smaller than

we find that Argzy € (w/4,7/2). (This is also true for k£ < ko, if N
is large enough, since zy x ~ —75/VN).
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Moreover
cos (2Argzrn k)
Log| 2¢/7 (2k—1)7r o k)2
:_Sm( < (%_%)W : )+O((Lkg2k)) O(%))
Log| 2y/7 2k—1 m 9
b))y o)

hence cos (2 Argz i) has order of magnitude Logk/k. Thus we obtain
for §p small enough

cimeni(1+0( L)),

oo co(3).

Arngk-i-O( ! )

oArgt:Arga:N,k—i-O( P

1
i) =
thus we have

|Qn(t) — erfe(— \/_t)|<C(—+\/_( )3/2 ﬁ)

, K
NLogk

On the other hand we have

lerfc(—V N t) — erfc(—V'N zy )]

‘ [V / —Ns dS
N2 /N _ N2
— ‘6 N$N,k‘2 _‘ e 2Nz N rs—Ns ds! .
T tJo

52 5
2Nzn g s+ Ns?| < 2|znp| 0o + 2 <C\/§v

We notice that
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so that if N is large enough,

2
|e_2N$N,k:5_N5 _ 1| <
which gives

N
lerfc(—V N t) — erfc(—VN zy )| > 24/ — - e _N””Nk\ |(5\ > CVNE |9].

Thus
k3
|erfc( \/_t)|>01\/_k5 Cg
NLogk’
(52) _ k3
fc(—vVNt) — ) <Cy—m.
este(—VN )~ Qu(0)] < C2

Now choose
3C,  kb/2

C1 N3/?Logk
(we have 6 < do/N if k%/2/Logk < 60C1v/N/(3C2)); we obtain that

ONk =

sup lerfc(—VN t) — Qn(t)] < 1 inf |erfc(—VN 1),

|t_$N,k|=5Nk 2 [t—% N,k |=0N,k

hence by Rouché’s theorem we find that Qu and erfc(—v/N t) have the
same number of roots in the disk [t — zn k| < dn . Since

™

‘-TN,k - xN,k—}-l‘ ~ m

and

VEN oy = 0(%;0 =0 (Nz/ﬁ(Lig ~y7s) = oW

(if £ < CN'/%/(Log N)?/%), we find: for k < noN/%/(Log N)?/> (no
small enough)
T 1

vt 1< e

k5/2
Logk) )
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Result 8 is proved.

Result 8 is enough for what we want to prove. But, of course, we
may develop a bit further (1 — s2)" and get a better approximation for

TN k-
Result 9. For k < n0N1/5/(Log N)?/5 we have more precisely

_k + 3’)’k+0(\/Lng)) .

1
A=y N\F(

PROOF. We write Log (1 — s?) = —s? — 5*/2 + O (s%). Hence we have

2 4
(1—s2)N = ¢ Ns (1 ~N % +O(Ns® 40 (NQSS)) ,

provided that |s| < Ag/N1/4.
Thus we have for |t| < Ag/N'/* and Argt € (w/4,7/2)

an(t) - et~V ) + 2/ N / "3t as)

<¢(z+ N |

t7e—Nt2
cos ( 2Argt)‘+ ‘cos(2Argt)D '

Moreover we have

A2
N/te_N5234dS: [ﬂ]t+§/te—Ns282d8
0 2 0o 2

N2
_c v e —ie_NtQt—l-i/te_Ns2 ds.
2 AN AN Jqo

Now, we write n = 1/4/2N|cos (2 Argt)| (if t ~ N, we have n ~

V4k/(N Logk) < |t|) and we write

t n It] sds
‘/ e—N52 ds S/ ‘e_Nt2|d8+/ e—Ns2 cos (2 Argt)
0 0 n n

—NtQ‘

—Nt2| ‘6
2N|cos (2 Argt)|n

9 |e—Nt2|

N V/2N|cos (2 Argt)|

<nle
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Finally we get

ner [N a2
erfc(—VNzng) =e "Nk - x?\,k +e INK

4\/ﬁl'N,k
4 5
+O(N2> +O(%ogk> +O(N2klogk)
o458

and, assuming again k < noN'/®/(Log N)?/°,

erfe(—VNzy ) = e NNk \/g x?\’k <1 + O(%))

On the other hand, we have zx = —%,/VN + s with

1 k52
ol )
NV/N Logk
and we want a better estimate for s. We have

VN 87 = O(% L]oik) - O(ﬁ)

and thus we may develop
erfc(y, — VN s) =e i —/ _2%”_“2 du
= _T e Tk VN s(14 0 (VN s7;,) + O (Ns?)).
7

Hence we find
2 2 N 2
——— ek \V/Nsn~ | — 2% e None
NZ3 T

and therefore
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so that

- 8o () <o)

_ N 3 Na2,, 3 ~Nz%, , (vLogk>
— ?./L'N’ke : +4\/]V—7-(-:L.N’ke : +O N ;

so that (since e NeN ATk = 1 + O(VN s7;) =1+ 0O (k?/N))

14 3 Logk
#= =y~ gy 7 - O L)
1 72 375 Logk
LT 3 o(VioEk)
2 NvVN 8NVN NV N

and Result 9 is proved.

6. The phase of a general Daubechies filter.
We have now almost achieved the proof of Theorem 1. Indeed, we

have given estimates for zx j, hence for zy y, which is the solution of
zNk = (#nvk + 1/2n%)/2 with Rezy g > 0, hence which is given by

ZNk = TNk + /T — 1. We thus have proved:

Proposition 3. Let Py be the N-th polynomial of I. Daubechies

o0 = ()R (T ()
k=0

which is related to Qn by

(55) GNPy (e7) = Qn(cos€)

or equivalently

(56) Py(z) = z2N+1QN(% (z - %)) .

Then the roots of Py are precisely given as the following ones:

o 2z = —1 with multiplicity 2N + 2,
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e 2N roots with multiplicity 1 which can be decomposed into

1 1
{ZN,kazN,k’ y — } ’
ZN,k ZN,k ? 1<k<[N/2]

(together with {zn,(n+1)/2: 1/2N8,(n+1)/2} if N is odd), where Im 2y 1, >
0, Rezng > 0, |zng| > 1, Imang > 0 for k < [(N + 1)/2] and

Im 2y, (N+1)/2 = 0
Moreover we have, for N large enough:

o if k < noN'%/(Log N)%/5 (where ng is fized independently of N
and is small enough)

(57) ZN,k:i_%‘FO(%) ;

where vy, is the k-th zero vy of erfc(z) with Im~y > 0
e for all k

1+ Logk
58 T —1+0(7),
(58) N,k = YN,k YNk TN

YNk = (1 _ ¢~ 2i(8k—1)m/(8N+6)

1/2
L 2i(8k—1)x/(8N+6) \/ . ( 8k —1 )
N Log24/2Nmsin 8N—|—67T .

PROOF. Just write 2y = Nk + 4 /x%\,k — 1 and apply results 6 and
8.

Of course, we could give better estimates using results 7 and 9, but
we won't need them. We have easy estimates for 1/zx ; as well since

— [ 02
1/ZN,k =ITN,k — "I:N,k_l'

We are now going to use proposition 3 in the estimation of the
phase of a Daubechies filter. We want to approximate for £ € [—m, 7],
1/(6_1’5 — AN,k) where

1 1
AN € {ZN,ka —— ZN,k» _—}
ZN
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A direct consequence of Proposition 3 is the following proposition:

Proposition 4. Let§ € [, 7] and let zn g, 1 < k < [(N+1)/2] be the
roots of Pn described in Proposition 3. Let Ax € {2nk; 1/2N k2N k)
1/2N,k}- Then
i) for 1 < k < noNY5/(Log N)*® we have, writing 2y = i —
Vk/\/N7
1 1 k 1
(59) — <C—= -,

—i€ _ —q N k
e ANEk e — Ay N N+|COS€\2

where C doesn’t depend neither on N nor on k nor on £ (and where
)\N,k = ij\ng if)\N,k = ZN,k, 1/271\\7_’7“, if)\N,k = 1/ZN,k and so on .. )

ii) for k > ko (ko large enough independently of N) we have, writing

ZNE = YUNE T \/Ya i — 1 as in formula (58),

‘ 1 1 ‘<CLogk 1

60 . B Y .
(60) e — AN e—if — ANk kWNE & + | cos&|?
N

PrOOF. Of course, we may assume £ € [0,7]. If & € [n/2,7], the
estimation is easy since Ree™% < 0 and Re A Nk > 0 (as well Re Ay g
and Re An x). Thus,

) ) k
|e_l‘5 — Ank| > Re (—e_l‘5 + Ang) > Cy/ N + | cosé|

and the same for |e~% — /\/N\k\ and |e™% — m| Of course, we must
prove that min {Re )\N,k, Re AN,ka Re AN,k} > C/ k/N For Re )\N,k, it

is obvious, since
— —Re g [k
Re A > = A= .
N,k = N

\/N‘i—ﬂ2
VN

For ReAny, if & < noN'/®/(LogN)%®, we deduce that ReAyj >

C+\/k/N since

— k k
ANk — ANkl < — Nk SO = </ = C'N72/5,
ANE— AN < |2ng — Z2Nk| < ~NSVN
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We thus turn our attention to Re )Gv\k > ReZni/|Znk|? and Re Ay g >
Re 2y 1/ |2n k|2 for large k’s. We define py j, = V1 — e—2i(8k—1)7/(8N+6)

and {n g = png + /B — 1. We have

B (8K — 1\ (/4 (8k—1)m/(2(8N+6)))
ENg = \/23111 (8N+6) e
+ (/2= (8k—=1)7 /(8N +6))

— 1+\/§ei(ﬂ/4—(8k—1)71'/(2(8N+6))+arcsin\/5sin(7r/4—(8k—1)7r/2(8N—|—6)))

and thus we study 1 + /2 eilwtaresinV2sinw) for o, € [0, /4]. We have
Re (1 + \/E ei(w—l—arcsin V2 sin w))
—=/1—-2sin’w (\/1 — 2sin’ w + V2 cos?w)

4
= Vcos 2w (\/20052w+ 1-2sinw) > —(E—w) ’

8k — 1 2
> 2 > — .
Rednr 2\ 2en 6 2V N

k Logk

1Zn g — Eng| < N &

which gives

Now we have

so that if k is large enough we have

_ | k
RGZN,]CZCI N

Moreover
_ k Logk
_ <O/ —
lzvke — Zng| < Oy N 12
and thus
k
RezN,k 2 C” N .
Finally, we control |zn k| and |Zx x| by
— k Logk
|ZN,k‘+‘ZN,k|Sl+\/§+O( N kg )SC
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Thus we obtain

[ k — [ k
> — > — .
Re )\N,k = C N and Re /\N,k -~ C N

We are going to prove that

) k
—1§ __ -
e )\N,k\ZC(\/N+|COS§\)
e Sl = O\ 4 cosg)
A N

holds for £ € [0, 7/2] as well. Notice that if [An x| < 1, we have

and

. 1 : 1 1
Ang —e | = ‘—‘ ‘6_15 e

A |- _ L‘
ZN k Avgl — C

ANk

(and the same for [e=% — Ay z|) so that we may assume |Ay x| > 1. If
ANk = ZN,k, our equality is obvious: for {x  we have either Im&{n ; > 1
or Re&n r > 2 and, since Im e % < 0, we find [e”% — én k| > 1, hence
(for k large), e~ — zn | > 1/2 and |e™% — zZy 1| > 1/2, while

2 iy +leme).

Now if Ay i is the conjugate of zx i or Zy i, we are going to show that

zc(\/£+\cosa),

which gives the control over |e~% — Ay j| for large k’s. Thus we are led
to show that

le™*% — EN,k

( for € € [O,g} and w € [O,g],

(61) 4 |e_7:§ N \/E e—i(w-l—arcsin\/i sinw)|

20(|cos§|+ %—w).
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We compute easily p(é,w) = [e™% —1 — /2 e_i(“’JrarCSinﬁSi““’)P
p(é,w) = (COS§ —V1-2sin?w (\/5 cosw + V1 — 2sin? w))2
+ (sin§ —V2 sinw(\/i cosw + \/m))2
=1+ (\/5 cosw + my
— 2(\/§ cosw + m)
: (cosfm—i— sin V2 sinw)
= (\/§ cosw — 1+ m)z
+ 2(\/5 cosw + m)
- (1 = cos (¢ — arcsin (V2 sinw)))
> 1 —2sin®w + 2 (1 — cos (¢ — arcsin (V2 sinw))).
We have

2
1—2sin’w=cos2w > —(E—2w).
T\2

On the other hand, we have
. . . o(§ 1 . .
1 — cos (€ — arcsin V2 sinw) = 2sin (5 —3 arcsin v/2 sin w)
2
> — €~ arcsin V2 sinw|?.
T

Moreover we have

T . . .
5~ arcsin v/2 sinw = aresin vVcos 2w < — vcos 2w ,

bo| 3

hence we have (using |a + b|> > a?/3 — b2/2)
9 4 T T ) .2
(€, w) zcos2w+—2‘£—§+§—arcsm\/§smw‘
™
4 2 2 2
zcos2w+—3ﬂ2‘£—g‘ —P‘g—arcsin 2sinw‘

> 1 cos 204 2¢
— COS —5 COS
-2 YT g

4 T
> 5 (o4 |7 - w])
_37T2<cos &+ 1 w
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and thus (61) is proved.
Proposition 4 is then obvious since

| 1 ~ 1 _ ANk — AN,
e~ — AN,k e~ — )\N,k: \e"f — )\N,k‘ ‘B_ié — )\N,k‘

and since we control each term due to (61) or to Proposition 3.

291

We may now obtain Theorem 1 as a corollary of Proposition 4:

Corollary. With the same notation as in Proposition 4, if kg < ky <

noN'/®/(Log N)2/° then
27r [<N+1>/2] it
/ e~ — A\w
[(N+1)/2] i e—i€

ie %
(62) - Z Tj\z\r}c n Z

k=1 ? kN—l-l

z

e — ANk

SC(\/N ko

ProOF. Using Proposition 4, and writing Iy () for

B2 Logk
N + og N)-

N o et N it ((N+1)/2) e
INOD=D =g 2 T —
kz::l et _ )\N,k kzzl e~ _ )\N,k kNZ+:1 e—i€ — )\N,k
we get
ki 1 ((N+/2 )
IS TR D -

N

Thus we have to estimate

27 arccos\/k/N /2
[ oo [ e [
0 a,

k + N| COSf|2 - 0 NCOS2£ rccos v/ k/N k

—+|cos£\2 kn+1 kv N —|—\cos£|2

= %tan (arccos@) + %(g - aI'CCOS\/g)

<4+27r
~ VNk Nk’
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so that

2 (NI g K% Logky
[ maaz (S5 3 <o),

Now Theorem 1 is proved with ky = [N'/®/Log N]. At least, we have
proved it for £ € [0,27]. But w(zy 1,---, 28 N) — W(Z1s -, 23 y) 18
2r-periodical, since w(Z1, ..., Zn)(€+21) —w(Z1, ..., Zn)(€) = 2irM
where M is the number of Z;’s which lie inside the open disk |Z] < 1.

7. Minimum-phased Daubechies filters.
This section is devoted to the proof of Theorem 2.

Result 10. We have the following inequality

(63) difw(zN 1,---52N,N)(§) — —Im/ zg — dw <CVN,

where &(w) = Ve w + /14 e,

Proor. We approximate zy i by Zni = Z((8k — 1)n/(8N + 6)),
(1 <k < N) where

Z(w) — m ei(7r/4—w/2) + ei(ﬂ/2—w) )

We have shown that for kg < k& < [(N 4 1)/2], (ko large enough) we
have

‘ 1 1 ‘< Logk 1
\/Nk %—{-(30525

e —znk €% —Zng

and

‘ 1 1 ‘ c Logk 1

e~ _ ZNk et — 7N,k vVINEk % + cos? ¢

(notice that zy Ny1-k = Zni and Zn Ni1—k = ZN,k). If £ < ko, we
have to prove similarly

1 1 ‘ 1 1
VN

e —znp e % —Zyy 1 2
’ — +cos
N £
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and 1 1 1 1
. - <C .
e —Znk e ®—Zngl T VN L o
' ' — 4+ cos“ &
N
We have of course
C
lzvge — Zngk] < |znvel + 2wk < N

so that we only have to check that

. 1 1
|e—z€ —ZNk| > E(W + \Cos§|>

(which is an easy consequence of (61)) and that

e

— 2N,k

zé(\/%ﬂcosé\)-

If |€ +7/2| > 3|y, |/VN and ¢ € [-27, 0], we find

hence

. 1
<l an (§ )] o)

a(§+3)

On the other hand, if |¢ + 7/2| < 3 |y&,|/V'N, we have

e — Znpk =—(g+g> B %+O(%>’

hence

it 1 inf Im v Co 1

|6_ — ZN,k;

-2 VN VN VN’ 6 |7k, |

293

> = = ZCOmax{L 7|cos§|}.
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Thus we have obtained

d al et
de w(zn, .-, 2v,N) (€ ; Zé_ZNk
N
—I—Logk 1
<C z_j F oorte
= N Tcos
2.1+ Logk
<CVYNY ——=—.
- 21: kVE

Now we look at
= Imz ’L£ _ ZNk

as at a Riemann sum: we have

s T je % dw
— — 1 _— .
N Sn(¢) Nooo 0 0 e % —Z(w)

If ¢ # £n/2, we have a proper Riemann integral; if £ = +m/2, the
integrand is unbounded at 0 (¢ = —7/2) or @ (£ = 7/2); but for
¢ = —m/2 we have e % — Z(w) = €"/*/2w + O (w) near w = 0 and

thus
/7T 1 dw < +oo
——dw }
o li—Z(w)|

It is easy to evaluate the distance between mSxy/N and the integral.
We have

77 /(8N +6) 77 /(8N +6)
‘/ —‘dw ‘<C/ d—w<C’ !
0 —% — Jo

— Z(w) Vo = VN’
‘/ dw ‘<C’/ dw
(8N—1)r/(8N+6) € ¢ — (8N—1)r/(8N+6) VT — W
1
' —,
- VN
l 1 <! \/_N ,
i Z(SN -1 7r) N
8N +6
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and finally for 1 <k < N

/(8k+7)7r/(8N+6) 1 ] 87 .
. dw—
(8k—1)r/(8N+6) € % —Z(w) 8N +6 s Z( 8k — 1 )W
8N +6
8k —1
(8k+T7)m/(8N+6) ‘Z(w) - Z( )71"
<C 8N +6 dw

(8k=1)/(8N+6)  |—it _ 7(u)| ‘e—ig _ Z( 8k — 1 )‘

SN +6"
1

(8k+T)m/ (8N +6)
corf
(

8k—1)7/(8N+6) / /

1
< C//
~ k/2VN
and thus
7 T - dw 1
— S5 —1 et —— | <(C—.
‘N N() m/o ve e~ —Z(w)l = /N
Thus, Result 10 is proved since writing —e 2™ = e~ gives

/7r e~ dw
0 e~ — \/2sinw et(m/4—w/2) _ pi(m/2—w)

s
= l/ ie”% do .
2/ & e~ —Ve—io —\/1 e-ic

We will easily prove Theorem 2 if we know the value of I(§) =

[T iem®do/(e7® —¢(0)):

Result 11. Let £(0) = Ve~ % + /14 e~ and ¢ € [—7,7]. Then

4 ) do
T P —
/—7r _ZE_ ( )

19 .cos& 1 —sin¢ i T

(64 —mtan (5) T sin & Lo g(l +sin£) i< 27
¢ cos§ 1—sin¢ ) T

_WCOtan(ﬁ) sm§ (1 +sin§) AN 2
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We find that I(§) is continuous, which is obvious since by (61)
e —&(0)| > CVn?2 -0,

so that we may apply Lebesgue’s dominated convergence theorem.

PROOF. Since (o) = £(—0), we find that

4 ie~ %€ S
I(—ﬁ):—/_wrg(a)daz—f( )

so that it is enough to compute I(&) for & € [0, 7).
Writing e™*? = u, we may write

s —1—40 e—i& du
© _/—1+i0 Vu+ V1 4+u—e i u

where u runs clockwise on the circle |u| = 1. The function

e~
z2(Vz+V1Fz—e %)

is analytical on C\(—o0,0] and may be extended continuously to (—oo,
0] + 40 and (—o00,0] — 70 but at three points: z = 0 (both a pole and
a branching point), z = —1 (a branching point) and if £ € [0, 7/2] at
—sin?é —40 = z¢. Thus we may write:

o for £ € [r/2, 7]

f(z)

—€ e % du
I(¢) = lim — —
©) e=0 ) 1 Vu+i0++vV14+u—e% u
-1 e % du
+

e Vu—i0+Itu—e€ u

n /_e_io e % du
—erio VutV14+u—e% u

[t dt i e %
=27 — 24T —
0o cos& — 1 —t2 1—e i

/2
=2i/ &da—wcotan(§)+wi.
o cos&—cosa 2
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o if £ € (0,7/2) we have, writing t+ = +/sin®’¢ +¢ and 17 =
2
\/sin“ ¢ — e

I(¢) = lim A. + B + C.
e—0

where

) _/—(tj)2+/—e o€ du
A —tre Vu+i0+/I+u—e"% u

+/—(t€_)2+/—1 e_zg @
e —(tF)? Vu—10++V/1+u—e% u

t_ 1 dt
=2i/ +/
NG ¢+ cosé — V1 —1t2

B. = / - - . du
—etio Vut+VItu—e % u
e~ %
= —2iﬂm + 0 (Ve)

= —7rcotan(§) +im+ 0 (Ve),

. _/—(t;f o€ du
© e Vuti0+VItu—e i€ u

_I_/’zf_€ e % du
zete (WutV1i+tu—e €)u

= —imw2icotané + O (¢g)
= 2rcotané + O (g),
since the residue of
—it
6= .
at zg = —sin? & — 40 is equal to
e 1_2/m Itz

= = 2icotan€.
%3 ¢

1

1
S e
\/,% 2w/1+Z£

DN | =
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Hence we have

I(¢) = 7r(2 cotan& — cotan(g))

+27r-|—2211m/ /
¢+ cos& — \/1 — 12

& cos ado
:—ﬂ'tan(—)—l—zﬂ'—i—2zhm ,
2 cos&—cosa

where a_ = arcsint_ and o = arcsint].
Thus, for proving Result 11, we just have to estimate for £ € (0, 7),

{#m/2
~ i / / cos ada
e—0 cos§ — cos

with o = arcsin v/sin® € — € and o = arcsin v/sin” € + . We do the

usual change of variable 8 = tan («/2). Then

a 313%/ /[;3+ (1+8%) (1 +(ﬂ12)_cﬁoz)£— (1-p%) w-
We write
(1+5%) cos€ — (1 — %) = B(1 +cos&) — (1 — cos§)
2o (§) <2 ()

2
hence
_ 1-p
o= cos2 gl_r)%/ / (1+75?) ( — tan? (g)) v
2 1
:Cosz gl_r)%/ / <1+ta g) 1462

1—tan2(§) 1

Lot (§) 2 () )

+
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2t
+sm§ ﬁ—tan(%) ,3+tan(§) ag

2

(
_ cosg ﬂ+tan<2> COSgLOg‘IB tan()
sin& B + tan (g) sin & B + tan (_)
T cos & <1tan<g>>2
2 2siné 1+tan<g>
o e (3)
pt — tan (3)

Now we have

(ﬂ

14 tan (g)

_ Jor(9) 15 ()
o (§) <2 (£ (§) (9
1 —sing
N 1+sing’
while we have for £ € (0,7/2)
oz —tan (3) ~ 2 (1 tan? () (07— 9)
-l () YT

cos¢
N —&‘(1 + tan? (g))
4sin& cos &

axs

N———
N————

N
|

@)

@]

7]

N
—
N |
N———

|

N

w0

(=)

=
—

[/
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and
+e 1-|—tan2£
gt (§) - e ) (i ®)
Hhus ™ cosé 1 —sing&
AQ=-3

2 " 2sing 81 +sine
and Result 11 is proved.
Now, (63) gives

N cosé 1 —siné
Lo <CVN
o sin & gl—i—smf

ZN 1,---7ZN,N)(§)

‘dﬁ
Integrating this for & € [—7, 71| we get
N . : o
‘w(zN,l, o 2nN)(€) = o (Lin(=sing) - LIQ(Slng))‘ <CVN.

Since both functions are 2w-periodical, this inequality can be extended
to all £ € R and Theorem 2 is proved.

8. Almost linear-phased Daubechies filters.

In this section, we prove Theorem 3. The proof is very easy.

Indeed, we want to estimate for N = 4gq, (szNll, .. z]EVN ~ ) (&) with
eng=1ifk=0mod 4or k=1mod 4, and en = —1 otherwise.
We have (writing wy for w(zg;'s .. . szN]\I,V) Kyfor{keN:1<

k <N, eN,k:1}andf(Nfor{keN.1gng gNk:—1})

dwN

YN 1

oy Iy e

kEKN GKN ZNk

(we have used that for k € Ky, N+1—k € Ky and ZNJk = ZN,N+1—k)-
Hence we have

d:—gN:Im< Z e_.ii— Z %)

1§ _ i€ _
keEKn ZN.k keKn ZN.k
je~ % ie~ %
+Im . + .
( Z e® —2Nk e L )
keKn ’ € e

ZN.k
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But we have

ie % N iem®  je® N iZ
e —7 " _i_ 1 e €7 7 _etit
Z
e (el - Z)+iZ(—e " + Z)
o |e—i.§ _ Z|2
_i(1-2Ze % 4+ |Z]%)
|Z — e—%|2
. i (Ze® —Ze %)
=1+ - ,
|Z — e—i€|2
hence e ¢
te ! 1e "
Im( . + > =1.
e =7 it _ 1
Thus, we have obtained
dwy N E ‘ 1 1
—— = —+1Im ie_"ﬁ( . - —
d§ 2 ,; e %€ — zNak—3 €% — 2N k2

1 1 )
e — znap—1 €% — Znak

Now we write, for r € {1, 2, 3}

1 1 ZN,4k—r — ZN 4k

—ie _ T it _ +
e ZN,4k—r e ZN 4k

1 ZN Ak—r — ZN, 4k
e —znar (€% — Zn ak)?

(2N ak—r — 2N 4k)>

+ - - .
(e7% — zn k)% (e7% — 2N ak—r)

We have, writing k = min{k,q+ 1 —k}

, 1 ol ]t
(2N 4k—r — ZN,4k) <C Nk kV Nk

(6% — 2N ak) (7% — 2N ak—r)

301

(7% — zn ax)2(e7% — 2N ak—r)



302 D. KATEB AND P. G. LEMARIE-RIEUSSET

and
s ds a.rCCOS\/I;/N d£ AN w/2
-7 £+COS2§ 0 COoS 5 k  Jarccos k/N
N
=4 g sin | arccos E + g arcsin E
Vo N A N
I N N
S 44/ = + 2T/ = s
k k
so that

/7r dwoy N 1 L\ ZNak—3 — ZN k-2 — ZN ak—1 + ZN 4k ‘
= _ ___Im :
L dE 2 T (67 — zn,ak)?
1
_ !
<C) 3 =C' < 400
k=1

and

& dwN N
/_W d¢ _?‘dg

q
N
!
<C'+C E \/ A |ZN 4k—3 — ZN4k—2 — ZN4k—1 + ZN k| -
k=1

When k < ko, we write

1
|ZN ak—r — ZN ak+1—r| = 0< )

$
= ki

and obtain
N
Z = |ZN 4k—3 — ZNak—2 — ZNak—1 + 2Nk < C Logko .
k<ko

When k > ko, we may write as in formula (58)

Logk
ZNAk—r = YN ak—r T W + O<I~<; : )

Lo
k

2
ok

o
Poukt
~—

= WNak—r T VWNak—r + 1+ O(

2
okl
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where
W = _p—2im(8¢—1)/(8N+6)
_ i —2im(86—1)/(8N+6) \/ . 8 —1
N € Log| 2 2N7rs1n(8N+67r) .
We write
Vo -+ ,8 = \/a-i- /8 = \/__|_ /82
Vatvadtp f 2va (Va+atp)?

Now, we have: wpy, is order of magnitude 1, wy, + 1 is of order of
magnitude min {\/4/N, /(N +1 — £)/N} and wn ¢+1 —wn ¢ is of order
of magnitude 1/N. Thus, we may write

VWN 4k—r = \/WN 4k + 0(%)

WN 4k—r — WN, 4k 1
l+wNnak—r =+/1+wNna +— ’ +O( )
VI e = Lt NG

1+ wnak

¢~ 2im(32k=1)/(8N+6) (] _ ¢2i8rm/(8N+6))

24/1 4+ wn ak

co(leEh)co(—1)

1+wn ar +

2
okt

and finally

\/JV

\/7‘ @2i24m/(8N+6) _ 2i16m/(8N+6) _ 28 /(8N+6) | 1‘

2y/1+wnak

+0(L0gk)+o(m)+0( L\(;"’;%)
=0( ) +o(ME) w0 ) ol ).
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We thus have proved Theorem 3, since

<
~ NV Nk NvVN
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