REVISTA MATEMATICA IBEROAMERICANA
VoL. 11, N.° 2, 1995

Analytic continuation

of Dirichlet series

J. M. Anderson, D. Khavinson and H. S. Shapiro

1. Introduction

The questions considered in this paper arose from the study [KS] of
I. Fredholm’s (insufficient) proof that the gap series 3 ;° a™ ¢ (where
0 < |a| < 1) is nowhere continuable across {|¢| = 1}. The interest of
Fredholm’s method ([F], [ML]) is not so much its efficacy in proving gap
theorems (indeed, much more general results can be got by other means,
cf. the Fabry gap theorem in [Di]) as in the connection it made between
certain special gap series and partial differential equations. For a full
discussion of this see [KS]; here we shall only outline the salient points
to provide motivation for a study of some function-theoretic questions
that arise naturally when one tries to extend Fredholm’s method to
other kinds of gaps. As our starting point we take a slightly more
general gap series than that of Fredholm, namely

oo

- n2
(1.1) P(Q) =D an (™,
n=0
where {a,} are complex and
(1.2) 0< Iim |a, /" < 1.
n—oo

Note that the radius of convergence is 1 (this would be so also under
the weaker, and more natural condition where the right hand inequality
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in (1.2) is replaced by

(1.3) T [an]'/" < 400

n—oo

but the method to be employed is simpler when (1.2) is assumed). Now,

(1.4) u(z,w) = Zan enitniw

n=0
is convergent to a holomorphic function for (z,w) € C x £, where
L={weC: Rew < 0}

and satisfies

ou O%u

(1.5) Bw 97

For real z,w this is of course the “heat equation”, with w as the time
variable, but here we consider the variables as complex. The initial
value problem for (1.5) with data on {w = wg} is characteristic so, as
S. Kovalevskaya already explained in her Habilitationsschrift [Ko], even
holomorphic data z — u(z,wq) does not in general suffice to guaran-
tee a local holomorphic solution of (1.5). (Weierstrass expressed great
surprise at this result, and admiration for his pupil’s discovery; cf.
especially his letter to P. du Bois-Reymond of 15 December 1874, re-
produced in Acte Math. 39). In fact, implicit in her reasoning is the
following stronger statement: a solution to (1.5) holomorphic in a bidisk
D, x D, , where

(1.6) D.={z: |z—=z| < R}, D, = {w: |w—1wo| < R}

eztends holomorphically to C x D,,. (This can nowadays be deduced
from general theorems, c¢f. [Ki] or [BS], also [H, Theorem 9.4.8]. See
also [KS] for a simple proof).

Fredholm misunderstood Kovalevskaya’s result, interpreting it to
imply that if, for a solution v to (1.5) in the bidisk (1.6), the function
w — u(zg,w) extends holomorphically across a boundary point w; of
D, , then z — u(z,w;) extends holomorphically to all of C. This was
the tool for Fredholm’s attempt to prove the non-continuability of (1.1),
and is (as shown in [KS]) incorrect. We emphasize that the error lies
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in attempting to draw conclusions from the behaviour of w — u(zg, w)
for just one value of zq . :

To “save” Fredholm’s idea one can first establish the following re-
finement of the above-mentioned result of Kovalevskaya. We precede it
with a convenient definition.

Definition. Let f be a function of one complez variable, holomorphic
on a neighborhood of zo. Then, for k € N the k-fold symmetrization of
f about 2y is the function t — F(t; 20, k) where

k-1
F(t;z0,k) = -Ll- Z f(zo +wjt), w = e2mi/k
=

Note that F' is holomorphic on a neighborhood of ¢ = 0. The
following is proven in [KS].

Theorem A. If u 1s holomorphic on the bidisk (1.6) and satisfies (1.5)
there, and w — u(z¢,w) extends holomorphically to a neighborhood of
a boundary point wy of D, then the 2-fold symmetrization of z —
u(z,w;) about zo extends to C as an entire function of order at most

2.

For later purposes note that if (1.5) is replaced by

ou Fu
_— = — - D>
Oow 9z k23

the corresponding conclusion holds for the k-fold symmetrization of f
about zj.

Now we can apply Fredholin’s idea correctly to show that ¢ in
(1.1) is not continuable across any point ( = €'”,vy € R. Indeed, if
it were then, with u given by (1.4), u(0,w) would extend from L to a
neighborhood of its boundary point wy = €' and so, by Theorem A,
the 2-fold symmetrization about 0 of 307/ a, ei"*vem* would extend
as an entire function, that is

(1.7)

o0

. 2 ~ _
§ an 6“' 1'0(6"- +€ nz)

n=0

would extend from a neighborhood of = = 0 to the entire z-plane with-
out singularities. But, because of assumption (1.2) this is a Laurent



456 J. M. ANDERSON, D. KHAVINSON AND H. S. SHAPIRO

series in e with finite positive convergence radii. Since a Laurent se-
ries must have at least one singularity on each boundary circle of its
annulus of convergence, we have a contradiction, and the noncontinua-
bility of ¢ in (1.1) is proved.

Mittag-Leffler’s exposition [ML] of Fredholm’s idea ends with the
suggestion that the method employed can be applied to more general
situations. Let us see what happens when we try to apply the (cor-
rected) Fredholm method to showing that 3 oo ; an ¢ "* is not continu-
able across any point of 9D, where again we assume (1.2) (since the gaps
are bigger one might expect the proof to be easier, but the strangeness
of the method is that it does not work this way, as we will see). Intro-
duce again the variable change ( = e" and look at

oo

. .3
u(z, 'lU) = Z a"en" C" w

n=0
which is holomorphic on C x £ and satisfies

Ou O3u

do 93

By the generalized form of Theorem A, if u(0,w) were continuable
across a point w =1 vg, (vg € R) of 9L, then the 3-fold symmetrization
of z — u(z,iv9) about 0 would be entire, i.e.

(1.8)

oo
(19) Za‘" einsvo (en: +evns 4 ewzn:) ,
n=0
where w = €?™/3 would be entire. But, could this happen? Now

(1.9) is no longer a Laurent series in e, but a Dirichlet series of quite
general type: Y ¢ ¢*m* with complez exponents {\,,} lying on three
rays through 0. Even if (1.2) prevents the series from converging on the
whole z-plane, there are no general theorems that rule out the analytic
continuability of (1.9) to the whole plane. (Indeed, see [L] for discussion
of phenomena which may occur).

It is fairly easy to show (see below, Section 4.2) that if we strength-
en (1.2) to

0< Iim ]n.,,|1/"' <c
n—aoo

for a sufficiently small ¢ > 0, then (1.9) cannot extend to all of C, and
thus, in this case, we do obtain the noncontinuability of Zg" an(C n®,
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But, perhaps surprisingly, the argument really fails essentially if only
(1.2) is assumed. That is (and this is one of the main results of the
present paper):

There ezists complez {cn}or, with

(1.10) 0<Tmlen)'"=6<1
such that
o 2
(111) Z Cn (an + ewn? + e¥ nz) ,
n=0

where w = €2™/3 (note that we have absolute convergence on a neigh-

borhood of z = 0) eztends without singularities to all of C. Indeed, the
sum of this series can vanish identically.

An equivalent form of the last statement is obtained by evaluating
the Taylor coefficients of (1.11) at z = 0:

There ezist {cn} satisfying (1.10) such that

oo
E e,k =0, k=0,1,2,...
n=0

(where 0° is interpreted as 1).

This formulation naturally leads to the consideration of the equa-
tions

oo
(1.12) Zc,, n?* =0, k=0,1,2,...

n=0

We shall show that solutions satisfying (1.10) exist for each p > 2, but
never for p < 2. Moreover, for p > 2 there is no solution if § < 6, where
6, is sufficiently small, and for p integral we shall find the best possible
value of 6, . In the course of this work, certain other questions which
arise naturally will also be discussed.

The rest of the paper is organized as follows. Section 2 deals with
cases where (1.12) (and some more general equation systems) admits
only the solution ¢,, = 0. This is closely interwoven with known re-
sults concerning quasi-analytic functions. Section 3 contains our main
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result (Theorem 3.1) which shows the sharpness, in an important case,
of the uniqueness theorem of Section 2; this example sheds light on the
possibility of extending Fredholm’s method to other kinds of gaps. In
Section 4 it is shown that under certain conditions a function defined
by a Dirichlet series of fairly general type cannot be analytically con-
tinued much beyond its domain of absolute convergence; this enables
one to prove non-continuability of certain gap series by (a modification
of) Fredholm’s method. Section 5 contains a brief discussion of inte-
gral analogues of the problem treated in Sections 2 and 3; here fairly
complete results are much easier to obtain.

2. A uniqueness problem for Dirichlet series.

Let us first consider a rather general situation, a Dirichlet series
oo
(2.1) Cnerm,
n=1
where {A,} and {c,} are complex. We may of course assume the A, are
pairwise distinct. From this point on various combinations of hypothe-
ses could be made, some leading to uniqueness theorems and others
not.
J. Wolff [W] constructed in 1921 examples that imply one can find
{An} bounded and {¢, } not all zero satisfying
o
(2.2) len] < 400
n=1
and such that (2.1) (which then converges for all complex z) sums to 0
(however, Dirichlet series are not discussed in [W]). This is equivalent to
finding a nontrivial solution {c,} satisfying (2.2) to the infinite system
of linear equations
oo
(2.3) deadi=0. k=012,

n=1

Wolff’s result is not given in terms of (2.3) but rather as the solution of
a then long-standing uniqueness question concerning series of the type

(2.4) > - f", :
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where {z,} C C. If (2.2) holds, (2.4) converges uniformly on com-
pact subsets of C\ K, where K denotes the closure of {z,}, and various
investigators (Borel, Carleman, Denjoy, Wolff, Beurling, . .. ) have stud-
ied conditions under which (a) the “apparent singularities” {z,} of the
sum (2.4) really are singular points for the sum function (which is ana-
lytic on each component of C\ k'), and (b) in case there is more than
one component, the sum functions corresponding to different compo-
nents are analytic continuations of one another. (e.g. Borel showed
that (a) and (b) may fail if only (2.2) is imposed while they hold if
Iim |c,|!/™ = 0.) The uniqueness problem for (2.4) is of course sub-
sumed under (a). Henceforth we will not mention interpretations of
our results involving series (2.4), but refer the reader to [BSZ] for this
connection.

A. Beurling showed [Be, pp. 209-210] that a series (2.1) can con-
verge everywhere to zero with bounded {A,} and non-zero {c,} that
satisfy not merely (2.2) but much stronger conditions, e.g.

(2.5) len| < exp (—n/(logn)?),

whereas this is not possible if

1/n

Ti-x-n_lc,,] <1.

Returning to Dirichlet series (2.1), we will in the remainder of this
section be considering cases where A, > 0 and A, — co. We begin with
a basic uniqueness theorem. This is in principle known, as well as the
corollaries we present; these results are scattered in the literature on
quasi-analytic functions and Banach algebras. We need them to put in
proper perspective the results of Section 3, and we include proofs for
the reader’s convenience.

Theorem 2.1. Let0 < Ay < My < ..., and

2
(2.6) T Joen)
n—oo Xn
Suppose, for some ¢ > 0,
(2.7) len| < €75V
If
(2.8) Zc,,Af;zo, k=0,1,2,...,
n=1

then all ¢, vanish.
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REMARK. This can be interpreted as a uniqueness theorem for series
(2.1). Indeed, (2.6) and (2.7) imply that (2.1) as well as all its formally
differentiated series converge absolutely for {z : Rez < 0}, to some
function f. Then (2.8) is the assertion that f and all its derivatives
vanish at the boundary point 0 of this half-plane.

Before giving the proof, let us note some corollaries.

Corollary 1. ([Ca 2]). If p > 0, and for some € >0

(2.9) len| < exp (— 5n”/2)

then

(2.10) Z canP* =0, k=0,1,2,...
n=1

implies ¢, =0 for alln.

This is just the case A, = n? of the theorem, and much of the rest
of this paper is devoted to the question of sharpness of the condition
(2.9). A few cases follow from well known results.

First of all, look at the case p = 2. The corollary says that if {c,}
decay exponentially, and Y"1 c, n?* all vanish then all ¢, vanish. Here
we certainly cannot weaken the hypothesis of exponential decay to, say

(2.11) len] < exp (—an®)

for some o < 1 since, as is well known from the theory of quasi-
analytic classes (¢f. [M]), given o < 1, there is a nontrivial function
Yo% | €a cosnf, where {c,} satisfies (2.11), for which all derivatives
vanish at # = 0, which is to say Y_7° cn n?* =0for k =0,1,2,... See
also [Ha, p. 27 ff.] for a pioneering discussion in this vein.

Next, examine the case p = 1. The corollary says that

(2.12) len| < exp (—en'/?)
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imply that all ¢, vanish, or what is the same, (2.12) and the presence of
an infinite order zero of 35 ¢, €™? at some 6 imply all ¢, vanish. This
is due to Carleson [Ca2]. Here again, one cannot weaken hypothesis
(2.12), say to

(2.14) lca| < exp (—bnP)

with 8 < 1/2. Indeed, it can be shown that if # < 1/2 the unique outer
function F, in the unit disk satisfying

|F,(ei9)| = exp ( - 'sing _a) , 9| < =,

where o < 1, has Taylor cocfficients {c, } satisfying (2.14) if o = o(f)
is sufficiently close to 1. (Again. c¢f. [Ha, pp. 27 ff.] for closely related
material.)

In the next section we shall discuss the sharpness of (2.9) in some
other, more delicate cases. We may remark (as we will see in Section 5)
that for the integral analogue of these problems matters are much sim-
pler: different values of p are reducible to one another by a simple
scaling argument (change of variables) but that is not possible with
series. From a technical point of view, we stress that ezamples to show
the sharpness of (2.9) are the main concern of this paper.

Corollary 2. ([Ca2]). If f(z) = .02, ca =", where {c,} satisfy (2.12)

and f has infinitely many zeroes in the open unit disk D, then f =0.

ProoF. By Corollary 1 it is enough to show f(e'?) has an infinite order
zero at 6 = 6, if f vanishes at a scquence {z;} C D with limz; = et
This is a well-known fact; we include the simple proof. It is based on

Lemma. [TW, Prop. 4.5]. If f is analytic in D and its Taylor coeffi-
cients {an} satisfy

(2.15) lan| = O(m™*), n— oo,
for every positive k (or. what is the same, f € C* (D)), and f(£) =0

for some € € OD. then f(z) = (z - €)g(=) for some g analytic in D and
m C(D).
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PROOF OF LEMMA. We may assume £ = 1. Write f = Y 0° an 2™,
g=>3¢g b,z" where g = (1 —z)~!f is analytic in D. Then,

bn =ao+ay+---+an=—(any1 +anp2 +-:-)
since Y ;" an = f(1) = 0. Hence
bn| < lant1| + |ans2| + -+

so that, using (2.15), also {b,} satisfies the estimates (2.15), hence
g € C*°(D) and the lemma is proved.

DEDUCTION OF COROLLARY 2. If f vanishes at infinitely many points
{zj} of D and £ € OD is a limit point of {z;} then f({) =0, so f =
(z = €) g(z) where g € C®(D). Now, g(z;) = 0, so g(£) = 0 and hence
g = (z = &) I for some h € C=(D). Thus,

f(z)=(z=€?%h(z), heC>D).
Continuing in this fashion we see that for each m we have
f(2)=(z=8)" fm(2)

for a suitable f,, € C(D). Thus, f has a zero of infinite order at ¢,
which completes the proof of Corollary 2.

REMARK. It is not hard to show that there are non-trivial functions
analytic in D whose Taylor coefficients satisfy (2.14), for any prescribed
B < 1/2, with infinitely many zeroes in D.

PRrROOF OF THEOREM 2.1. Note that (2.6) and (2.7) imply the absolute
convergence of cach of the series (2.8). Consider now the function

(2.16) glx) =Y epcos(A/?z).  ce€R.

n=1

In view of (2.7), ¢ extends as an analytic function of z = = + iy into
a strip {z : |Imz| < &} for some & > 0. Then (2.8) expresses the
fact that all even-order derivatives of ¢ vanish at z = 0. Since ¢ is
an even function, ¢ = 0. Now, g(a) is the Fourier-Stieltjes transform

of the discrete measure which places masses ¢, /2 at points £A1/2, By
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the uniqueness theorem for Fourier-Stieltjes transforms this measure
vanishes, i.e. all ¢, are zero. This concludes the proof.

REMARK. The hypothesis |c,| < e=**'" in Theorem 2.1 could be
weakened. What is essential is that ¢, are small enough so that

Z Cn cos(')\}l/zz)

falls into a quasi-analytic class on R, in the sense of Denjoy-Carleman.
One knows precisely what decay of {c,} is necessary for this, ¢f. [M].
We shall not however pursue this kind of generalization, which involves
only well-known ideas.

Carleson [Ca2] obtains Corollary 1 in a somewhat different manner.
He introduces

can’

(2.17) w(s) =

WK

n=1

which is clearly an entire function of s under the hypothesis (2.9). It is
easy to see (2.9) implies the estimate

l)
(2.18) log [o(o +i7)| < I:J ologo + O(o)

for ¢ > 0. He now applies the following theorem, for which see [Cal]:
If » s analytic in the Tight half-plane and satisfies

(2.19) lo(o +ir)| < Ce™ )|

where m(c) 1s convez on RY and for some p > 0

(2.20) / exp ((—p/2)m(o)/o) do = oo,
]

and

(2.21) p(pk) =0, F=0.1,2,...,
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To obtain Corollary 1 from this one uses (2.18) to verify that (2.19)
and (2.20) hold, and (2.21) is just (2.10); hence ¢ = 0, which easily
implies that all ¢,, vanish.

The theorem employed by Carleson is known to be sharp, but that
does not imply the sharpness of Corollary 1 because a function satisfying
an estimate (2.19) is not necessarily representable as a Dirichlet series
(2.17).

Since the theorem is only stated, but not proved in [Cal], we refer
the reader to [Mal, pp. 184-185] for a proof.

3. An example of non-uniqueness and some of its ramifica-
tions.

Theorem 3.1. For any p > 2, writing A,, = n? (n > 0), there ezists a
complez sequence {c,} satisfying

T /n _ — o _ -7'_[')
(3.1) nlﬂlgolc,,] ) (mp( 7rctgp

such that

o

(3.2) fz)=) enes

n=0

(which converges for Re = > 0, and eztends as a C™ function to the
closed tight half-plane) has an infinite-order zero at z = 0. In other
terms,

(3.3) > et =0, k=0,1,2,...

n=0
Moreover, for positive x
(3-4) 1f(2)] < C exp (= ca™'/),

where C, ¢ are positive constants.
For integral p, the constant on the right side of (3.1) 1s sharp, in the
sense that no such sequence {c,} ezists with 0 < lim, — |cn]1/" < bp.
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We postpone the proof, and discuss some consequences of the the-
orem. Let p > 3 be an integer, and let {c,} be as in the theorem. As
in Section 1, form the p-fold symmetrization of the function

[e ]

(3.5) g9(z) = Z cne F

n=0

about the origin. We may denote this by F(z;p).
Since the p-fold symmetrization about 0 of e* is 3 7o, 2P*/(pk)!,
one computes easily

n=0 k=0
- : e (—n)?F =0
|
k=0 (]) h ) n=0

in view of (3.3). We thus have

Corollary. For any integer p > 3 there ezists a Dirichlet series (3.5)
whose coefficients satisfy (3.1) (and hence: g 18 analytic in a half-plane
{Rez > —6} for some 6 > 0) whose p-fold symmetrization about the
origin vanishes identically. In other termas,

-1 o
(3.6) enexp (—whnz) =0, w = 2Ti/P

k=0 n=0

=]

REMARK. Note that (3.6) is a Dirichlet series of general type whose
“exponents” are the sct {—wkn : 0 <k <p-1,n € N} which is
distributed along p rays through the origin. Condition (3.1) guarantecs
that this series converges absolutely on a neighborhood of = = 0, yet not
in the whole planc. But the sum is an entire function (indeed, zero!).
This behaviour is in stark contrast with the cases p = 1 (Taylor series
in e7%) and p = 2 (Laurent series in ¢77). Recalling our discussion
of Fredholm’s method in Section 1. we see that (1.9) could in fact be
entire, subject to (1.2) ... so this method encounters an unforeseen
difficulty when applied to a series with gaps like Z(L,IC"J. (Thus,
Mittag-Lefller’s opinion that Fredholin’s method could be generalized
may be too optimistic; however, some gap series of type Y a,, C"3 can be
exhibited by Fredholn's method by requiring lim |tn ['/" suitably small,
sce the discussion following Theorem 4.1 below.)
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PROOF OF THEOREM 3.1. The proof is based on a construction that has

been used previously by Hirschman and Jenkins [HJ1], [HJ2], Anderson
[A] and others for somewhat different purposes. Let

(3.7) o(w) = ﬁ (1 + 7—:‘;) .
n=1

Clearly ¢ is an entire function. By estimates given later, we will show
it has order 1/p, and moreover that

(3.8) f(z) = (2ri)™] / ()" 1e™ duw,

~

where ¢ € R, and v denotes the imaginary axis traversed from —oo
to +oo, is an absolutely convergent integral; and that translating -
parallel to itself (to a position that does not contain a point —n™?
(n € N)) preserves convergence, and changes the integral only by the
sum of residues of the poles passed over. Moving the contour leftwards
to the position

(39) Tm = {R(“‘ w = —“()\:11/\111-(—1)1/2} )
where for convenience we denote
(3.10) App =m™P

and letting m — oo gives, formally,
(3.11) Floy =Y (=An) e

As we will show later. for n > ng we have
(3.12) log | (=A,) | ~ (metg(m/p)+o(1))n

as n — oo, and so

(3.13) HOED PPN e
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converges uniformly for z on compact subsets of {Rez > 0}. We shall
show that this function f satisfies the requirements of the theorem.
Thus, ¢, = ¢'(An)7!, and (3.12) implies (3.1).

We will first verify (3.4) which, since clearly f is C* on the closed
right half-plane, implies (3.3) (of course (3.4) is much stronger than
(3.3)). Fix z > 0in (3.8) and move v to the right, to {w : Rew =z7'}.
A crude estimate gives

(1/z)+ico
e —

(3.14) f@lS 5 [l
(1/z)—1i00

and to get (3.4) from this we require a lower bound for |p(w)|. We
have for Re w =u > 0,

oo
(3.15) lo(w)] = |1+ w| |1 + 27Pw) H 11+ n"Puw|
n=3

and the infinite product is not less than

H (14+n"Pu) > H (nPu) > (N)Pul =2,
n=3

3<n<ul/r

where N denotes the least integer > «!/?. Simple estimates based on
Stirling’s formula show the last expression exceeds exp(pu!/? — ¢ logu)
for some positive ¢ (henceforth ¢, c;, ... will designate positive constants
whose precise value is of no concern). Hence, from (3.15),

(o +i0)] 2 ¢ (14 v?) exp ((p/2)u'/?)

and inserting this in (3.14) (with v = 1/2) gives (3.4).
We turn now to the estimate (3.12). From (3.7),

(3.16) o (=A,)=n" ﬁ (1 — i)

mP
m=1

m#n
Now

bl

. 77” n? > m
T — - | = b —
(3.17) log I I 11 o E log |1 — E_] Y (n) ,

m;én m:;én m#n
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where
(3.18) P(t) =log|l —t7?|, t>0.

Note that for p > 1 the improper Riemann integral of ¢ over (0, +o0)
exists, and since 9 is piecewise monotone (decreasing on (0, 1), increas-
ing on (1, +00)) it is easy to verify that the Riemann sums

> m
—1 m
e (3)
converge to 4, = fooo U (t)dt. Thus

> m
E s (—) ~A,n, as n — oo,
n

m=1
m#n

SO

H' _7_]; =exp ((4, +o(1))n)

m ;én

which yields (3.12) if we verify that the improper Riemann integral

(3.19) A, = / log|l —t77|dt
0

has the value 7 ctg(7/p). For this, see [GH, p. 84, formula 8a]. This
proves (3.12).

To conclude the proof of the theorem, we now derive the estimates
for ¢ that were neecded to justify moving the contour of integration in
(3.8). These are well known (¢f. [Boa, p. 19]), but for the reader’s con-
venience we present the details since some of the intermediate estimates
will be required. We first study » in C\ Q4 where 3 < /2 and

(3.20) Qp={z: |r—argz| < 3}.

In C\ Qp, loge has a single-valued analytic branch that is real on
the positive real axis. In the following calculation, we work with this
branch, and restrict = to C\ .

log (=) Zlon (1—}-—) :[+ log(1+t77z)d[t]
(

n=1
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where [-] denotes the greatest integer function. Applying partial inte-
gration to the last integral gives

(oo)
[l
10g<p(2)——p2/1 el

< dt < dt
2 —p= : L
(3.21) p*/] z+tP+O(| I/, t|z+tP|)

The first integral on the right can be evaluated by applying Cauchy’s
theorem. First, observe that

®dt ®  dt _
/ =/ FO( ), oo
1 JO

4t s tr

and, writing = = re'?, we move the line of integration in the right-hand

integral to {argt = 6/p}, so that t = se'?/? s > 0. We get

< dt 1 > ds
/0 Z+ﬂ)—-(e>\pz(z—)—1)9>/0 T+ sP

which after some simplification becomes C,, (re*?)~1*1/? where C, is a
positive constant (C), = fooo(l + u?)~1 dw). Thus, the first term on the
right of (3.21) is C' =1r 4 0(1) for large z € C\ Q5. We will now show
that the second term in (3.21) is of sinaller order. This will establish:

(3.22) o(2) ~exp (C) ='/7)

r-

holds for large = outside each sector symmetric with respect to the neg-
ative real azis (where C'l', is a positive constant depending only on p).
In particular, ¢ s of order 1/p. Obscrve that (3.22) gives the rapid
decrease of | (z + iy)|™! as |y| — oo which was required for moving
the line of integration since, from (3.22) (with = + iy = z = re'?), we
get

(3.23) lio( )] ~ exp (C'l', cos(6/p) r]/") . :€C\Qp

and, since p > 2, cos(8/p) is positive for |6 < 7.

Now we estimate the O-term in (3.21). Consider separately the
cases > 0 and = < 0.

For x > 0, ’f: + f”]2 > ]:]2 + t2”, SO

o dt o dt
z — <z M g N
M/1 tlz + | <| ![ (12 4 |2]2)1/2 = Clog(1+=1),
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while for Rez < 0, z € C\ 5 we have
[z + 17| > clz], c=c(B).

Hence

/1t1~+tp| / / t|z+tv

(where T = (2 [z[)l/p), which is

/T dt /°° dt
< _ e —
= clzt ) t(a2)te

(since |z +tP| > tP — |z| > (1/2)tP for t > T),
= (c|z)" log T + O(T?) = O(|2|~ log =)

for large |z|. Hence, the O-term in (3.21) is O(log|z|) for large |z|
outside §lg, and (3.22) is completely proved.

To conclude the proof of our theorem we need only verify one last
point: that the integral (3.8) tends to zero as v is moved sufficiently far
to the left, since that was assumed in the passage from (3.8) to (3.11).
For this purpose we recall that, since v is of order 1/p < 1/2 there is a
sequence It; — oo such that

(3.24) logm (R;) > cos(n/p) log M(R;),

where m(R), M(R) denote the minimum and maximum of |p(w)| on
{lw| = R}, respectively (see [Boa, p. 40, Theorem. 3.1.6]). Thus, we
may move v leftwards in (3.8) through the sequence v; , where (for some
fixed 3, say 3 = m/4) v; consists of an arc of {|w| = R;} inside g,
completed by vertical half-lines outside 5. It follows at once from
(3.23) and (3.24) that f.’j [@(w)|~! |dw| — 0 as 7 — oco. This completes
the proof of Theorem 3.1, apart from the sharpness of the constant in
(3.1) to which point we shall return in the next Section.
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4. A result implying existence of singularities.

We saw, in the Corollary to Theorem 3.1, that if p is an integer,
p > 3, there exist complex {c,} with

(4.1) 0< Im |e |V =6<1
n—oo

such that
(4.2) g9(z) = Z cne "F
n=0

(the series converges absolutely to a function holomorphic on a neigh-
borhood of 0) whose p-fold symmetrization about 0,

1 |
(4.3) F(z;p) = > Zg (wrz) , w = e2milr,
k=0

vanishes identically (and hence, is analytically continuable to all of C).
We now show that for small enough é in (4.1), this cannot happen:

Theorem 4.1. Let p > 3 be an integer and suppose {c,} satisfy (4.1)
with
§ < 6, =exp(—metg(m/p)).

Then F(z;p) does not eztend to all of C without singularities; in fact, it
has a singularity in the disk centered at 0 of radius (72 +(log(1/6))%)!/2.

Observe that this implies the assertion in Theorem 3.1 concerning
the sharpness of the constant. We do not know whether it is sharp also
for non-integral p.

Before giving the proof, we observe a consequence of the theorem:
for {c,} satisfying (4.1) with § < 6, the power series 3 o° cnlC™ i3
not continuable across any point of JD; this follows by the (modified)
Fredholm argument we presented in Section 1. Of course, this argument
has the blemish that the upper hbound imposed on § is purely fortuitous;
one could remove it by combining the argument given with Hadamard’s
multiplication of singularities theorem and a few other things (see [KS]
for details).
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PrOOF OF THEOREM 4.1. Observe that (4.2) converges absolutely for
Rez > —o, where

1
(4.4) o =log 3

and since ¢ has period 277, it must have a singularity at a point zp =
—0 +1yo for some yo with —7 < yp < 7. Let L denote the line segment
joining 0 to zo. It is clear that if {w¥zp: k =1,2,...,p— 1} all lie in
{Rez > —o}, the analytic continuation of F(z;p) from 0 to 2z, along
L is possible as far as zp, and encounters a singularity at zg, since
each g(wFz) for 1 < k < p — 1 is analytic on a neighborhood of the
closure of L. And it is geometrically obvious that this occurs if the
angle subtended by the points —o £ 2yg at 0 is less than 27 /p. Since
this angle can not exceed 2arctg(mw/o). we will have a singularity of
F(z;p) at z if
T 2
2arctg — < —
4 p

r.e. if 0 > wetg(w/p), and in view of (4.4) this completes the proof.

5. The integral analogue.

Corollary 1 to Theorem 2.1 has an integral analogue:

Let f be a complez-valued continuous function [0, +00) and p > 0.

I
(5.1) |f(x)] < C exp(—ca?’?)

for some positive constants C., ¢ and
o<

(5.2) / fla)yaP der =0, k=0,1.2....,
0

then f = 0.

The proof is similar to that given in the discrete case, and may be
left to the reader. As before, we are mainly interested in examples to
show the sharpness of the condition (5.1), and shall prove:
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Theorem 5.1. Given anyp > 0 and 0 < g < p/2 there 1s a continuous
f on [0,00], f # 0, satisfying (5.2) and

(5.3) |f(z)] £ C exp(—z9), z>0.

PROOF. As is well known, for 0 < b < 1 there is a non-null entire
function F' of exponential type satisfying

(5.4) |F(z)| <e ' 2eR.

The Fourier transform F of F (which is infinitely differentiable) has
compact support. Multiplying F' by a suitable exponential ¢** we can
arrange that F vanishes on a neighborhood of 0, and that the even part

of F,
F(a)+ F(—x)
D)

Z

F(x) =

does not vanish identically; we assume this is done. Since all derivatives
of F vanish at 0,

oG
(5.5) / F(a)a"dx =0, n=20,1,...,
hence
o0
(5.6) / F.(z)2*dx =0, k=0,1,2,...
0

"

Changing variables in (5.6),
(5.7) / F.(r2ygrk /2= qr = 0, k=0.1,...
0

Letting f(t) = tP/271 F,(#"/?) and observing (5.4), it is clear that f
satisfies (5.3) if b is chosen greater than 2¢/p. This completes the
proof.

REMARKS. The idea to look at the integral analogue was suggested to

us by D. J. Newman, who also provided an elegant proof of a weaker
variant of Theorem 6.1. which we here sketch briefly. Starting from

o
T(np) = / ¢~ lag
0
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where p > 2, rotate the line of integration to {argt = 7/p} giving
R .
I'(np) = (—1)"/ exp(—e! ™ /Py y™P Y dy
0

whence, taking imaginary parts

/ e~ cos mu/p 5111(51n(7ru/p)) P du=0

0 u

holds for n = 0,1,2,... Thus, writing a = cos(m/p) >0, b= (1—a?)!/2
we see that, setting

(58) f(u) = e Y (M) ’

u

(5.9) / fw)u™du =0, for n=0,1,...
0

This gives f which is precisely the continuous analogue of the sequence
{cn} we constructed in Theorem 3.1: it decays exponentially on R*
and the moments (5.9) vanish. But for fixed p > 2, this result is weaker
than Theorem 5.1 (compare (5.8) with (5.3)). Moreover, the method
we used to prove Theorem 5.1 can he made to yield more, since F' could
be chosen to satisfy not merely (5.4), but

|F(x)] < exp(—¢(|z]))

where ¢ is any sufficiently regular positive increasing function on R*
with o
t
a ),) dt < oo.
o 1+t

Since these ideas are very well known, we do not pursue the details.
It would be interesting to extend Theorem 3.1 to the discrete ana-
logue of Theorem 5.1, but we do not know how to do this.
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