REVISTA MATEMATICA IBEROAMERICANA
VoL. 9, N.© 2, 1993

Initial traces of solutions
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Introduction.

The main result of this paper is an integral estimate valid for non-
negative solutions (with no reference to initial data) u € L} (R™ x

(0,7)) to
(01) Uy — A(u - 1)+ = Oa in D’(Rn X (OvT))v

for T > 0, n > 1. Equation (0.1) is a formulation of a one-phase Stefan
problem: in this connection u is the enthalpy, (v —1)4 the temperature,
and u = 1 the critical temperature of change of phase. Our estimate
may be written in the form

(0.2) / u(z,t)e /TN <Cc . 0<t<T,
]‘Rn

where C depends on n,T,t,u but it stays bounded as ¢t — 0.
Inequalities of this kind are well known in the case of diffusion

equations

(0.3) us — Au™ =0, m>1, in D'(R™ x (0,7)) .
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316 D. ANDREUCCI AND M. K. KORTEN

When m = 1 and (0.3) reduces to the standard heat equation,
it goes back to Tichonov [18], Téacklind [17] and Widder [19] that the

representation formula
(0.4) u(z,t) = (47)" ™2t — to)‘"/z/ u(€,t0) e 16—217/(4(t—t0)) de |
Rn

0 <ty <t<T,z€R" actually holds for all nonnegative solutions to
(0.3) with m = 1 (see also [14] and [3] for extensions to more general
equations).

In the case of the porous media equation, i.e. (0.3) with m > 1, it
was proved in [4] that

p—-(n+2/(m—1)) / u(m,t)dm
B,(0)

1+(m—1)n/2
~1/(m-1) 2 u(0,3T/4)
S Cc [T / m + Tﬂ/ pn+2/(m—l) ’

(0.5)

0 < t < T/4, is satisfied by all nonnegative solutions (see also [9] and
[2] for extensions to more general equations).

The first consequence of estimates like (0.2), (0.4)-(0.5) is the fact
that the growth of u as |z| — oo cannot be arbitrary: indeed it must
satisfy the restriction imposed by the corresponding inequality. We
remark that the growth allowed by (0.2) is the same as the one given
in (0.4) (s.e. roughly speaking, u(-,t) ~ eCOl=I* a5 |z| - 00) though
the representation formula (0.4) obviously cannot hold for solutions to
(0.1), and though the property of infinite speed of propagation does not
hold for (0.1), contrarily to (0.3) for m = 1.

It can be easily shown that the growth predicted by (0.2) is actually
optimal (see Section 2); in Section 3 we prove that solutions to (0.1)
exist corresponding to arbitrary nonnegative locally integrable initial
data satisfying (0.2). A by-product of this existence result is that the
growth condition u(z,t) ~ CWIzl?, |z] — oo, t > 0, is fulfilled in
a pointwise sense (rather than in an integral sense as in (0.2): see
Section 3).

A second consequence of (0.2) is the existence of a trace of u for
t = 0 (the “initial trace”). This trace is -in general- a Radon measure
and it is taken in the appropriate sense. It follows from the results
proved here that the initial trace to a solution u to (0.1) belongs to
G1/21, where for C' > 0 we define

(0.6) Gc = {p Radon measure in R : e‘clzlzdu < +oo} .

Rn
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The initial trace is actually unique (see Section 3). The technique
of proof of (0.2) relies on a suitable procedure of approximation of u by
compactly supported (in the space variables) solutions to (0.1) and on
the use of the fundamental solution to the heat equation.

Another essential ingredient is the continuity of (u — 1)4: this
follows from the results in [8], which in turn, may be applied since
u € LZ(R™ x (0,T)) (¢f. [13]) and (u —1)4 € Wy} (R™ x (0,T)) (see
Section 2).

Also, a comparison result valid for solutions to (0.1) belonging to
Gc is employed extensively; this follows from a generalisation of the
results in [7] (see Remark 2.2).

We remark that the results found here carry over to more general
equations of the type

uy— Lu—-1)4+ =0,

0
where L is a linear elliptic operator, | == — L ] z = 0 having a funda-

ot
mental solution (provided the solution u satisfies the local regularity
assumptions quoted above). This follows from the proofs.
It is also clear that the assumption that u be nonnegative, can be
relaxed to u > —c, ¢ > 0. Indeed v = u + ¢ > 0 fulfils

ve—A(v—c—1);1 =0.

The paper is organised as follows: in Section 1 we recall some
known facts and establish some further regularity results. In Section 2
we prove the inequality (0.2). In Section 3 we prove some consequences
of inequality (0.2); namely, existence and uniqueness of the initial trace,
and, conversely, existence and uniqueness of a nonnegative solution to
the Cauchy problem for (0.1) taking an initial datum u, € L} _(R™) N

Ge.

1. Regularity results.

In this section we summarize some known facts about integrability
and local boundedness of solutions, and we also prove some regularity
results, which we will need in Section 2.

The following sequence of results is obtained in [13] by following the
methods of [10]. For future reference we will state them as a theorem.
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Theorem 1.1. Let 0 < u € L}, (R™ x(0,T)) be a solution in the sense
of D'(R™ x (0,T)) of

(1.1) ug = Alu —1)4
e
T
/ / (upe + (u — 1)+ Ap)drdt =0,
R" JO
for every ¢ € D(R™ x (0,T)). Then

i) For any smooth bounded domain D CR" and 0 < a < b < T,
there exist nonnegative measures vo, vy on D and p on 0D X [a,b] such
that

[ @ vyin = [ w0
D D
(1.2) +//Dx(a ) (u—-1)+A¢+u%/)) de dt

//apx[a ) 5”

for any 4 € C°(R™ x (0, T)) such that |, (., =0.

0 . oy } . .
Here B denotes differentiation with respect to the inward unit normal
n
to OD.
ii) For a.e. t, dvy = u(z,t)dr, 0 < t < T. We remark that
by considering a countable sequence of domains {D,,} invading R™, v,
may be taken independent of the domain D.

i) u € LL (R™ x (0,T)).

iv) If for 1 > 0 and E C R™ measurable, |E| > 0, u(y,?) < 1 a.e.
in E, then u(z,t) < u(z,t) for a.e. 2 € E and 0 < t < 1 (this was
found independently also in [1]).

v) (Comparison) If 0 <v € L}, (R" x (0,T)) is a solution to (1.1)
such that the traces of u and v on the parabolic boundary of D x (%,t)
(D a smooth bounded domain in R™, t > 0) are ordered, the same order
holds for u and v a.e. in D x (%,t).

vi) (u — 1)4 satisfies

0 . :
Alu—1)4 —-é—t(u—l).i. >0 in D'(R™ x (0,T)).
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vii) u € L (R™ x (0,T)).

REMARK. In fact Theorem 1.1 applies to local solutions of (1.1) defined
in 2 x (0,T), @ C R", with the obvious modifications.

Lemma 1.2. For any solution 0 < u to (1.1) in the sense made precise

n Theorem 1.1, (u — 1)4 belongs to Wg’l(K), for any compact K C
R™ x (0,T).

PROOF. For the sake of notational simplicity, we assume that u is a
solution to (1.1) in R™ x (0,T + 6), 6 > 0. Defining u and (u — 1)4 as
zero for t < 0, we let

un(it)= [ [ v )pm(e = w)rm(t = 5)dy s,

and analogously we set w, = (4 — 1)4 * p;mTm, Where pn, and 7, are
the usual (compactly supported) mollifiers. Therefore we have by (1.1)

(1.3) -aa—tum(x,t)—Awm(z,t):O, in Bg X (t0,T),
where R > 0 and T > ty > 0 are arbitrarily fixed, and m is large
enough.

Let a(s) = (s — 1)4, and an,(s) a smooth regularization of a such
that a,,(s) = a(s) for s > 14+ 1/m and a;,(s) > 0 for s > 0. Define
v, as the solution to

vy = Aap(v) in Bg X (to,T),
(1.4) v(z,t0) = um(z,to) for z € Bg,
am(v) = wnm on 0Bgr X (t0,T).

By standard calculations (see e.g. [6]) it follows that for any K C
Bpr x (t0,T), K compact,

”v’"“Loo(Bn x(to,T)) = C(M),
”v"m(”m)”zﬂ(x) + ”am(”m)t”Lz(K) <C(M,K),

where M = ||u]|Loo(Bmx(to/2,T)) <oo.
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Therefore, choosing a subsequence of {v,,}, which we denote by
{vm} again, we may prove that a v € L>(Bg X (o, T)) exists such that

VUm — ¥ weakly in L*(Br x (to,T)),
am(vm) = (v —1)4 a.e. in Br x (t0,T),
(1.5)  Vam(vm) — V(v—1);  weakly in L2 _(Bg x (to,T)),

0 0 o
aam(vm) — E(v -1)4 weakly in LZ (Br x (to,T)) .

Next we show that (v —1)4 = (v—1)4 in Br x (to,T). We follow
[16], and introduce the smooth function

T
Ym(z,t) = /t- (am(vm) — wm)(z,7)dT .

We subtract the first equation of (1.4) from (1.3), multiply by ¥, and
integrate by parts over Bg X (to,T), finding

./toT /Bn(vm~ Um )(@m(Vm) — W) dz dt
- /tT | V(an(om) = wn)

(1.6) /V(am(vm) W )(z, 7)dr dz dt

// 6t‘/ V(am(vm)—wm)df\ dz dt

=._-/ / V(am(vm)—wm)drl dr <0,

Then we let m — oo in (1.6) to get, taking into account (1.5),

T
(1.7) /t /B (v—u)((v—1)4 —(u—1)4)dzdr <O0.
Since

(v—u)((v=1)s = (u=1)4) 2 [(v—1)3 — (u = 1)4]* 2 0,
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(1.7) implies (v — 1)4 = (v — 1)+, and due to (1.5), the proof is com-
pleted.

REMARK. It follows from the proof above that Lemma 1.2 applies to any
nonnegative distributional solution of the Stefan problem (1.1), defined
in a cylinder Bg x (0,T), since such solutions are locally bounded,
according to Theorem 1.1.

Corollary 1.3. Let 0 < u € L (R™ x (0,T)) be a (distributional)

loc
solution to (1.1). Then (u — 1)4 i3 continuous.

Corollary 1.3 is a consequence of the results of [8] (which apply to
solutions with first derivatives in L%) and of Lemma 1.2, and it holds
in fact for local solutions as pointed out in the remark above.

A useful consequence of the regularity results given above is the
following

Lemma 1.4. Letu be as in Corollary 1.3. Forall R > 0,0< e <T/2,

ess sup / |u(z,t) — u(z,to)|dz — 0 as 610.
[t—to|<6; 0<e<to,t<T—e JBgr

PROOF. We define h = u — (u — 1)4; because of Theorem 1.1. iv) we
have for a.e. to,t € (0,T), t > to,

[ et —ueto)lde < [ jw= D) - - Do to) e
Br Br

h(z,t) — h(z,tp))dz
*/BR((’” (z,%0))
EA(to,t)-{-B(to,t)

Note that A(:,-) is continuous, owing to Corollary 1.3; then A(ty,t) — 0
ast | tg. Also

Bto,t) < [ b(@)(h(z.t) = hizto)) da

for a nonnegative ¢ € C§°(R™), ¥(z) =1 for |z| < R and ¥(z) = 0 for
|z| > 2R. Employing (1.2) and the local integrability of u, the claim
follows.
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REMARK. In the following we say that a family {puc}e>0 of Radon
measures belongs uniformly to G, if

e_'clzlzdyE <M< o, forall e >0,
]Rn
for a constant M independent of €.

2. The main estimate.

This section will be devoted to the proof of our main result (see
(2.1) below), enabling us to identify the growth at infinity of any (dis-
tributional, L}, .(R™ x (0,T))) nonnegative solution to (1.1). Therefore
we can identify the natural class to which such solutions belong, with-
out any a priori requirement on initial values. We want to single out
that, as a consequence of this result, even though compactly supported
solutions to (1.1) propagate with finite speed, solutions of (1.1) cannot
grow at infinity faster than solutions to the heat equation.

Theorem 2.1. Let 0 < u € L{ (R™ x (0,T)), be a solution to (1.1) in
the sense of D'(R™ x (0,T)). Then for any 0 < B < 1, there ezists a
constant M = M(u,n, T, ) such that

(2.1) /u(:c,t)e—"V/(“’(T-t)) dz <M,

forany 0 <t < T/2.
Moreover, this inequality is optimal, 1.e. there ezist solutions ac-
tually ezhibiting the mazimal growth allowed by (2.1).

REMARK. The constant M in (2.1) actually may be assumed to depend
on u only through a bound for |u| over By(z1) x (T/2,3T/4), through
|z1|, and u(zy,37/4). Here z; € R™ is chosen such that u(z,,37/4) >
1. This follows from the proof below, and from the results in [8] on the
modulus of continuity of (u —1)4.

PROOF. For the sake of notational simplicity, we may assume that u
is defined in R™ x (0,T + A), for some A > 0. Choose 0 < ty < T'. For
any p > 1, define v, as the (compactly supported) solution to

0 Ny P,
2) 4t A Di=0, DR x (10, T+ ),

lvo(-5t) —ul- to)xB,()llzr@mn) — 0, tltg.
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The existence of v, is provided e.g. by semigroup arguments (see [5]
and references given therein).
We remark that as a consequence of Theorem 1.1.v),
(2.3) p1 > py implies v, >v,,, a.e. in R™ x (to,T + ),
(2.4) v, < u, a.e. in R™ x (¢, T 4+ X) .

Hence, due to monotonicity (implied by (2.3)) and local boundedness
(implied by (2.4) and vii) of Theorem 1.1) there exists

ulty] = lim v, in R" x (¢0,T + )),
p—0
and ultg] solves

(2.5.a) wi—A(w—-1)4=0 in D'(R™ x (t0, T + N)),

(2.5.b)  w(z,t) - u(z,ty), in L} .(R"), ast | to,

(2.6) ulto) <u, a.e. in R™ x (9, T+ A) .

Equation (2.5.a) is obviously implied by the definition of u[te]. The
convergence of ulto](+,t) — u(+, o) in L} _(R™) follows by

vp(z,t) —u(z,to) <ufte)(x,t) —u(z,to) < u(z,t) —u(zx,to),

for all p > 1, when we take into account Lemma 1.3 and (2.2). Al-
ternatively, the second of (2.5) may be derived subtracting the weak
formulations of (2.2) and (2.5.a), and using again u[tg] > v,, with a
suitable choice of the test functions.
Assume first that a point Py = (z¢,T) exists such that u[te](FPp) > 1:
then we may find an € > 0 such that

(2.7)  ulto)(z,t) >1+2¢, forall(z,t) € B(zo)x(T—¢,T).

Here we are using the continuity of (u[te](z,t) — 1)4, provided by [§]
and Lemma 1.2. We may assume that for p > p,y large enough,

(2.8) vo(x,t) > 1+4¢, forall (z,t) € Be(zo)x (T ~¢,T).

Then, since v,(-,t) is compactly supported in R", we have for all ¢, <
t<T,0<6<T—t,

T—6 T-6
0=/ v,ndzx t —/ / (vpnr + (v, — 1)1 An)dz dr
n n t

T—6 T-46
:/};{ vp'r]dx’t —/ / (vp— (v, — 1)4)n-dzdr,
n n t

(2.9)
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where we have defined

1 1 2
= =lz—z0|*/(4(T-1))
n(z,7) = (47r)n/2 (T - .,.)n/2 € ° ’

so that n, + Ap=0,7 < T.
Note that since

Vo= (=D =(vp=(vp,— 1)y —1)+1=—(1-v,)4 +1,

it holds
T—-6
- [ [t - D) dedr
nJt

T-6 T-6
=/ / (1—vp)+nr—/ n(w,f)dxl
n Jt R t
T-6
:/n/; (1= vp)47r
S// In-|dz dr ,
A,

A = (R" % (0, T)) \ (Be(xg) « (T — E,T)) :

The last integral is majorized by a constant depending on T, n, and
¢ only; since € depends in turn on ty (through u[tg]), we denote this
constant ¢i(e(tg)). Thus, letting 6 — 0 in (2.9), we have for to <t < T

where

vp(20,T) + c1(e(t0))

2.1 2
( 0) > (47r)—n/2(T _ t)—n/Z/ Up(il',t) e—lz—zg] /(4(T—t) dz ’
IRY‘I

implying, owing to (2.6)

(4m)"*[u(zo, T) + c1(e(to))]

2.11
(230 > (T—t)‘"”/ ulto](z, t)e 17— /(AT=0) g
R

fortg <t <T.
Due to Theorem 1.1. iv), estimate (2.11) is trivial if u[to](z,T) <1
for all z € R™. Of course, the same conclusions hold for any time level
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t1 € (to,T) and the relative u[t;], but the constant ¢; in (2.11), as well
as the point z¢, are a priori different from the ones found above.

Next we show that actually the same z( and € as those employed in
estimating u[to](z,t) may be used in estimating u(t;](z,t), t; <t < T.
Note that, because of (2.6),

ulto](z,t1) < u(z,t1) = ufti](z, 1),

for a.e. z € R™.

Taking into account (2.11) and the analogous inequality valid for
uft1],ty <t < T,forall T—¢; > 0 > 0 we may find constants v = (o),
M = M(o,t9,t1) such that

(2.12) sup / (ulto](z,t) + ult1](z, 1)) e~ dz < M .

1, <t<T—o JR"
Therefore a comparison principle may be applied ([7] and Remark 2.2),
giving

ulto] < ultq] a.e. in R" x (¢,,T)

(indeed o in (2.12) may be chosen arbitrarily small). Hence
(2.13)  u[t1](z,t) >1+2¢e, forall (z,t) € Bs(zo) x (T —¢,T),
where z¢ and € are the same as in (2.7). We may now repeat the

estimation of u(-,t;) = u[t;](-,¢1) with this choice of zy and € and,
taking into account the arbitrariness of ¢; € (¢o,T'), we get

(4m)* (u(z0, T) + e2(e(t0)))

> (T —t)~"/? / u(z, t)e~ ezl /AT=0) gy

n

(2.14)

for almost all tg <t < T. We still have to get rid of the dependence on
to of both 2o and ¢ in the left hand side of (2.14). We reason as follows.
Estimate (2.14) implies that, for all 0 < ¢ < T — ¢,
u(,t) € G120 uniformly for ¢ <t<T —o0.

Then, since

lulto](z,t +to) — u(z,t +to)ll12_mn) =0, ast ] 0,
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the uniqueness result in [7] can be applied (see Remark 2.2), to find
ufto] = u a.e. in R"™ x (¢p,T) .

Next we choose (z1,T') and €1 > 0 such that for ¢; < T,

(2.15) ufto](z,t) = u(z,t) > 1+ 2¢ ,

for all (z,t) € B.,(z1) X (T — €1,T). We remark that the choice of
z7 and €; does not depend on t;. We may now repeat the arguments

leading to (2.10) and (2.11), to find

(4m)"* (u(z1, T) + c1(€1))

> (T —to)~"/? / u(z, to)e~1F=2l/W(T=10) g
]Rn

(2.16)

for a.e. 0 <ty < T. We note again that in (2.16) z;,¢; may be chosen
without any further constraint than (2.15). Inequality (2.1) follows
easily from (2.16) (see [11, Lemma 4, p. 25]).

In order to show that (2.1) is optimal, just consider the Cauchy
problem

ur = Au in R™ x (0,T),
{ u(z,0) = el=l* forz e R".

It is well known that a solution u exists in R™ x (0,7T), T = 1/4. Since
u > 1in R™ x(0,T), u may be seen as a solution to (1.1) in R™ x (0,T),
u(-,t) ~ eMl=1” ag 2] — co.

REMARK 2.2. (Comparison in G., personal communication of J.E.
Bouillet). In order to adapt the proof of [7] to our situation it has to
be shown that for suitable 0 < 7 <t < T

R¥1 pt }
/ fTVé-vdSd8dR — 0, as R — oo,

R-1 T BBR

uniformly in r > 0, where

IV(z,t)| < ke (R-Ra=1)*/(8(t=7))

|z| = R > R; > 0, k > 0 given,

(2.17) sup / |f(z,t)] e~ dz < o0,
0<t<T JIR"
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and

F(a,t) = /| e 0ea =2z,

with p, the standard (compactly supported) mollifier. But for R large
enough, 0 < r < 1, we have

R+1 t _
’/ / ffv¢-ud5d9dR]
R-1 T aBﬁ

st[f %, Jueoine—

e~ (R=Ri=1)*/(8(t=7)) 4. 45 _d9 dR2

t
< k/ / /|f(z,9)|p,(:c — 2) e~ 1F17/080=")) 4 4z dp
T JBry1\Br-1

t
. k/ / |f(2,0)] e 1=1/(0C="D 42 dg — 0,
T JBry2\Br-2

as R — oo if 1/(16(t — 7)) > ¢ due to (2.17).

3. Applications.

In this section we will derive some consequences of Theorem 2.1.
Corollary 3.1 (existence of a unique initial trace in the class G.) is
an extension of the result of [12], valid under the a priori assumption
u(-,t) € G., T >t > 0, to any nonnegative distributional solution
u € L} _(R™ x (0,T)) to (1.1). Corollary 3.2 extends the comparison
result of [7] (uniqueness in G, N L% (R™ x (0,T))) to distributional
solutions belonging to Li (R"™ x (0,T)) (see also Remark 2.2). The
proof of Theorem 3.4 (existence for the Cauchy problem when uy(z) €
G.NLL (R™)) yields as a by-product the fact that the growth at infinity

clzlz”

“at most as e is actually pointwise.

Corollary 3.1. For any nonnegative distributional solution u € L} _

(R™ x (0,T)), there exists a unique nonnegative locally finite measure

p€Ge, c=1/(2T), such that

i [ u(e,p(e)de = [ pa)du,
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for all p € C§°(R™).

PROOF. The proof of [12] for solutions in the class

{u(:c,t) : sup u(z,t) el dzr <M, 0<t< T}

1
r>1|Br| /By

applies with only minor changes to the present situation. In fact the
class {u(z,t): u(-,t) € G-, uniformly ont € (0,7)} is contained in a
functional class of the type above, for a suitable c'.

Corollary 3.2. Let u,v € L} (R" x (0,T)) be two nonnegative solu-
tions (in D'(R™ x (0,T))) to (1.1) such that

1) l(u = )4 (1)l 0 ast L0, or
i) n =1, and for every ¢ € Co(R),

/(71.—v)+(x,t)cp(:t)d:c —0 as t10.
R
Then u(z,t) < v(z,t) a.e. in R™ x (0,T).

Corollary 3.2 follows as in [7], once we use the estimates provided
by Theorem 2.1 and Remark 2.2.

Corollary 3.3. Any nonnegative distributional solution u € L] (R™ x
(0,T)) belongs in fact to L>=((0,T —¢) : L}, (R™)), for all € > 0.

Theorem 3.4. Let 0 < uy € L} (R") be such that ug € G, ¢ > 0.
Then there ezists a (unique) nonnegative solution to

(3.1.a) up = Au —1)4, in D'(R™ x (0,T))
(3.1.b) lu(z,t) — UO(.’E)”LlIDC(mn) — 0, t10,
with T = 1/(4¢).

PROOF. Let

0 if [z] > n,
ué")(x) =< wug(x) if [z <n and ue(z) < n,
n if |z <n and ue(z) > n,
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and u(™(z,t) be the (semigroup) solution to (3.1.a) with initial datum
ul™ (see [5] and references given therein).

It should be pointed out that («(™ — 1); < v, where v is the
solution to the heat equation with initial datum (ug — 1)4. This can
be shown by local comparison between (u(™ — 1), (which is compactly
supported) and the solution v(™ to the heat equation with initial datum

(ug™ = 1)4:
(u™(z,t) = 1); <o (z,t) T o(z,1),

employing Theorem 1.1. vi). Since {u(™(z,t)} is increasing in n and
bounded (by v + 1), there exists
w(z,t) = lim v (z,1).

n—o<

By Lebesgue’s bounded convergence theorem, u is a solution in D'(R™ x
(0,T)) to (0.1).

The convergence u(-,t) — ug(-) in the sense of measures can be
proved subtracting the weak formulations of (2.1) for u(z,t) and
u(™(z,t) with a suitable choice of the test function, and using the fact
that

lu™ (2, t) = ug” (@) @) — 0,  astlO.

Then relation (3.1.b) follows using (v — 1)4 < v and reasoning as in
the proof of Lemma 1.4 and of (2.5.b). Finally uniqueness follows from
Corollary 3.2.

Corollary 3.5. (of the proof of Theorem 3.4). For a.e. (z,t),(y,s) €
R" x (0,T),0<s9o<s<t<T,

u(y,s) < (vfsol(x, 1) + 1) sl oI/ (= Hos((1=r0)/(a=00) 1)

where v[sg] solves

{ vy = Av ,

v(z,50) = (u(x,80) — 1)+ -

Here ¢ = ¢(n).

PROOF. Apply Theorem 3.4 with wo(z) = u(z,so) in R" x (s0,7T) and

combine it with the known inequality for solutions to the heat equation

(see [15]).
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REMARK 3.6. The existence result in Theorem 3.4 can be extended to
the case of initial datum a Radon measure y € G¢; in this case relation
(3.1.b) is replaced by

u(s,t) = p ast | 0 in the sense of measures.

The proof follows the lines of the one given above for uy € L} _(R"),
employing truncation and regularization of u.
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