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1. Introduction

L. de Branges has originated a viewpoint one of whose repercussions has been
the detailed analysis of certain Hilbert spaces of holomorphic functions con-
tained within the Hardy space H 2 of the unit disk. The initial study of the
spaces was made by de Branges and J. Rovnyak [4] about 25 years ago.
Although neglected for a while, the spaces are now attracting considerable
attention because of their beautiful internal structure and their relevance to
function theory [21]. Our aim in this paper is to investigate their multipliers.

The starting point is a nonconstant function & in B(H~), the unit ball in
the space H* of all bounded holomorphic functions in the open unit disk,
D, of the complex plane. The de Branges space H(b) consists by definition of
the range of the operator (1 — TbT,—))”2 (where, for ¢ in L= of the unit circle,
T denotes the Toeplitz operator on H? with symbol ¢). The space H(b) is
given the Hilbert space structure that makes the operator (1 — TbT,-))” Za
coisometry of H? onto H(b). By a multiplier of H(b) we mean a holomorphic
function m in D such that mh is in H(b) whenever # is. Since the evaluation
functionals on H(b) at the points of D are bounded, one sees from the closed
graph theorem that the multiplication operator on H(b) induced by such an
m is bounded, from which it follows that m must be in H~ [23].

There are two extreme cases. If lbll < 1, then H(b) is just a renormed
version of H? and every function in H® is a multiplier of it. At the other
extreme, if b is an inner function, then H(b) is an ordinary subspace of H?,
namely, the orthogonal complement of the Beurling invariant subspace bH?.
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It is thus the typical invariant subspace of S*, the adjoint of the unilateral
shift operator, S, on H? (S/)(z) = zf(z)). In this case, H(b) has no noncons-
tant multipliers. (Proof: If b is an inner function and m is a multiplier of
H(b) then, because S*b is in H(b) [21], we have, for all fin H?, the equality
0 = <mS*b, bf>. One easily sees that the right side equals <S*m, (1 — b(0)
b)f>. Setting f = S*m/(1 — b(0)b), we find that S*m = 0).

The spaces H(b) break naturally into two classes according to whether b is
or is not an extreme point of B(H%), or, what is equivalent, according to
whether the function 1 — |b|? is not or is log-integrable on aD [14]. A few
results in the latter case can be found in [18]. It is shown there, for example,
that if b is not an extreme point of B(H*) then any function holomorphic
in a neighborhood of D is a multiplier of H(b), and those b for which every
function in H* is a multiplier of H(b) are characterized. Further progress has
recently been made by B. M. Davis and J. E. McCarthy [1] who, among other
things, have characterized the functions that are multipliers of every space
H(b) with b nonextreme. For the case where b is an extreme point, on the
other hand, next to nothing has been known up to now beyond the negative
result for inner functions cited above. In particular, it has been an open ques-
tion whether there is any extreme point b such that H(b) has nonconstant
multipliers.

In this paper we shall concentrate mainly on the case where b is an extreme
point but not an inner function. The main thrust of our results is that H(b)
has an abundance of multipliers in that case.

A space closely related to H(b), called H(b), arises naturally in the search
for multipliers. By definition, H(b) is the range of the operator (1 — TETb)]/Z,
with the Hilbert space structure that makes this operator a coisometry of H 2
onto H(b). The space H(d) is trivial if b is an inner function, but otherwise
it is infinite dimensional. It turns out that every multiplier of H(b) differs by
at most a constant from a function in H(b). The culmination of our efforts
will be a proof, for the case where b is an extreme point of B(H”), that the
multipliers of H(b) that lie in H(b) are dense in H(b).

In Section 2 the place of the spaces H(b) and H(b) in the general scheme
of de Branges is described. A lemma concerning that scheme is established
and used to obtain information about H(b) and H(b). (Some of the results
here can be found in the literature, but the present proofs seem particularly
apt.).

Section 3 explains the relation between H(b) and H(b) and certain spaces
of Cauchy integrals. The multipliers of H(b) coincide with the multipliers of
its related space of Cauchy integrals. Cauchy integrals in the unit disk have
been studied extensively beginning with V. P. Havin [12], but from a view-
point rather different from ours. In Section 4 we show how our methods pro-
vide a simple proof of a theorem of S. A. Vinogradov.
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The remainder of our paper addresses mainly the case where b is an extreme
point of B(H%). Section 5 contains two negative results for that case that
say, very roughly speaking, that nonconstant multipliers cannot behave too
nicely. Section 6 pertains to decompositions of the space H(b) and Section 7
to the case where b is invertible. In the latter case b is shown to be a multi-
plier of H(b), and the converse is shown to hold when b is an extreme point.
In Section 8 the multiplication operator on H(b) induced by a multiplier is
discussed, for the extreme point case.

In Section 9, again for the extreme point case, we introduce two conjuga-
tions, one on H(b) and another on the one-dimension extension of H(b) by
the constant functions. It is shown that to each multiplier m of H(b) there
corresponds a conjugate multiplier, m,. The multipliers of H(b) thus form a
*-algebra, although not a C*-algebra. A certain algebra of Cauchy integrals
is introduced which contains all the multipliers of H(b).

Section 10 contains two needed lemmas on Cauchy integrals. They are-used
in Section 11 to obtain more information on the space H(b) and in Section 12
to establish a criterion that, among other things, enables us to construct a set
of multipliers of H(b) that is dense in H(b) (again, for the extreme point case).

If u is an inner function, then, as is explained in Section 6, every multiplier
of H(ub) is a multiplier of H(b). In Section 13, in the extreme point case, a
criterion is obtained for a multiplier of H(d) to be a multiplier of H(ub). The
functions that are multipliers of H(ub) for every inner function u are charac-
terized. A sufficient condition on u is found for H(b) and H(ub) to have the
same multipliers.

In Section 14 we give a complete description of the multipliers of H(b) for
a certain class of extreme points b. This result is related to a well-known the-
orem of H. Helson and G. Szeg6. We also give an example to show that, even
when b is an extreme point, an inner function # can exist such that not every
multiplier of H(b) is one of H(ub). (Such an example with b not an extreme
point can be extracted from [18].)

The concluding Section 15 contains a short list of open questions.

Besides the notations already introduced, the following additional ones are
needed. .

L? denotes the L? space of normalized Lebesgue measure on dD and P,
denotes the orthogonal projection in L? with range H?. The norm and inner
product in L? are denoted by Il-ll, and <-,->.

The norm and inner product in H(b) are denoted by |- ll, and <-,->,, and
those in H(b) by Il-ll; and <-,->;.

The kernel function in H? for the point w of D is denoted by

k, k() =1—wz L
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The kernel functions in H(b) and H(b) for w are denoted by kfv, as a simple
argument shows. For kg one has the expression kﬁ =1 — bTrv)b)kw [4], [19].
The term «operator» will always mean «bounded operator».
The following two simple properties of H(b), the first of which was men-
tioned earlier, can be found in [19].

1. S*b belongs to H(b).
2. b belongs to H(b) if and only if b is not an extreme point of B(H%).

Alternative proofs of some of the results below have recently been found
by A. V. Lipin (private communication).

2. Relations between H(b) and H(D)

It is helpful to fit the spaces H(b) and H(b) into the general scheme promul-
gated by de Branges (for example, in [2]). If H and H, are Hilbert spaces
and A is an operator in L(H,, H), then de Branges’s space M(A) consists of
the range of A, with the Hilbert space structure that makes A into a coiso-
metry of H, onto M(A). Thus, for example, if y is in H, and is orthogonal
to the kernel of A, then HAyHM(A) = HyllHl. If IAll = 1, then the space
M((1 — AA*)'/?) is called by de Branges the complementary space.of M(A4)
and denoted by H(A). Our spaces H(b) and H(D), therefore, coincide with
H(T,) and H(T3), respectively. We shall denote M(7,) by M(b).

A factorization criterion of R. G. Douglas [5] is often useful in establishing
containment relations between de Branges’s spaces, and in showing a given
operator maps one of these spaces into another one.

Douglas’s criterion. Let H, H, and H, be Hilbert spaces and A and B oper-
ators in L(H,, H) and L(H,, H), respectively. Then the operator inequality
BB* = AA* is necessary and sufficient for the existence of a factorization
B = AR with R in L(H,, H)) and |IRI| < 1.

This tells us, for example, that the two spaces M(A) and M(B) coincide as
Hilbert spaces if and only if AA* = BB*. In virtue of the operator inequality
1 — TET,, =1-—-T1,T; it tells us also that H(l—7) is contained in H(b), with
the inclusion map a contraction.

If A is a contraction in L(H,, H), then M(A) is an ordinary subspace of
H if and only if A is a partial isometry, in which case H(A) is the ordinary
orthogonal complement of M(A). In the contrary case the intersection
M(A)NH(A), which we call an overlapping space, is nontrivial (de Branges
and Rovnyak [3] use the term «overlapping space» in a slightly different way).
A simple lemma establishes the relation between H(A), H(A*), and their over-
lapping spaces.



MULTIPLICATIVE STRUCTURE OF DE BRANGES’S SPACES 187

Lemma 2.1. Let H and H| be Hilbert spaces and A a contraction in L (H |, H).
The vector x in H belongs to H(A) if and only if A*x belongs to H(A%), in
which case.

2 — 2 *4-12
xliZ,, = IxliZ, + 1A% ..

The overlapping space M(A*)NH(A*) coincides with A*H(A).
The inclusion A*H(A)C H(A*) follows from the operation identity
A% (1 — AA*)2 = (1 — A*A)2A*,
which goes back at least to a paper of P. R. Halmos [10]. Suppose x is a vec-
tor in H such that A*x is in H(A*), say A*x = (1 — A*A)"?y with y in H,

and orthogonal to the kernel of (1 — A*A)!/2. Then AA*x = (1 — AA*)!?
Ay (by the same identity used above), from which one concludes that

x = (1 — AA%)'?[(1 — AA%)x + Ay,

showing that x is in H(A). As Ay is easily seen to be orthogonal to the kernel
of (1 — AA*)!/2, we have

Ixllyq) = 11 — AAN 2 + Ayll,.
The square of the right side equals
(1 — AA*) x>, + IlAYIZ + 2Re<(1 — A*A)2 A% x, oy
lIxlI2, — IIA*xIIi,l + lAylIZ, + <1 — A*Ay,y>

2, — IA*xZ, + Iy, + (1 — A*A) 212,

2 2
Ixli2, + lyl2,

]2 2
lxllg, + NA*xI 4.,
which gives the desired expression for lixll,, ), This completes the proof of

the lemma.

For the situation of interest in this paper, we obtain the following immedi-
ate consequences of Lemma 2.1.

Lemma 2.2. The H? function h belongs to H(b) if and only if T3h is in H(b).
If h is in H(b), then

IAIZ = A2 + TR,

Lemma 2.3. The overlapping space M(b) N\ H(b) equals TbH(E). The operator
T, acts as a contraction from H(b) to H(b).
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Two corollaries of the last lemma are worth recording.
Corollary 2.4. Every multiplier of H(b) is a multiplier of H(b).

Corollary 2.5. The overlapping space M(b) NH(b) is dense in H(b) if and only

if b is an outer function.
Corollary 2.4 is immediate. To establish Corollary 2.5 it suffices to note

that T,H(b) is the range of the operator (1 — T,75)!/2T,, which is dense in
H(b) if and only if the range of T, is dense in H?, in other words, if and only
if b is an outer function.

Lemma 2.6. If ¢ is a function in H*® then the spaces H(b) and H(b) are in-
variant under the Toeplitz operator T-, whose norm as an operator in each
of them does not exceed lloll .

For the proof, we can assume with no loss of generality that li¢ll , = 1.
To settle the case of H(b) it will be enough, by Douglas’s criterion, to verify
the operator inequality

T;(1 — GT)YT, < 1 — T;T,.
One easily sees that the difference between the right and left sides equals
U —Tipp — Tigp + Tigpps

which is the Toeplitz operator with symbol (1 — |¢[)(1 — |b[?), hence positive
semidefinite, as desired. The case of H(b) follows immediately from the case
of H(b) in conjunction with Lemma 2.2.

3. Cauchy integrals

For u a finite complex Borel measure on dD, we let Ku denote its Cauchy inte-
gral, that is, the holomorphic function in C\dD defined by

1 A
(Kp)(2) =j — du().

__ p—10
aD1 e "z

If u is absolutely continuous and ¢ is its Radon-Nikodym derivative with re-
spect to normalized Lebesgue measure, we write K¢ in place of Ku. (What
we are calling Cauchy integrals are often referred to as integrals of Cauchy-
Stieltjes type.)

If the measure p is positive, we define the transformation Ku on L? (p) by
Kgq = K(gp). The function K#q vanishes identically in D if and only if g is
orthogonal to H?*(y), the closure of the polynomials in LZ2(x). We denote by
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K?(p) the space of all functions Kuq with g in L2(u) and give it the Hilbert
space structure that makes Ku an isometry of H%(x) onto it. As before, if b
is absolutely continuous with Radon-Nikodym derivative o, we write K, and
K?(0) in place of K, and K 2(p).

We let p, denote the measure on dD whose Poisson integral is the real part
of the function (1 + b)/(1 — b). For ¢ in Lz(ub), we define the function
V,q in D by

V@) = (1 — b2))K,, 9)()-

A proof of the following representation for H(b) can be found in [20].

Lemma 3.1. The transformation V, is an isometry of I-LZ () onto H(b). It
maps the function k,, (\w| < 1) to the function (1 — b(w))~'k%.

Thus, the problem of finding the multipliers of H(b) is the same as the prob-
lem of finding the multipliers of K 2(#,,)“3- We note for future reference that
the equality HZ(;Lb) = LZ(;Lb) holds if and only if the Radon-Nikodym deri-
vative with respect to Lebesgue measure of the absolutely continuous com-
ponent of g, fails to be log-integrable [14, p. 50]. That Radon-Nikodym de-
rivative equals (1 — |b|?)/|1 — bJ? and so is not log-integrable if and only if
b is an extreme point of B(H®).

The operator on H 2(;Lb) of multiplication by €% will be denoted by Z,.

Lemma 3.2. The transformation VbIHZ(y.b) intertwines the operators
Z} [1 — (1 — b0)(1 & 1)] and S*.

In the proof, we shall denote the inner product in L2 () by <-y- >ub' Let
g be any function in Lz(yb), and let g = Kubq, so that V,q = (1 — b)g. Sin-
ce (K, Z} q)(z) = <Z} q, kz>“b = {q, Zbkz>#b, we have, for z # 0,

e “q(e”) .
K, Zs)@) = j ———— du,(€")
1 — ze—
aD
_ ! : 1 | g(é®)dp,(e?)
_zLD(l—ze—“’—)q "
_ 8(z) — g(0)
=
Therefore,
g(z) — g(0)

VyZpa)(2) = (1 — b(z)) 2
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(1 — b(z))g(z) — (1 — b(0))g(0) b(z) — b(0)
- ; G

V,a)(z) — (V,@)(0) (V,2)(0)
+
Z 1 — b(0)

S*V,9)(2) + <V,gq, Vb]>#b(S*b)(z).

In the last line we have used the equality V,1 = (1 — b_(_G))“‘kg from Lemma
3.1. The same equality shows that, when ¢ is the constant function 1, the func-
tion g equals (1 — b(0)b)/(1 — b(0))(1 — b). Inserting these expressions into
the equality. above (the one that gives.KuhZ;';q in terms of g) one obtains,
after a few lines of calculation, the formula

1 ( b(z) — b(0) )
(1 — bO))(1 — b(z)) ’

(K, ZtD() =
' 4

implying that

V,Z31 = (1 — b(0))~!S*b.
The expression for V,Z}q can thus be rewritten as

ViZrg = S*V,g + (1 — b0)<V,q, V,1>, V,Z}1,
or as _
S*V,g = V,Zf g — (1 — b(0))Xg, 1>,1],
which is the desired conclusion.
For H(b), the situation is simpler than for H(b). We let @ denote the func-

tion 1 — |b}? on aD. ‘

Lemma 3.3. Z'he transformation KQ is an isometry of H2(p) onto H(b). It
maps k, fo k2. Hence H(b) = K*(o)ID.

We denote the inner product in L%(g) by <- . For any points z and w
of D we have

<k, kp, =<1 — blHk . k>
= (1 — T3Tk,, k>
= KB, kp
= k(2)

I

b b
kb, KB>,.
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But (K k,)@) = <k, k>, so it follows that K, k,, = 5, and that <K, k,,
KQ kpg = <k, kz>g. Thus Kg maps the linear manifold in L? (p) spanned by
the functions k, isometrically onto a dense linear manifold in H(b) (the one
spanned by the functions k{’v). One can now complete the proof by a standard
limit argument.

The operator on H?(g) of multiplication by ¢’ will be denoted by ZQ.

Lemma 3.4. The transformation KQ|H2(Q) intertwines the operators Z;‘ and
S*.

This is a standard property of Cauchy integrals. It is established, except for
a difference in notation, as the first step in the proof of Lemma 3.2.

Corollary 3.5. If ¢ is a function in H®, then the transformation Kng ()
intertwines the operators ¢(ZQ)* and Tj.

In fact, the case where ¢ is a polynomial follows immediately from Lemma
3.4. To handle the general case one takes a sequence of polynomials that is
uniformly bounded on dD and converges almost everywhere on dD to ¢. The
obvious limit argument yields the conclusion.

Our first theorem implies, in virtue of Corollary 2.4, that any multiplier
of H(b) differs by a constant from a function in H(b). (If b is not an extreme
point of B(H*) then H(b) contains the constants, so one gets the stronger
conclusion that the multipliers of H(b) lie in H(b). The theorem itself is trivial
in that case.)

Theorem 3.6. If b is not an inner function, then every multiplier of H(b)
differs by a constant from a function in H(b).

As noted above, the theorem is trivial if b is not an extreme point of
B(H™), so we assume it is an extreme point. Let m be a multiplier of H(b)
and let 4 be any function in H(b) such that 4(0) # 0. By Lemma 2.6, the func-
tions mS*h and S*(mh) belong to H(b). Since S*(mh) = mS*h + h(0)S*m,
it follows that S*m is in H(b). Because b is an extreme point, the function 0
is not log-integrable, which implies that H?(¢) = L%(g) [14, p. 50]. There-
fore, by Lemma 3.4, the operator S*|H(b) is unitary, so in particular S*H(b)
= H(b). The function in H(b) sent to S*m by S* differs from m by a constant.

4. Vinogradov’s theorem

If u is a finite complex Borel measure on 4D then its Cauchy integral, Ku,
as a function in D, belongs to H” for 0 < p < 1 and so has an inner-outer
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factorization [7, p. 39]. The theorem of Vinogradov [24] states that if the
inner function u divides the inner factor of Ku, then the quotient Ku/u is a
Cauchy integral; in fact, it is the Cauchy integral of a measure whose norm
does not exceed that of u. A simple and natural proof of this can be based
on Lemmas 2.6 and 3.1.

For simplicity we assume llull = 1, and we choose b so that |u| = p,. By
Lemma 3.1 the function (1 — b)Ku is in H(b) and has norm at most 1. Thus,
by Lemma 2.6, if « is an inner function, then

TA( — b)Ky] = (1 — b)K(qu,),

where q is in Hz(y,b) and has norm at most 1. But if # divides the inner fac-
tor of Ky then it divides the inner factor of (I — b)Ku, so that

T[(1 — b)Kul = (1 — b)Kp/u.

In that case Ku/u = K(gu,), which proves Vinogradov’s theorem since the
measure gu, has norm at most 1.

5. Nonmultipliers

Our concern from now on will be with the case where b is an extreme point
of B(H™). In this section we obtain two negative results about multipliers.

It was mentioned in Section 1 that, if b is not an extreme point of B(H®™),
then every function holomorphic in a neighborhood of D is a multiplier of
H(b). If b is an extreme point, exactly the opposite is true: no nonconstant
multiplier can be continued analytically across all of dD. This is a conse-
quence of the next theorem together with Theorem 3.6 and Corollary 2.4.

Theorem 5.1. If b is an extreme point of B(H™), then no nonzero function
in H(b) can be continued analytically across all of dD.

- In fact, suppose the function 4 in H(b) can be continued analytically across

all of dD. By Lemma 3.3 we can write # = K(qp) with g in L2 (g). The func-
tion gp is in L?, being the product of the L2 function go!/? and the bounded
function o'/ This enables us to write # = P, (go). (Recall that P, is the
orthogonal projection in L? with range H2.) Because b is an extreme point
of B(H>), the function g is not log-integrable, and therefore neither is gp,
because

1
loglge| < log*lge'? + 3 log o.

But the forward Fourier coefficients of geo coincide with the Taylor coeffi-
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cients of A, which tend to zero exponentially since A is holomorphic across
aD. It is known [16, p. 12] that a function on dD whose forward Fourier
coefficients tend to 0 exponentially is log-integrable unless it vanishes identi-
cally. Hence go = 0, which means # = 0, as desired.

Corollary 5.2. If b is an extreme point of B(H™) and an outer function, then
no nongzero function in H(b) can be continued analytically across all of dD.

In fact, suppose the function 4 in H(b) can be continued analytically across
all of dD. Its Taylor coefficients then tend to 0 exponentially, and a simple
estimate shows that then the forward Fourier coefficients of bk exhibit the
same behavior. Hence T3k can be continued analytically across all of aD. By
Lemma 2.2, T3A is in H(), so it is 0 by Theorem 5.1. Since b is outer it
follows that A = 0, as desired.

The noncyclic vectors of the backward shift operator, S*, have been cha-
racterized by R. G. Douglas, H. S. Shapiro, and A. L. Shields [6] as the func-
tions in H? that possess pseudocontinuations to the complement of D. Our
next theorem implies that, if b is an extreme point of B(H*) then, just as
is the case with an ordinary continuation, the possession of a pseudoconti-
nuation disqualifies a nonconstant function from being a multiplier of H(b).
(Davis and McCarthy [1] have obtained this independently.) In particular, if
b is an extreme point, then no nonconstant inner function is a multiplier of
H(b), a result from [15].

Theorem 5.3. If b is an extreme point of B(H®), then the nonzero functions
in H(b) are cyclic vectors of S*.

This theorem is nearly disjoint from Theorem 5.1: the only functions in
H? that possess both ordinary continuations across 3D and pseudocontinua-
tions to the complement of D are the rational functions [6].

To prove the theorem, let 4 be a nonzero function in H(b). As in the proof
of Theorem 5.1, we have & = P_(ge) where g is a function in L? (p). Also
as in the proof of Theorem 5.1, the function g is not log-integrable.

Let M be the invariant subspace of S* generated by 4 and let N = M +
(H?»™*. Then N is an invariant subspace of the adjoint of the bilateral shift
operator on L2. By the known structure of these subspaces [14, p. 111], either
N = x L? with E a measurable subset of 3D or N = vH? with v a unimodu-
lar function in L. The latter possibility is precluded because N contains the
function gg, which fails to be log-integrable (and is not the zero function).
Thus N is of the form x, L2, and since it contains the function A, which is
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nonzero almost everywhere, it must actually be all of L2. That means M =
H?, so h is a cyclic vector of S*, as desired.

Corollary 5.4. [f b is an extreme point of B(H®) and an outer function, then
the nonzero functions in H(b) are cyclic vectors of S*.

In fact, suppose 4 is a nonzero function in H(b). Then T3/ is in H(b) by
Lemma 2.2 and is nonzero because b is outer. By Theorem 5.3, then, T3
is a cyclic vector of S*. But T3h lies in the S*-invariant subspace generated
by A, so h also is a cyclic vector of S*.

6. Decompositions of H(b)

Let u, be the inner part and b, the outer part of the function 6. Then, as de
Branges and Rovnyak [4, p. 32] first pointed out, the space H(b) is the ortho-
gonal direct sum of the two subspaces H(u,) and u,H(b,). Moreover, the
inclusion map of H(y,) into H(b) is an isometry, and 7, acts as an isometry
of H(b,) into H(b). To verify these statements, it suffices to rewrite the equ-
ality

1 —T,T5=1—T,T, + T, — T, T5)Ty,

as 1 — T,T; = AA*, where A = (A, A,), an operator from H> & H* to H?,
with

A =0—T,T)"? and A, =T,(0—T,T; )2,

uy” iy by

The equality tells us that H(b) = M(A,) + M(A,), and this is an orthogonal
direct sum, with the inclusion map of each summand into H(b) isometric,
because ker A = ker A, & {0}. Since M(A4,) = H(y,) and M(A,) = u,H(b,),
the decomposition of H(b) follows. One immediate consequence of the decom-
position is that every multiplier of H(b) is a multiplier of H(b,). More gen-
erally, the same reasoning shows that if « is any inner function, then H(ub)
is the orthogonal direct sum of H(#) and uH(b). Thus, every multiplier of
H(ub) is a multiplier of H(b).

When b is an extreme point of B(H®), there is a companion orthogonal
decomposition of H(b).

Theorem 6.1. Let b be an extreme point of B(H*). Then H(b) is the ortho-
gonal direct sum of H(b,) and byH(u,). The inclusion map of H(b,) into H(b)
is an isometry, and the operator T,, acts as an isometry Jrom H(u,) into
H(b). ‘

The situation when b is not an extreme point is completely different. In
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that case, H(b,) is dense in H(b) [18, p. 87].

Theorem 6.1 can be established by a slight modification of the argument
in the discussion preceding it. We suppose that 4 is not inner, since other-
wise the theorem reduces to a triviality. This time we use the factorization
1 — T, T; = AA*, where A = (4, A,), but with

A =(0—T,T;)"* and A,=T,0—T,T;)"

Uy~ uo

We assert that ker A = {0} @ ker A4,. Clearly, once this has been verified,
the previous reasoning applies. To establish the assertion, let f, @ f, belong
to ker A, and writeg = (1 — T, T-)”Zf] and h = (1 — T, T;) f, Then g
is in H(b,), while A is in H(x), and g = —b,h, implying by Lemma 2.3 that
his in H(b ) (which is the same as H(b)). Smce b is an extreme point, Theo-
rem 5.3 implies that # = 0, and hence also that g = 0. It follows that f, is
in ker A, and f; = 0, the latter because ker (I — TbOT,;O) is trivial, b, being
a nonconstant outer function. This concludes the proof of the theorem.

The next theorem clarifies the relation of H(b) and H(b) in the extreme
point case.

Theorem 6.2. Let b be an extreme point of B(H™). The_n the othogonal com-
plement of H(b) in H(b) is byH(uy). The closure of H(b) in H(b) is H(by).

Again, the situation is completely different when b is not an extreme point.
In that case H(b) is always dense in H(b) [18, p. 87].

The second assertion in Theorem 6.2 follows immediately from the first
assertion together with Theorem 6.1. It will thus be enough to establish the
first assertion. Some new notations are needed.

As in Section 3, we let o denote the function 1 — |b]> on D and <-,->_the
inner product in L? (g). Let J, denote the natural injection of H 2 into L(p).
One easily verifies that K is the adjoint of J and that K J = 1—T;T,.
If & is a function in H(b) then T, h belongs to H(b) by Lemma 2.2 and so is
the image under KQ of a funcnon in L*g), by Lemma 3.3. The latter function
is unique (also by Lemma 3.3, since H?*(g) = L*(g)); we denote it by W h.

That byH(u,) is contained in the orthogonal complement of H(b) in H(b)
is an immediate consequence of Theorem 6.1. To establish the opposite con-
tainment, let 4 be any function in H(b) that is orthogonal to H(b). Let g be
any function in H(b) and, using Lemma 3.3, write g = K 4 with g in L%(p).
Corollary 3.5 tells us that 732 = K (bq), showing that W g = bg. Thus,
by Lemma 2.2,

(=]
|

= <h, 2
<h, g> + <Tyzh, T;8>

Il
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=<h, g + (Wgh, ng>g
= <h, KQq> + <Wgh, bq)g

1l

<JQh + bWQ h, g,

This equality holds for all g in L(p), so JQ h + bWQ h is the zero function
in L*(g), in other words, W,h = —h/b on the set where 1 — |b]? is nonzero.
Multiplying the last equality by 1 — |b|?, we conclude that

hoo
(I — bYW, h = —— + Bh ;
b

in particular, the function A/b belongs to L2. Projecting both sides of the
preceding equality onto H?, we obtain '

K,W_h = P (—h/b) + Th.

But T;h = KQ WQ h by the definition of Wg , so the function A/b is ortho-
gonal to H?. However, the function /b, is in H? since it is in L? and b, is
~ an outer function. Since A/b = yh/b,, we conclude that A/b is in H(u,),
which means that 4 is in boH(uo), as desired.

7. Consequences of invertibility

Theorem 7.1. If b is an extreme point of B(H*), then the following condi-
tions are equivalent

(i) b is invertible in H*,
(ii) H(b) = H(b),
(iii) b is a multiplier of H(b),
(iv) S*|H(b) is similar to a unitary operator.

An analogous result for the case where b is not an extreme point of B(H®)
can be found in [18]. In condition (ii), by the equality H(b) = H(d) we mean
to say that the two spaces are equal as vector spaces but not that their Hilbert
space structures coincide. If they are equal as vector spaces then their norms
are equivalent, by the closed graph theorem.

The equivalence of conditions (ii) and (iii) in the theorem is an immediate
consequence of the equality M(b) N H(b) = bH(b) from Lemma 2.3. To see
that (i) implies (ii), assume b is invertible and write H(b) = T;—T;H(b). By
Lemma 2.2, T3H(b) C H(b), and, by Lemma 2.6, T3-H(b) C H(b), so it
follows that H(b) = H(b), as desired. This much does not involve the hypo-
thesis that b is an extreme point.
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We complete the proof by showing that (ii) implies (iv) and (iv) implies (i).
Actually, the first of these implications follows immediately from Lemma
3.4, which says that the operator S*|H(b) is unitarily equivalent to the oper-
ator Z3; the last operator is unitary when b is an extreme point (since then
H?(0) = L%*)). It only remains to prove that (iv) implies (i).

Assume that b is not invertible in H*. We shall show that then S*|H(b) is
not similar to a unitary operator. The noninvertibility of b implies the non-
invertibility of 7;. Hence, given ¢ > 0, there is an f in H? with llfll; = 1
and IT; fll, < e. Let h = (1 — T,T;)"?f. Then h is in H(b) with llAll, < 1,
and

A2 = A3 = <1 — T,T) £
If12 — 11T, f112

> 1— ¢

One consequence of the assumption that b is an extreme point is (in the ter-
minology of de Branges and Rovnyak) the identity for difference quotients:

IS*gll2 = liglZ — |g(0) (g € H(b))
[19, p. 16Z]. From this it follows that

lim IS*hl2 = A2 — lIAl2 < 1 — (1 — &) = €.

n—o
As e is arbitrary, the desired conclusion, that S*|H(b) is not similar to a unit-
ary operator, follows, and the proof of Theorem 7.1 is complete.

Later, in Section 11, we shall see that the condition that 4 be a multiplier
of H(b) is equivalent to the conditions of Theorem 7.1.

Corollary 7.2. If b is an extreme point of B(H®) and is invertible in H* then
b~ is a multiplier of H(b).

In fact, if b is invertible, then Lemma 2.3 and Theorem 7.1 combine to
give bH(b) = H(b). (The same result holds, and the same reasoning applies,
when b is not an extreme point. The corollary uses only the implication (i)
implies (ii) from Theorem 7.1, which, as noted in the proof, holds for non-
extreme points as well.)

Corollary 7.3. If b is not an inner function then H(b) has nonconstant mul-
tipliers.

We need only to treat the case where b is an extreme point. Under the
assumption that b is not an inner function, there is a factorization b = b,b,,
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where b, and b, are in B(H™) and b, is nonconstant and invertible in H*.
(For example, one can take bx to be the outer function whose modulus on
dD is the maximum of |b| and 1/2). Using the reasoning at the beginning of
Section 6 we obtain the decompositions

H(b) = H(b,) + bH(b) = H(b,) + bH(b)).
Thus b,H(b,) C H(b) and b,H(b,) C H(b), and
bH(b) = bH(b,) + bbH(b,).

By Theorem 7.1 bH(b;) C H(b,), and hence b, is a multiplier of H(b).
As in the last section, we let u, denote the inner part and b, the outer part
of b. )

Theorem 7.4. If b is an extreme point of B(H*) and b, is invertible in H*,
then b, and 1/b, are multipliers of H(b) and one has the decompositions
H(®) = H(u,) + H(by) = byH(uy) + uyH(b,).
The proof depends on the decompositions
H(b) = H(u,) + uyH(by) = H(b,) + by H(u,)

from Section 6. If b is invertible then, as seen above, we have b H(b,) =
H(b,), so that

byH(b) = byH(u,) + uybyH(b,)
by H(uy) + uyH(by)
C H(b),

and
by 'H(b) = by 'H(b,) + H(uy)
= H(b,) + H(u,)
C H(b),

Thus b, and 1/b, are multipliers of H(b), so the preceding inclusions must
actually be equalities, and the desired decompositions of H(b) follow.

8. Multiplication operators

For m a multiplier of H(b), we let M, denote the corresponding multiplication

operator on H(b). For w in D, the kernel function ka is an eigenvector of M}
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with eigenvalue m(w) (since it is orthogonal to the range of M, — m(w)).
Conversely, if M is an operator on H(b) such that each kernel function klfv is
an eigenvector of M?*, then M is a multiplication operator. This well-known
property of reproducing kernel Hilbert spaces can be found in [23].

It will be convenient to denote the operator S*|H(b) by X it is a contrac-
tion by Lemma 2.6. The adjoint X* is given by

X*h = Sh — <h,S*b>,b

[4], [19]. If b is an extreme point of B(H®), then b is not in H(b), and one
can draw the following conclusion.

Lemma 8.1. If b is an extreme point of B(H™) and h is in H(b), then Sh is
in H(b) if and only if <h,S*b>, = 0.

When b is an extreme point and m is a multiplier of H(b), the operator M*
has unexpected eigenvectors.

Theorem 8.2. Let b be an extreme point of B(H®) and m a multiplier of
H(b). Then S*b is an eigenvector of M. If @ is the corresponding eigen-
value, then (m — o)b belongs to H(b) and m — o belongs to H(b), and the
commutation relation

MX — XM} = S*»® (m — o)b
holds.

In fact, Lemma 8.1 implies that the orthogonal complement of S*b in H(b)
is in variant under M, , so that S*b is an eigenvector of M. To obtain the
commutation relation, consider a point w in D and the corresponding kernel
function k2. From the expresion k5 = (1 — b(w)b)k,, one easily obtains the
equality Xk? = wkb — b(w)S*b. Thus

(M*X — XM%kb = w m(w)kb, — ab(w)S*b — m(w)(wk’ — b(w)S*b)
= (m(w) — )b(W)S*b.

As the functions k{’v span H(b) it follows that M} X — XM} is an operator
of rank 1 with range spanned by S*b:

M*X — XM} = S*b & ¢,
where ¢ is some function in H(b). But by the preceding equality,
d(w) = <kb,0>, = (m(w) — c)b(w),

in other words, ¢ = (m — a)b. In particular, (m — a)b is in H(b). It now
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follows from Lemma 2.3 than m — « is in H(b), and the proof of the the-
orem is complete.

For w in D we define the operator Q, on H? by

f@) — flw)

i—w

QN =

A simple argument produces the alternative expression Q, = a— wS*)_lS *,
In particular, Q b = (1 — wX)~!S*b, showing that Q b is in H(b).

Corollary 8.3. If b is an extreme point of B(H*) and m is a multiplier of
H(b), then each function Qb is an eigenvector of M}.

The case w = 0 is given by Theorem 8.2 so, for the proof, assume w# 0.
The communication relation gives

(I —wX)M} — M*(1 — wX) = wS*h ® (m — a)b.
Applying both sides to Q b, we obtain
(I —wX)M*Q b — aS*b = «w<Q b, (m — a)b>, S*b.
It follows that
MXQ.b = [a@ + w<Q b, (m — a)b>,]1Q,b,
the desired conclusion.

The properties of M, given by Theorem 8.2 characterize multiplication
operators in the extreme point case.

Theorem 8.4. If b is an extreme point of B(H™) and if M is an operator on
H(b) such that M*S*b = &@S*b and '

M*X — XM* = S*bh & ¢,
then M = M, for a multiplier m of H(b).
To prove this it will suffice to show that the hypotheses imply k2 is an

eigenvector of M* whenever b(w) # 0. Assuming the last condition and
applying the commutation relation to k’;, we obtain

d(W)S*b = M*(wkb, — b(w)S*b) — XM*k?,
= (W — X)M*kb — ab(w)S*b,

so that
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(% — X)M*k®, = @(w) + abW)S*b.

But also (W — X)k2 = b(w)S*b, and the operator w — X is injective because
of the assumption that b(w) # 0 (which implies that &, is not in H(b) [19]).
We can conclude that
poiy = P00+ GO,
i b(w)
and the proof is complete.

9. Conjugations

We assume throughout this section that b is an extreme point of B(H®). As
we mentioned earlier, in Section 3, one consequence of this assumption is the
equality HZ(,u.b) = L%(y,), which enables us to define a conjugation on H(b)
by transferring via the map V), a conjugation on Lz(ub). This conjugation
and another on a space related to H(b) that we shall introduce a little later
are intimately connected with the structure of the multipliers of H(b).

The conjugation on H(b) that turns out to be useful is the one that corre-
sponds to the conjugation ¢ = e~ on L*(,). We denote it by C:

Ch = VZ}V;h)  (h € H(b)).

That C is a conjugation (an anti-unitary involution) is obvious.

Lemma 9.1. For w in D, Ck%, = Q_b.

This is a straightforward calculation. By the way u, is defined, the func-
tion (1 + b)/(1 — b) differs by an imaginary constant from the Herglotz
integral of u,. Using the equality k2 = (1 — b(w)) V,k, from Lemma 3.1, we
obtain

e——iﬂ

r .
b = — —_ d ele
(Ck2)@) = (1 — bWl — b)) @ — e fw)(1 — e~ 2) ke
_ — ( 1 1 :
_ 1 — b(w)(1 — b(z)) [ — - ] dp,(€?)
T—w Joo |1 —ez 1—ew
6 '0
e Ot O B Gt Bl
2z—w) Jap e’ —z el —w
(A —bo(A —b@) [+ bE@) 1+ bW
- 20z — w) .1 — b(2) 1— b(w)]
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B b(z) — b(w)

—Ww

H

as desired.

The conjugation C intertwines the operator X (= S*H(b)) and its adjoint.

Lemma 9.2. CXC = X*

It will suffice to show that CXk’;. = X*Ckﬁ, for all w. We transform both
sides with the aid of Lemma 9.1. First,

CXk® = C(wkb — b(w)S*b)
= wQ, b — b(w)k}.
Next, by the formula for X* mentioned in Section 8,
X*Ckb = X*Q.b
S$Q,b —<Q, b,S*b> b
SO.b — <kl,kb>.b
SQ,b — (1 — b(O)b(w))b.

Now

1l

(S — W)S*1 — wS*~! + wQ,
—(1 — SSH(1 — wSH~! + 1 + wQ,,.

SQ,,

The operator (1 — SS*)(1 — wS*)~! is easily seen to equal 1 ® k; in fact,
its adjoint applied to the H? function f gives

(1 — wS)~!(1 — SS¥)f = 01 — wS)~'1 = f0)k,,.

Thus SQ b = —b(w) + b + wQ, b. Inserting this into the expression above
for X*Ck?®, we get

X*Ckb = —b(w) + b + wQ b — (1 — b(0)b(W)b
= wQ, b — b(w)(1 — bh(0)b),

as desired.

We now introduce our second conjugation. It will act on the space K2+(Q),
by which we mean the space of functions that are sums of functions in K2(p)
and constant functions. The functions in X*(p), and here those in K 2+ (o), are
defined in the complement of dD, and we define them at o in the obvious
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way (namely, those in K%(p) are assigned the value 0 at infinity). For f in
K? (o) we define its conjugate, f,, by

Sf(2) = f(1/2).

Straightforward calculations show that, if f = qu + ¢ with g in L*(p) and
¢ a constant, then fx = —SKQ(Z:é) + ¢, and also fx = ——Kgc7 + (KQ[])(O)
+ C. The latter expression shows that fx is in K2 (o).

We let K*(p) denote the space of bounded functions in Ki(g). (Here, by
bounded we mean bounded in the entire complement of dD, not merely in
D.) It is obvious that the conjugation on K2 (¢) maps K=(g) into itself.

The next lemma gives a relation between our two conjugations.

Lemma 9.3. If f is in H(b), then C[(1 — b)f] = (b — 1)S*fx.

To prove this, let g be the function in L*(p) such that f = Kgq. Because
(1 — |b]»)/|1 — b|? is the Radon-Nikodym derivative with respect to nor-
malized Lebesgue measure of the absolutely continuous component of u,, we
can also write f = K#b(|l — bl%g), provided we regard |1 — b|%g as vanishing
on the singular component of p,, if there is one. Thus

(1 — b)f = V(11 — blg),
and we obtain

Cl(@ — byf]

V,Zi(1 — blg)
(1 — K, ZX1 — bl

wy b

= (1 — b)K,(Z9).

As mentioned above, fx = —SK(Z7q), so that K (Z*§) = —S*f,, and the
desired equality follows.

We are now able to determine the effect of conjugation on multiplication
operators.

Theorem 9.4. If m is a multiplier of H(b), then CM,,C is a multiplication oper-
ator, namely, it equals M, .

Corollary 9.5. The multipliers of H(b) are in K*(p).

The corollary follows immediately from the theorem. To prove the theorem
we note first that, because C is a conjugation, (CM, C)* = CMC. This in
conjunction with Lemma 9.1 and Corollary 8.3 implies that if # is a multi-

plier of H(b) then each of the functions kﬁ is an eigenvector of (CM,,C)* and
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hence that CM,,C is a multiplication operator. It remains to determine the
corresponding multiplier. Let it be denoted by m’.
From the proof of Corollary 8.3 we have

M¥Q.b = [@ + w<Q b, (m — )b>,]Q,0b,
where a is the eigenvalue of S*b as an eigenvector of M*. Consequently
CMXCkb = [a + Wl(m — a)b,Q,b>,]k5,

from which we conclude that

Rl

m'z) = a + z$Q.b,(m — a)b>,

Il
Rl

+ z(C[(m — a)b], k>,
+ zCl(m — a)b](z).

Il
Ql

Hence m'(0) = &, and

S*m! = C[(m — a)b].

By Lemma 9.3,
Clim — a)(b — 1)] = (1 — b)S*m.
(The lemma applies because m — « belongs to H(b), by Theorem 8.2) In
view of the last two equalities, we seek an expression for C(m — «) in terms
of m'.
Let 3 be the eigenvalue of S*b as an eigenvector of M},. Because m and

m' play symmetric roles, we have 8 = m(0) and C[(m' — B)b] = S*m. We
can rewrite the last equality as

X(m — a) = C[(m' — B)b].
Since CX = X*C, it follows that
X*C(m — a) = (m' — B)b.

Using the formula for X* mentioned in Section 8, we can rewrite the left side
here as

SC(m — &) — <C(m — &), S*b>, b = SC(m — o) — <kl m — o>, b
SC(m — a) — (m(0) — &)b
SC(m — o) — (@ — B)b.

Applying S* we find that
Cim — a) + (@ — B)S*b = S*(m' — B)b]
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bS*m' + (m'(0) — B)S*b
bS*m' + (& — B)S*b.

Hence C(m — «) = bS*m!.

Combining the last equality with the previously obtained expressions for
Cl(m — a)b] and C[(m — a)(b — 1)], we find that S*m' = S*my, so m' and
my differ by at most a constant. But from the way m, is defined one easily
sees that m, — B (= msx — m(0)) belongs to H(b). Since m' — (3 also belongs
to H(b), but the constant functions do not, we must have m' = my, and the
proof of the theorem is complete.

10. Lemmas on Cauchy integrals

We need two simple facts about Cauchy integrals. For u a finite complex
Borel measure on dD, we let P« denote the Poisson integral of x and Qxu
the conjugate Poisson integral of .

Lemma 10.1. [f p is a finite complex Borel measure on dD and f = Ku, then,
in D,

f@) — f(1/2) = (P x w)(2)

1
M) = > [P+ W) + H(Q * p)(2) + (P p)0)]

Lemma 10.2. If p is a finite complex Borel measure on oD, and if f and g
are holomorphic functions in D such that f — g = P « p, then, in D,

fz2) = (Ku)(z) + £(0)
g(2) = (Ku)(1/2) + g(0).

Lemma 10.1 is a straightforward consequence of the relation between the
Cauchy kernel and the Poisson and conjugate Poisson kernels, and Lemma
10.2 follows easily from Lemma 10.1.

To illustrate the use of these lemmas we show here that, when b is an
extreme point of B(H®), the space K*(p) is closed under multiplication. Let
f and g be functions in K*(g). The function fg — f.&« is then bounded and
harmonic in D, so it is the Poisson integral of its boundary function. (The
function is defined in C\dD, but by its boundary function we mean the interior
boundary function, that is, the boundary function from D.) By Lemma 10.2,
to prove fg is in K®(g) it will suffice to prove that the interior boundary
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function of fg — fx &« has the form gg with g in L?(p). Let q, and g, be the
functions in L%(p) such that f = fl) + K (‘71) and g = g(o) + K (qz)
Then, by Lemma 10.1, the interior boundary function of f — fy is q,e and
the interior boundary function of g — g« is g, o. Writing

fo — fuBx = (F — g + felg — 89,

we see that the interior boundary function of fg — fy&s« is (g + q, f*)g. (In
the last expression, of course, g and fx denote interior boundary functions.)
Since g and fy are bounded, the function ¢,g + g, fx is in L*(p), the desired
conclusion.

Thus, K*(g) is an algebra, and by reasoning like that above one easily
sees that the spectrum of a function f in this algebra equals the closure of
S(C\AD). In fact, that the spectrum of f contains the closure of f(C\dD) is
obvious, so one only needs to show that f is invertible in K*(g) if it is
bounded away from 0 in C\dD. If the latter happens, and if g, is the function
in L?(g) such that f = f(OO) + K _g,, then by Lemma 10.1 the interior
boundary function of f f* is —q, o/. ff+, which is of the form go Wwith
q in L*(g). Lemma 10.2 thus guarantees that flis in K*=(g).

11. More on H(b)

We return in this section to the assumption that b is an extreme point of
B(H™). The functions in H(b) are restrictions to D of functions in K?(p), so
they have natural extensions to the exterior of dD. The next lemma states the
process of extension preserves multiplication, to the extent that it can. (This
fails when b is not an extreme point, except in the trivial case where o is
constant.) For fin H(b), we let f, denote the restriction to D of the conjugate
of the extension of f. (It differs by a constant from a function in H(b).)

Lemma 11.1. If the function f, g, and fg belong to H(b), then (fg)x = f+&x

For the case where f and g are in K*(g) this is established at the end of
the preceding section. The argument for the general case is similar but slightly
more elaborate.

Let q,, q,, and g be the functions in L*(p) such that f = K o910 8 =K o9
and fg = K 4 By Lemma 10.1, the boundary functions off f+and g —
g« are g, @ and &, o respectively. The function fg — S4B+ is the sum of an
H? function and the conjugate of an H' function, so it is the Poisson inte-

gral of its boundary function. Writing

fo — filix = (F — f)g + falg — 8x),
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we see that its boundary function is (ggq, + f*qz)g. (In the usual way, we
are identifying functions in D with their boundary functions.) Therefore, by
Lemma 10.2,

fg = Kl(gq, + f+qyel.
Hence
Kl(gq, + f+a, — @)e] = 0.

As the functions q,0'?, g, "%, and go'/? are in L?, the function (ggq, +
f+@, — @)@"? is in L!, which implies that the function (gg, + f+q@, — @)e
fails to be log-integrable (the reasoning can be found in Section 5). Since the
Cauchy integral of the latter function vanishes so do its forward Fourier
coefficients, and hence it is the zero function. Thus fg — fy &« is actually the
Poisson integral of gg, and we can conclude by Lemma 10.2 that (fg). =
S«8x, as desired.

Lemma 11.1 enables us to obtain the analogue of Theorem 9.4 and its
corollary for multipliers of H(b).

Theorem 11.2. If m is a multiplier of H(b) then m is in K*(o) and my is a
multiplier of H(b).

To prove this we use the conjugation on H(b) that corresponds, under the
transformation KQ, to the conjugation g — —Z;“c} on L?%(g). We shall not
introduce a special notation for it because we shall not have occasion to use
it again. A straightforward calculation shows that it is given by f — S*f,.
The important property for us is that the preceding map sends H(b) onto
itself, which also follows from the unitarity of S*/H(b) (used before in the
proof of Theorem 3.6).

Let m be a multiplier of H(b), and let f be any function in H(b). By The-
orem 3.6, m is in K2+(Q)ID, so Lemma 11.1 can be applied to give (mf)s =
my fy. Also fu(0) = 0, so S*(mf)x = m«S*f«. In view of the remark at the
end of the last paragraph we can conclude that my is a multiplier of H(b).
In particular, m, is bounded in D, and thus m is in K*(p).

The next result enables us to supplement Theorem 7.1.

Theorem 11.3. The function b belongs to K2+(Q)|D if and only if 1/b is in
H?. In that case by, = 1/b.

For the proof, suppose first that 1/b is in H?. Then 1/b is also in L*(g),
and we have
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2
K(1/b) = P, ( l) = 1/b(0) — b,

showing that 1/5(0) — b is in K*()|D and hence that b is in K2 (p)|D. More-
over, because of the way the transformation KQ interacts with the conjuga-
tion on K2 (g) (as was pointed out in Section 9), we have

(1/b(0) — b)x = —SK (Z} (1/b))
= —SS*K ,(1/b)

1 — |b]?
= —S§*P, 5 )

which gives b, = 1/b.

Suppose, conversely, that b is in K2 ()|D, in other words, that b — c’is
in H(b), where c is a constant. Then c # 0, since b is not in H(b). Also,
because 1 — b(0)b (= kg) is in H(b), we must have b(0) # O and ¢ = 1/5(—(».
Let g be the function in L2(g) that maps to b — 1/b(0) under KQ. Then

K (bg) = TiK,q = Ty(b — 1/b(0))
=T;h—1=—P (1—|bP)
= K, (—1).
Since K, has a trivial kernel, it follows that g = —1/b (modulo the measure

odb). Therefore (1 — |b[?)/|bJ? is in L', implying that 1/b is in L2. In addition,

_ 2
1/60) — b = K,(1/b) = P, ( 13| | ) = P_(1/b) — b,

SO PA_,(I/E) = 1/b(0). Therefore 1/b is in HZ2, in other words, 1/b is in H?,
and the proof is complete.

Corollary 11.4. If b is a multiplier of H(b) then b is invertible in H*.

The corollary is an immediate consequence of Theorems 11.2. and 11.3.
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12. Construction of multipliers

We retain the assumption that b is an extreme point of B(H®). Our next
main result, Theorem 12.2, is a criterion for a function in X®(p) to be a
multiplier of H(b). The criterion enables us to show that H(b) has an abun-
dance of multipliers; in particular, the multipliers of H(b) that lie in H(b) are
dense in H(b).

Lemma 12.1. Let m be a function in K*(g) and let q be the function in L*(g)
such that m = m() + K (q). Let g be a function in H? such that g(0) = 0.
Then Tgm = K(gqo)|D. The function Tg,m is in H(b) if and only if gq is in
L¥(o).

In fact, by Lemma 10.1, the interior boundary function of m — i, is qo,
SO

Tyn = P _(87x) + P, (&qo).

The first term on the right is 0 because g(0) = 0, and the second term is
K(g‘qg)IP. This proves the first assertion in the lemma. It is obvious that 7;m
is in H(b) if gg is in L*(g), which is one direction in the second assertion. For
the other direction, suppose Tg-m is in H(b), say Tgm = Kg(ql)lD with g, in
L*(p). Then K((gg — q)e)ID = 0. But (gg — g,)e is not log-integrable since
it is the product of the L' function gge'/? — ¢,¢'/? and the function ¢'’?,
which is not log-integrable. It follows that g, = &g, and the proof is com-

plete.

Theorem 12.2. Let m be a function in K=(g) and let q be the function in
L%(g) such that m = m(x) + K, q.
(i) The function-m is @ multiplier of H(b) if and only if fq is in L*p) for
every f in H(b).
(ii) The function m is a multiplier of H(b) if and only if hq is in L*(g) for
every h in H(b).
To prove (i), let f be any function in H(b), and let g, be the function in
L*(p) such that f = K ,g,ID. By Lemma 11.1, if mf is in H(b) then (mf)« =
myf«. This in conjunction with Lemmas 10.1 and 10.2 implies that mf is in

H(b) if and only if the boundary function of mf — mfx has the form g, o
with g, in L*(g). On D we have

mf — Mwfe = (m — mf + Walf — fi)

= fgo + W*ql Q.
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Since my is bounded the function 7.q, is in L%(g). Hence mf — ifyfs has
the required form if and only if fg is in L%(p), which proves (i).

Because of (i), in proving (ii) we can assume, without loss of generality,
that m is a multiplier of H(b). Let A be any function in H(b). By Lemma 2.2,
mh is in H(b) if and only if T,(mh) is in H(b). We have

Ty(mh) = mTz;h + P, ((bh — P, bhym)
= mTzh + Tym,

where g = (1 — P+)(Eh). The first term on the right is in H(b) since we
have assumed that m is a multiplier of H(b). Hence mh is in H(b) if and only
if the second term on the right, 7 m, is in H(b). By Lemma 12.1, that
happens if and only if gq is in L%(g). The function qP+(5h) (= qTjh) is in
L*(p) by (i) (since Tyh is in H(b) and m is a multiplier of H(d)). Hence mh
is in H(b) if and only if bhq is in L%(p), in other words, if and only if |b|
|hPlge is in L1. But (1 — |bP)|Allgle (= |hPlg?e?) is in L' since go (= m —
#74) is bounded. Hence mh is in H(b) if and only if |4[?|g|*¢ is in L!, in other
words, if and only if Aq is in L%(g). This proves (ii).

Corollary 12.3. If m is a multiplier of H(b) then the spectrum of M, is the
closure of m(C\aD).

As shown in Section 10, the closure of m(C\@dD) equals the spectrum of m
in the algebra K*(g), and this set is obviously contained in the spectrum of
M,,. To establish the opposite containment it will suffice to show that the
invertibility of m in K*(g) implies that 1/m is a multiplier of H(b). Assume m
is invertible in K*(g), and let g and g, be the function in L*(g) such that
m = m(e) + KQq and 1/m = 1/m(wx) + Kgql. Since

1 1 My — m
m o My B mmi
we conclude by Lemmas 10.1 and 11.1 that g, = —gq/mmy. If h is in H(b)

then Theorem 12.2(ii) tells us that Aq is in L%(p), and therefore so is hq,,
since 1/m and 1/m, are bounded. Theorem 12.2.(ii) now implies that 1/m
is a multiplier of H(b), as desired.

Corollary 12.4. Let m be a function in K*(g) and let q be the function in
L*(@) such that m = m(x) + Kq. If qo'’? is bounded, then m is a multi-
plier of H(b).

This corollary is an immediate consequence of Theorem 12.2.

Corollary 12.5. [f m is an invertible function in H* such that (1 — |m|%)?/o
is bounded on dD, then m is a multiplier of H(b), and my, = 1/m.
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We remark that if b is not an inner function, in other words, if o does not
vanish identically, then nonconstant functions satisfying the hypotheses of
" Corollary 12.5 can be constructed by standard means. (One example is the outer
function with modulus max{|b|, 1/2} on aD.)

To establish Corollary 12.5 it suffices to note that the bounded harmonic
function m — 1/ is the Poisson integral of its boundary function, which
equals (|/m|> — 1)/m. From Lemma 10.2. it follows that m is in K*(p) with
m — 1/m(0) = KQ((mI2 — 1)/ om) in D, and m, = 1/m. That m is a mul-
tiplier of H(b) is now immediate from Corollary 12.4.

Corollary 12.6. If m is a function in H* such that |Re m|/g'/? is bounded on
aD, then m is a multiplier of H(b) and my, = —m.

It is not completely obvious that there are nonzero functions satisfying the
hypotheses of the corollary in all cases where b is not an inner function. That
there are will be pointed out below in connection with the proof of Corollary
12.8.

To establish Corollary 12.6, it suffices to use Lemma 10.2 in the same way
as in the preceding proof and earlier ones to obtain

- 2Re m
m+m(0)=KQ( . )

in D and myx = —m. Corollary 12.4 now applies to show that m is a multi-
plier of H(b).

Corollary 12.7. If the outer factor, by, of b is invertible in H*, then all of
the functions k% and Q b, are multipliers of H(b), and (Q,b,)« = Skl/b,
and (kb)) = —by(w)SQ,(1/b,).

To simplify the notation slightly in the proof, we shall assume that b itself
is invertible. This is not a genuine loss of generality, because the criterion in
Corollary 12.4, upon which the proof of Corollary 12.7 is based, is insen-
sitive to the inner factor of b.

Assuming then that b is invertible, we note that

K (Z%,/b) = S*K (k,/b)
(1 — [Pk,
= S*P+ D 4
b
= —S*P (bk,)
= —S5*1 — wS*'b

= —Q,b.
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Therefore, by the relation between the transformation K and the conjuga-
tion on K2 (g) (noted in Section 9),

(Q,0)« = SK (k,/b)

SP, (k,/b — bk,)
S(k,/b — Tik,)
S(1 — bO)b)k, /b
= Skb/b.

Thus Qb is in K*(g), and Corollary 12.4 implies that it is a multiplier of
H(b). We see also that Skﬁ/b is a multiplier of H(b). Since the space of multi-
pliers is invariant under S* (by Lemma 2.6), and since b is a multiplier of
H(b) (Theorem 7.1), it follows that k” is a multiplier of H(b). To determine
(kb )« one verifies that k” b(w)K (k /b), which gives the formula

(k2 = —b(W)SS*K (K, /b).

The right side is easily reduced to the desired expression. The details are simi-
lar to those above and we omit them.

Corollary 12.8. The multipliers of H(b) that lie in H(b) are dense in H(b).

To prove this, let g be a real function in L*(g) and let f = K - As such
functions f clearly span H(d), it will suffice to show that f can be approx1mat-
ed in the norm of H(b) by multipliers of H(b). From Lemma 10.1 one sees
that the real part of fis bounded in modulus by ligell_ in C\dD. For e a posi-
tive number smaller than 1/llgell_, the functions f/(1 + ¢f) and fi/(1 + €fs)
are then in H*, and we have

S S ~ f—r«
Lref 1+efe A+ N+ efe)

The interior boundary function of f — fi is by Lemma 10.1 equal to gg,
so the interior boundary function of the preceding function is g, ¢, where
q, = q/(1 + ¢f)(1 + efy). By Lemma 10.2 we conclude that the function
m_= f/(1 + ¢f) equalsK (g) in D and that (m )« = fi«/(1 + €fx). Thus m,
is in K%(g) and in K*(p). It now follows immediately from Corollary 12. 4
that m_is a multiplier of H(b). Finally, since g, — g in L¥(p) as e = 0, we
have If — m |l = 0 as e = 0, completing the proof.

A comment on the preceding proof: Suppose for simplicity that llgeil =
and let g = f— f(0)/2 (which makes g« = —g). The functions
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Y g
me—_—‘— +
2\1 + eg 1 — eg

are then in H* for 0 < € < 1, and a simple estimate shows that IRemgl <
lglo/(1 — €)? on dD. The functions m! thus satisfy the hypothesis of Corollary
12.6, and the functions m: — m: (o) could have been used in the proof of
Corollary 12.8 in place of the functions m_. One can also deduce Corollary
12.8 by combining Corollary 12.6 with the following nice lemma of A. M.
Gleason and H. Whitney [9, Lemma 3.1] (slightly rephrased): If £ is a non-
negative function in L, then there is a sequence in H® whose real parts lie
between 0 and k& on dD and converge almost everywhere to k.

13. The effect of the inner factor

We continue to asume that b is an extreme point of B(H™). As we observed
earlier, the multiplication criterion in Corollary 12.4 is insensitive to the inner
factor of b: if a function m passes that test then it is a multiplier not only
of H(b) but of H(ub) for every inner function u. We shall show that the con-
dition of Corollary 12.4 characterizes multipliers of the preceding kind.

Lemma 13.1. Let m be a multiplier of H(b) and let q be the function in L*(g)
such that m = m(o) + Keq. Let u be an inner function. Then m is a multi-

plier of H(ub) if and only if gq is in L¥(g) for every g in H(u).

This lemma follows immediately from Theorem 12.2 and the decomposi-
tion H(ub) = H(u) + uH(b) (explained in Section 6).

Corollary 13.2. If u is a finite Blaschke product, then every multiplier of H(b)
is a multiplier of H(ub). ’

Indeed, if u is a finite Blaschke product, then the functions in H(u) are
bounded (in fact, they are rational functions), so the condition in Lemma
13.1 is satisfied.

Theorem 13.3. Let m be a function in K*(g) and let q be the function in
L*(o) such that m = m() + Kgq. Then m is a multiplier of H(ub) for every
inner function u if and only if go'’? is bounded. '

The «if» part is Corollary 12.4. The «only if» part is an immediate conse-
quence of the preceding lemma and the following one.

Lemma 13.4. Let o0 be a nonnegative essentially unbounded measurable func-
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tion on dD. Then there is a function g in H* that is noncyclic for S* such
that go is not in L2,

The function g that we shall produce lies in H() for an interpolating Blaschke
product u. We shall let |E| stand for the unnormalized Lebesgue measure of
the measurable subset E of aD.

Since o is unbounded there is a sequence {7} of positive numbers such
that z, ., > 2¢, for all n and such that each set E, = (¢, < ¢ < 2f,} has
positive measure. For each 7 let A\, be a point of density of E,. The points X,
are distinct so, passing to a subsequence, we can assume they converge to a
point distinct from all of them. That being the case, we can find disjoint arcs
I, I,,... such that I, has center \, for each n. Shrinking these arcs successi-
vely, if need be, we can assume |/, , || < |[,|/2 and |[I, N E, | > |I,|/2 for
each n.

Let w, be the point in D such that w,/|w | = A\ and 1 — |w,| = [[ |/2, and
let g, = (1 — |w,[»"*k,, , the normalized kernel function for the point w,.
Since 1 —|w, , | < (1 —|w,])/2, the sequence {w,}{°is an interpolating
sequence. Therefore, by a theorem of H. S. Shapiro and A. L. Shields [22],
the functions g, form a Riesz basis for their span in H?, that span being H(x),
where u is the Blaschke product with zero sequence {w,}

We need to estimate the size of g, on . For that, fixan nand let r = |w,|.

We have

(1 _ r2)l/2

g,(\, €°) = P

1 —re
(1 —r®)"2(1 — rcos § + irsin )

B (1 — r)? + 4r sin? (6/2)

Thus Reg, > 0 on dD, and for \ e® in I, that is, for [§] < 1 —r,
(1 —r)V%1 —r)
(A — r? + 4rsin¥ (1 — 1)/2)
(1 + ,.)1/2(1 . ,.)3/2
>

2(1 —r)?

Reg,(\ ) =

1
>

- ZII"II/Z :

Since £, — oo we can find a sequence {c,}{ of positive numbers such that
"Ec? < oo but Zc2t? = 2. Let g = Zc, g,. By the theorem of Shapiro and
Shields mentioned above, g is in H? and is not a cyclic vector of S*. On I,
we have
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Cn

lgl = Reg = Reg, = .
too2)?

Hence

v

E f lgal? db
I, CE,

E or |
—— i, N E
4|[nl n-n n

1
DELRR

J lgol? db
aD

v

v

which proves the lemma.

Up to now we have not given an example of a multiplier that fails to satisfy
the criterion in Corollary 12.4. That will come in the next section. In the other
direction, one sees from Theorem 13.3 that if g is bounded away from 0 on
the set where it is nonzero, then H(b) and H(ub) have the same multipliers
for all inner functions u.

The next result, which identifies a class of inner functions u# for which
H(ub) and H(b) have the same multipliers, does not require the assumption
that b is an extreme point.

Theorem 13.5. If u is an inner function such that dist(b, uH>) < 1, then
every multiplier of H(b) is a multiplier of H(ub).

We first show that the distance inequality is equivalent to the equality
H@u) = (1 — T,T)H(b), or, what amounts to the same thing, to the inclusion
H(u) C (1 — T,T,H(b). By the criterion of Douglas we used earlier (in Sec-
tion 2), the inclusion is equivalent to the operator inequality

1 —T, T, <c(1—T,T)(1 —T,TH(1 — T,T))
for some ¢ = 1. The operator inequality means that
A% < ¢ (IlAll3 — I T3A113)

for all A in H(u), in other words, that
c—1
I Tzhllg = 0 A3

for all 4 in H(u), in other words, that | T3|H(#)Il < 1. Since it is known [17]
that I T3|H(w)ll = dist(b, uH™), the equivalence is established.
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Thus, assuming u satisfies the condition in the theorem, we have H(u) =
(I — T, T)H(b). Suppose m is a multiplier of H(b). Then, because H(ub) =
H(u) + uH(b), to show m is a multiplier of H(ub) we need only show mH(u)
CH(ub). Let g be any function in H(u). Then, because H(u) = (1 — T,T})
H(b), there is a function 4 in H(b) whose projection onto H(u) is g. The
difference h — g is then in H(ub) and in uH?, so it is in uH(b). Hence m
(h — g) is in uH(b) and thus in H(ub). Since also mh is obviously in H(ub),
it follows that mg is in H(ub), and the theorem is established.

14. Helson-Szeg6 weights

For certain extreme points b of B(H®), those for which the conjugation
operator behaves in a decent manner relative to u,, we are able to describe
the multipliers of H(b) completely. By a Helson-Szegd weight we shall mean
a nonnegative function ¢ on dD that has the form ¢ = exp(¢ + ¥), where
¢ and i are real functions in L® with Iyl < #/2, and Y denotes the conju-
gate function of y. The following properties hold.

1. If o is a Helson-Szegd weight then so is 1/a.
2. A Helson-Szego weight is in L! * ¢ for sufficiently small positive num-
bers e.

3. If o is a Helson-Szeg6 weight then the conjugation operator is bounded
on L?(¢). This property characterizes Helson-Szegd weights.

Property 1 is trivial and property 2 is a well-known result of V. I. Smirnov
[7, p. 34]. Property 3 is the basic theorem of H. Helson and G. Szegé [13].
A thorough discussion of these and related matters can be found in the book
[8].

If p, is absolutely continuous and its Radon-Nikodym derivative is a
Helson-Szegoé weight then, as Davis and McCarthy show [1] (on the basis.of
the Helson-Szegd theorem), every function in H* is a multiplier of H(b).
(They prove the converse also.) Such a b of course is not an extreme point
of B(H®). The next theorem says that an analogous result holds for extreme
points whose corresponding measures are made in a simple way from Helson-
Szegd weights.

Theorem 14.1. If , is absolutely continuous with Radon-Nikodym derivative
Xg 0, where o is a Helson-Szego weight and E is a subset of dD of positive
measure whose complement has positive measure, then the following spaces
coincide:

1. The space of multipliers of H(b),
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2. K*(e),
3. K™(xp)-

A lemma is needed.

Lemma 14.2. Let o be a Helson-Szegd weight and let q be a function in
L%(0). Then, in D, the Cauchy integral K q belongs to H 1 and its interior
boundary function has the form q,o with q, in L%(0). '

To see that K g is in H', choose a positive number e such that ¢ is in L'+
Then go is the product of the L? function go'/2? and the L2 * % function ¢'/2,
so it is in LZ * 20/ + o by Holder’s inequality. By M. Riesz’s theorem, the
conjugate function of go lies in the same space. Hence (by Lemma 10.1), the
Cauchy integral K g is in H@ * 20/ + & and a fortiori in H'.

To see that the interior boundary function of K g has the required form
we note that, because go is in L%(1/0), the Helson-Szegd theorem implies that
the interior boundary function of K g, its Cauchy integral, is in L*(1/0).
Thus, if g, is that boundary function, then the function ¢, = g,/cisin L¥0),
which is the desired conclusion.

As for the theorem, we already know that every multiplier of H(b) is in
K>(e), and one easily sees that K*(g) is contained in K*(x). It only remains
to show that every function in K*(x;) is a multiplier of H(b), or, equivalently,
of K 2()(Eo).

The argument is similar to several we have already given. Let f be a func-
tion in Kz(an), say f = K(gxgo), where g is in Lz(xEo). Let m be a function
in K*(xg). By Lemma 14.2 the functions fand f%, in D, belong to H'. Hence
mf and myfs are in H', implying that the harmonic function mf — 4fx is
the Poisson integral of its boundary function. By Lemma 10.2, to prove
mf is in KZ(XE o) it will suffice to prove that the boundary function of
mf — myfs is of the form q,xg 0 with g, in LZ(XE o). For this we write, as
usual,

mf — ’ﬁ*ﬁ = (m—my)f + m*(f_f_*)

In the first summand on the right, the boundary function of the first factor,
m — iy, is bounded and vanishes off E (Lemma 10.1), while the boundary
function of the second factor is in L%(s), by Lemma 14.2. The boundary
function of the first summand is thus of the required form. In the second
summand, the boundary function of the first factor, 74, is bounded, and
the boundary function of the second factor, f — fs, is gxg 0. The boundary
function of the second summand thus also has the required form, and the
proof is complete.
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We are now able to given an example of an extreme point b, a multiplier
m of H(b), and an inner function u, such that m is not a multiplier of H(ub).
Fix & in (0,1), and let the function ¢ on 8D be defined by a(e?) = [6/°,
(—m < 0 < ). This is a Helson-Szegd weight by a result of G. H. Hardy
and J. E. Littlewood [11]. One can prove that nowadays by verifying that ¢
satisfies B. Muckenhoupt’s condition (4,), which characterizes Helson-Szegd
weights. (Details are in [8].) Let E be the right half of dD, and let b be the
function such that (1 + b)/(1 — b) is the Herglotz integral of x,0. Theorem
14.1 applies, telling us that K*(xj) is the space of multipliers of H(b).

Let g, be a C! function on D that vanishes off £ and is nonzero at the
point 1. Since g, is of class C! its conjugate function is continuous, and this
implies by Lemma 10.1. that the Cauchy integral m = Kgq, is bounded in
C\0D and hence belongs to K®(xg). Thus m is a multiplier of H(b).

We also have m = K g where ¢ = q,/¢. The function qe'? (= g,073
is unbounded because g,0~"? is and @ = |l — b|*>xzo < 4xz0. Hence
Theorem 13.3 guarantees the existence of an inner function u such that m is
not a multiplier of H(ub). The proof of Lemma 13.4 provides an explicit
example of such a u, a certain interpolating Blaschke product. By using esti-
mates similar to those in the proof of Lemma 13.4 it is not hard to show that
the Blaschke product with zero sequence {1 — 27"} also has the required
property.

15. Questions

Many questions puzzle us.

1. If b is an extreme point of B(H*), must every function in K*(p) be a
multiplier of H(b)? An answer most likely will involve subtleties of the
conjugation operator (although we may be overlooking something sim-
ple).

2. If b is an outer function, must H(b) and H(b) have the same multipliers?
Results in [18] show that the answer can be negative when b is not an
extreme point. What about the extreme point case?

3. To understand better the multipliers of H(b), one needs examples, in
addition to those given by Theorem 14.1, where they can be described
completely. As a very special query: Suppose in the example in Sec-
tion 14 one lets 6 = 1, thus passing beyond the realm of Helson-Szegd
weights. What are the multipliers of H(b) for the corresponding b?

4. Davis and McCarthy [1] prove that if u is a finite positive Borel measure
on dD and u, 1s its absolutely continuous component, then every mul-
tiplier of K2 () is a multiplier of K%(x,). In case the singular component
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of u is a finite sum of point masses and the Radon-Nikodym derivative
of p, is log-integrable, they are able to specify precisely which multipliers
of K*(u,) are also multipliers of K%(x). Can one describe in more gen-
eral cases, or perhaps even in general, how the singular component of
p influences the space of multipliers of K?(u)? Progress on this will
undoubtedly lead to a better understanding of the structure of the corre-
sponding space H(b).

5. In case b is an extreme point, the algebra K*(g) appears to be an inter-
esting object of study. It becomes a Banach algebra when equipped
with the norm IIflIl = Ifll, + ligll ., where g is the function in L*(p)
such that f = f(eo) + Keq, and IIfIl_ stands for the supremum of |f]
over C\aD. As shown in Section 10, the spectrum of a function f in
K=(p) is the closure of f(C\dD). What can one say about the maximal
ideal space of K*(g)? Is C\oD dense in it?
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