REAL COMMUTATIVE ALGEBRA 1. PLACES (%}
by

D. W. DUBOIS

The principal theorem is the extension theorem (theorem 3). The
specialization at an inner point on a real algebraic variety V | & always
extends to a real place of the function field F | £ of V. [Inner points
are the members of the strong closure of the set of all simple points.]

Gleyzal rank, of an order and of an ordered field, is defined.

Theorem 1 asserts that for a real place & on a function field F | &
with residual field F,,

Gl.rank (F, | #) + rank 2= Glrank (F | %)

Theorem 2 is an existence theorem for places and orders with pres-
cribed ranks.

The subject of real places was introduced in 1932 by Krull [3] based
on the work of E. Artin {[1] (and to a lesser extent, R. Baer [2]).
Our «Gleyzal ranky» honors the incredible ingenuity of A. Gleyzal who
created a concept of Archimedian completions with almost no algebraic
tools. Lang, in 1953, proved an extension theorem [4] quite different
from ours, namely, given a real place K — A, where K is a function
field, there exists, for some real closed field containing K, an extension
(real, of course) of the place. Lang also gives examples to show the
difficulties in the way of extending a specialization to a real place.

The set of all R-places is the object of study in [7] (as well as in
[5], but language of [5] is different) with a topology which is induced
by Harrinson’s topology on the set of all orders. There and also
in [10] (there is an oversight in the latter and statements about sums
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of squares being positive are valid only for inner points) analogues of
Hilbert’s 17" problem are proved. See also [6].

The geometric extension theorem, from specialization to real place,
is based on our Reelnullstellensatz [8] (published in December 1969);
the first proof appears in the unpublished Technical Report of 1971
[10], along ‘with the preliminary material on Gleyzal rank. The
remainder of the results were obtained in December, 1979.

1. GreEyzaL Rank.—For non-negative infinitesimals » and y in the
ordered field K | k, the relations «x <Jy» and «y ™ x» signify that
for every positive integer =, & is less than y”. If neither # <y nor
y <\ x holds then we write «x ~ y», read «& is equivalent to y». The
following lemma shows that this is truly an equivalence relation. Let
L (y), for any infinitesimal y, denote the set {x:|+™|<y, for
some #1}.

Lemma 1.—Assume K | & is an ordered field, with B and ] denoting
the ring of all finite elements and ideal of all infinitesimal elements,
respectively. Then:

(a) Every ideal of B is real and saturated (0 < |2 | <y € B im-
plies » € B).

(b) An ideal in B is prime if and only if it is a union of sets L (y);
in particular each L (y) is a real prime ideal, and a prime ideal P is
equal to U {L (y) : y € P}.

(c) L{») <L (y) if and only if x#€ L (y).

(d) L(x)<<L (y) if and only if »# <1y.

(e) (Trichotomy) For all # and y in J, exactly one of the following
is true:

L(x)=Lw), L)L) L#>LH).

(f) A chain 0 <, << ... <]x;€]J is satured in the sense that no
more terms may be inserted, even at the top, if and only if the corres-
ponding chain of prime ideals, (0) <L (#) <..<<L (%) =17, is
satured.

(g) There exists one and only one satured chain of L ().

The proof, whose details appear in [10], is omitted; it is straight-
forward.

Derinttions.—The length of the chain 0 <, <] ... <Jx,€]J is s.
The Gleyzal rank of the ordered field K

k is the supremum of the
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lengths of such chains. In case K | & is Archimedean its Gleyzal rank
is zero. Abbreviation: Gl. rank K | %.

LemMA 2.—Assume K | k is an ordered field with
0<x, < ..<x,€].

Then:
(a) Each x, is infinitesimal over k (&, ..., #m_1).
(b) The system (&, ..., #;) is algebraically independent over k.
(¢) Gl rank K| % is at most equal to the transcendence degree
of K|k:

Gl.rank K | 2<Ttr.deg. K| £

Proor.—By induction on ¢. For ¢ = 1, assertion (a) is given and
(b) asserts merely that algebraic extensions are relatively Archimedean.
Assume validity for £. It will be shown that if 0 <y <, << ... < x,
then y is infinitesimal over k (x,, ..., #;). The induction will then be
complete for both (a) and (b), from which (c) is an immediate conse-
quence. So, let a (#) and b (x) be polynomials in k [x,, ..., /], both
of them positive. It must be shown merely that

a(x)

i.,e. that » & (x)<a(x)

The induction hypotheses shows that #, is a minimal element of
k (xy, ..., #1), i. e., the chain 0 <&, is saturated. It may therefore
be assumed that a () = 2™, for some positive integer n. Let b, (%)
be the homogeneous component of b (#) of degree m. Let (v) be a
t-tuple of nonnegative integer components (v) = (v,, ..., V:).

Then b, () can be written as

by =2,0,2 2> ... 2% where Xuv;,=m.
Then :
0<yb( x,<yZ|b V]| <y - Z|b(”)x{’1. x| <

<y D Db -‘yZl 2" <py

m  (2)
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for some positive p in k. But since y <], is assumed, the last term
is less than 2" = o (#), whence y b () << a (¥) as was required to
complete the induction.

Note.—Let k< F < F’. Then:
Gl rank F | £+ Gl.rank F' | F << G!l.rank F' | 4

Equality may fail. Let & and y be independent variables. Order
R#x,9)so0<<aor<<y€];let k=R, F=R (@), FF =R, v).

2. REeaL prLaces.—Let K |k and A |k be real fields over the or-
dererfield k. Let P be an order of K|k The canonical place, or
Krull place, asociated with P is denoted kg ; its valuation ring is Bp,
its maximal ideal is Jp, where, as usual, By and J, are the sets (res-
pectively) of all finite (infinitesimal) elements of K | & according to
order P. The residual K, | & = Bp/Jr has a unique order compatible
with np (i. e. an order by which %, is order-preserving). Suppose now
that some place i+ on K | 2 onto A | kU {oo} is given, and that P is an
order of K | £ such that B, < R, = valutation ring of 4. Then again
~ A| k has a unique order compatible with k. If A |k is already ordered
and if some place & of K|k onto A| kU {oo} is given then there
exist associated orders P of K | k which are compatible (i. e. & is order-
preserving) and for any such P, we have M, < J, € B, ©R,, where
M, is the maximal ideal of &; Bp = R, if and only if A |k is Archi-
medean. Two orders P, Q which are both associated with %, need
not be equal, but they agree as to finiteness and infinitesimality,
Bg = Be, Jq = Je. For a chain of prime ideals {L;} in B = B;, let
A = B., = local ring of By at L;,. Then A, is the valuation ring of

a place whose maximal ideal is L;

0<L,<...<L=JCB=A,<...<A,

These ideas go back to Krull [3]. Cf. [10].

TueoreM 1.—Let & be an order-preserving place of the ordered field
K|k onto A| kU {oo}. If Gl rank K|k is finite, then:

rank /2 -+ Gl. rank A | 2= Gl. rank. K | £

and if Gl. rank K| k is infinite then also rank 7 is infinite.
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Proor.—Assume Gl. rank K | & is finite, say g is the Gleyzal rank.
Tet 0<x, <..<mpy €] be a saturated chain. Let L, = L (#,).
"Then 0 <L, <<...<<L, = J is saturated. By Lemma 1 the maximal
-ideal M, of h fits into the chain of L; somewhere, so if rank h = 7
o(clearly h has finite rank) then M, = L,. From Lemma la we see
that M, contains #,, ..., #, and no other #,. Straightforward compu-
rtations show that in any case a real place h preserves the relation <
in the sense that for u and v in J but not in My, u <<v is valid if and
conly if hu <UAhv holds in A | k. Moreover h preserves infinitesimals.
From this it follows that the chain 0 < h #,,, < ... < h x, is saturated
in A| k. This shows that Gleyzal rank of A |k is g—r, as was to
‘be proved.

In case Gl. rank K | k is infinite the argument above shows that &
‘has infinite rank.

TrEOREM 2.—For a real function field & (V) = F of dimension d,
let 0 <7 + m=g<<d,r,m, and g being otherwise arbitrary non-
mnegative integers. There exists an order of F of Gleyzal rank g and
:an order-preserving place % of rank 7, whose residual field has Gleyzal
rank .

Proor.—Let T = k (x4, ..., #;) be a pure transcendental extension
«of degree d. Assume, as will be proved shortly, that T admits an
order whose Gleyzal rank is g. Let T be a real-closure of T relative
to such an order. It is possible to embed £ (V) in T; there results
an induced order of k (V). Now T is algebraic over T and over
k (V). Let h be the Krull place on T for the given order, let 4’ be
‘the induced place on k (V) and 4" the place on T. Each of these
‘places is the Krull place for the induced order (the key is that the in-
finitesimal ideal for the larger field lies over the infinitesimal ideal in
‘the lower). The rank of each place is equal to the Gleyzal rank of
‘the corresponding orders. But since the extensions are algebraic, the
ranks are all equal to each other. Hence the Gleyzal ranks are the
same, namely g. In & (V), then, we have:

0<<P, <<...<P,=JCB=A,<...<A

The place I, : A, — A,/P, has rank r, and, by Theorem 1, the
mwesidual field has rank g —» = m.
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Thus the problem is reduced to the problem of existence of am
order of rank g on a pure transcendental extension of degree d > g.
Successively adjoin X,, ..., Xy_,, making each variable infinitesimal over
the preceding field; then there is the saturated chain:

X,, <..<X,€].

Let K =k (Xy, ..., Xy;). Now choose (cf. § 15 [11]) algebraically
independent over K formal power series of the form: 2z (¢) = T o, &,
with o, € K, say 2, ..., 25. For any member of K (X,, ..., X;) say
f (X, ..., Xg), substitute z; (¢) for X; and factor out of the resulting
Laurent series the minimum power of ¢:

(2 @), s 22 () = F()

where f(f) is a power series f, + fi ¢t + ..., with f, 4 0. Tus f(0)
is a non-zero member of K (except when f = 0) because of the alge-
braic independence of the z; (3).

Define P as the set of all f such that f = 0 or f(0) > 0. This
defines an order of K (Xj, ..., X4) | K whose Gleyzal rank is one. Im
fact, the chain

0<X,<...1X,€]
is saturated in & (V). The theorem is proved.

Note 1.—If F were merely of finite transcendence degree the con-
clusion follows ; same proof, regardless of the algebraic degree.

Note 2.—The case g = d corresponds to a trivial place.

Prorosition.—(Extract from the proof of theorem 2).

Gleyzal rank is not altered in algebraic extensions

3. PLACES ON FUNCTION FIELDS.—An inner point of a real algebraic
variety is any member of the strong closure of the set of all simple
points. Let k& be an ordered field. V |k a real variety in K™ where:
K | k is real-closed ; let k[, ..., #,] be the coordinate ring.

TraeEOREM 3.—For any inner point Q on V there is a real place om
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k (V) centered at Q, V being a real variety over the ordered field k.

Proor.—The standard reduction to the case where dim Q = 0
works here. It must merely be observed that after the reduction by
change of ground field QQ is still an inner point. See, e. g. Theo-
rem 16 [2].

Now assume that QQ is an inner point of dimension zero. In the
argument following it is assumed merely that %2 (Q) | % is Archime-
dean. The condition that Q be an inner point of V, i. e. a member
of the strong closure of the set of all simple points of 7/, is equivalent
to the condition that every strong meighborhood of Q is Zariski-dense
in V. For if Q is not in the strong closure then there is an oriented
box U in K™ which contains Q but no simple points, whence UN V
is contained in the proper subvariety S of all singular points. There
exist a polynomial which vanishes over S and hence over U NV but
which is not in the ideal of V. This shows that U 1 V is not Zariski
dense in V. For the converse the case K = R was proved in [3],
Theorem 4.9. Tarski’s principle thus gives the result for arbitrary
real closed K.

The first step in the construction is to construct an order P of
k (V) which is centered at Q: this means that P contains every f (#)
which is defined and positive at Q. Let A be the set of all f () im
k [V] which are positive (> 0) at Q, let = be the set of all sums of
the form X d; ;* with d, in A, u, arbitrary in k (V). To prove that
there exists an order of % (V) which is centered at Q it suffices to
find an order which contains =. If there were no such order then
there would exist d; and %, with #,40, and = d, 4 = 0 ([2], [3])-
Write fi/g; for u;, with f, and g, in k [V/], both nonzero. Set

G=Tg, G=1I,.g;:
The latter is G/g;, which is not zero, i. e. G, is not zero. Then:

0= pN d; u,"" = G? z d, (f;'z/g,'z) =2 (11,'2 G,‘2_f,‘2
Since d; belongs to A, d; (Q) is strictly positive. By continuity there
exists a strong neighborhood U of Q in V such that d; (Q") >0 is
valid for all Q" in U. Then for all Q" in U,

0="2d;(2) G;(0)? - fi (1) =S4, (Q’) - G:(Q)2£:(Q')?
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Since d, (Q) is positive, G; (Q') - fi (Q') is zero for all 4+ and all Q)
in U. By the previons paragraph, the assumption that Q is an inner
point implies that the neighborhood U is Zariski-dense in V, which
with the just deduced condition that G; (x) - f; (#) vanishes all over
U, implies G, (#)-fi(x¥) = 0. By hypotheses f; (#)5£0 whence
‘G; (&) = 0, contrary to the condition deduced above.

Thus 'we have an order P which is centered at Q, with finite ring
B, infinitesimal ideal J. Let Jq be the set of all infinitesimals in
k [Q], let the letter ¢ represent the specialization at Q and let Iy be
‘the Kernel of 5. We now show that

lhClNE|V] =0,

Let f (#) be any member of Iq. Then f(Q) = 0 and for all positive
o in kb om + f(Q) > 0. Hence m + f (x) > 0, which shows that f (x)
belongs to J. As to the equality it is enough to observe that the con-
-dition for membership of an f(#) (in £ [V]) in J is that m + f () > 0
hold for all positive m in k, which is the same as the condition for
‘membership of f(#) in ¢ Jq.

By assumption, & [Q] contains no infinitely large elements. Let /i
‘be the canonical map of B onto B/J, with the latter field ordered com-
patibly. Let ¢ be the specialization (as before) and define g so as to
:make the diagram commutative:

] B——JL—>>WJ
I
I < %[V] — >£[Q]

Now we show that both ¢ and p are order-preserving maps.

For the first assertion, let f (#) be any member of 2 [V]]. By as-
sumption f(Q) belongs to B. Choose a positive m in k with
m + f(Q)>0. Since our order of £k (V) is centered at Q,
m + f(x) >0, so f(x) itself belongs to B. Thus k [V] < B. Now
the centering of our order at Q implies that ¢ is order-preserving.
For f(x) in R[V], if f(Q)> 0 then f(x) is either positive or a
member of J, and in either case p f(Q) = h f(#) > 0, since h pre-
:serves order. This shows that p preserves order.

Next, we note that &k [Q] contains no infinitesimals. Hence Jq lies
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over Igq and, therefore, p is injective for from the condition Jq = (0)
it follows that Ig =JNE[V], since Iqg=10c"]Jqg =0c1(0), J lies
over lq.

We now see that A is isomorphic with a real place centered at Q,
wich completes the proof of the reduced case, and with that, the
theorem.

Note.—Extract from the proof. Q is an inner point of V if and
«only if every strong neighborhood of Q is Zariski-dense.
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