ON SOME TOPOLOGICAL ALGEBRAS OF HOLOMORPHIC FUNCTIONS

por

J. M. ISIDRO

Introduction.—Let E be a complex Banach space, U a balanced open subset of E and \mathcal{H} (U) the algebra of all holomorphic functions

$$f: U \subset E \longrightarrow C$$

endowed with the Nachbin topology τ_{ω} [6]. In [5] Mujica has proved that τ_{ω} is a multiplicative locally convex topology on \mathcal{H} (U) and Aron in [1] has explicitely constructed a fundamental family of seminorms for τ_{ω} . A slight improvement is done here by selecting a subfamily which is fundamental for τ_{ω} and multiplicative, which might perhaps interest for studying the topological algebra (\mathcal{H} (U), τ_{ω}).

When E has an inconditional Schauder basis, τ_{ω} is the same as τ_{δ} ([2] and [3]), hence the results also applie to $(\mathcal{H}(U), \tau_{\delta})$.

We shall systematically use standard symbols in theory of Holomorphy [6].

For each non void subset S of U and each element $f \in \mathcal{H}(U)$ we shall write

$$||f||_{S} = \sup_{x \in S} |f(x)|$$

and for $S \subset U$ and $\rho \geq 0$, $B_{\rho}(S)$ is defined by

$$B_{\rho}(S) = \bigcup_{x \in S} B_{\rho}(x)$$

where $B_{\rho}(x)$, stands for the open ball of E with center at x and radius ρ .

Definition 1.—We shall say that a seminorm p on \mathcal{H} (U) is ported by a compact subset K of U if for each open set V, K \subset V \subset U, there is a constant $C_v \geq 0$ such that

$$p(f) \leq C_{\mathbf{v}} \|f\|_{\mathbf{v}}$$

holds for all $f \in \mathcal{H}(U)$.

8

The topology τ_{ω} on $\mathcal{H}\left(U\right)$ is defined by the family of the seminorms which are ported by the compact subsets K of U.

Now, the following proposition is known [1]:

Proposition 1.—For every non void conpact subset K of U and every sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ of real numbers such that $\alpha_n \geq 0$ $(n \in \mathbb{N})$ and $\lim_{n \to \infty} \alpha_n = 0$, the application

$$p_{K,a}: f \longrightarrow p_{K,a} (f) = \sum_{n=0}^{\infty} \left\| \frac{1}{n!} \hat{d}^n f(\theta) \right\| B_{a_n} (K) \quad f \in \mathcal{H} (U)$$

is a seminorm ported by K and the family of the $P_{\kappa,\,\alpha}$ when K and α are in the above conditions define the topology τ_ω on \mathcal{H} (U)

LEMMA 1.—For each sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ of real numbers such that $\alpha_n \geq 0$ $(n \in \mathbb{N})$ and $\lim_{n \to \infty} \alpha_n = 0$ there is another sequence $\beta = (\beta_n)_{n \in \mathbb{N}}$ satisfying:

- a). $-\beta$ dominante α , that is, $\beta_n \ge \alpha_n$ for $n \in \mathbb{N}$.
- b).— β is decreasing, that is, $\beta_{n+1} \geq \beta_n$ for $n \in \mathbb{N}$.
- c).— β is a null sequence, that is, $\lim_{n \to \infty} \beta_n = 0$.

Indeed, we assume that α has infinitely many non null terms because otherwise the statement would obviously be true.

Now, let us define $\rho_1 = \sup_{n \geq 0} \alpha_n$, it is $\rho_1 > 0$ and, owing to the fact $\lim_{n \to \infty} \alpha_n = 0$, it is easy to see that the supremun is accessible and it is reached only for a finite number of indexes. Let n_1 be the last of those indexeses and define $\rho_2 = \sup_{n > n_1} \alpha_n$. It is $\rho_2 > 0$ and the supremum is reached only for a finite number of indexes, the last of which is denoted by n_2 . By induction we get two sequences $(\rho_j)_{j \in \mathbb{N}}$ and $(n_j)_{j \in \mathbb{N}}$, and clearly

$$\beta = (\beta_n)_{n \in \mathbb{N}} = \{ \rho_1, \dots, \rho_1; \rho_2, \dots, \rho_2; \dots \}$$

satisfies the conditions of the lemma.

Definition 2.—We shall say that a seminorm p on the algebra \mathcal{H} (U) is submultiplicative if

$$p(f \cdot g) \leq p(f) p(g)$$

holds for all $f, g \in \mathcal{H}(U)$.

We shall say that a family of seminorms on $\mathcal{H}(U)$ is submultiplicative if each one of its elements satisfies the above condition.

Proposition 2.—The family of seminorms

$$p_{K,\beta}: f \longrightarrow p_{K,\beta} (f) = \sum_{n=0}^{\infty} \left\| \frac{1}{n!} \hat{a}^n f(\theta) \right\| B_{\beta_n} (K) \quad f \in \mathcal{H} (U)$$
 (2)

where K and $\beta = (\beta_n)_{n \in \mathbb{N}}$ range respectively over the compact subsets of U and the decreasing null sequences, is submultiplicative and define τ_{ω} .

Indeed, if τ is the topology define on \mathcal{H} (U) by the seminorms (2) on account of proposition 1 one gets $\tau \leq \tau_{\omega}$. On the other hand, let $p_{K,\alpha}$ be one of the family (1) and assume that $\beta = (\beta_n)_{n \in \mathbb{N}}$ is a decreasing null sequence which dominates $\alpha = (\alpha_n)_{n \in \mathbb{N}}$. We have

$$\left\| \frac{1}{n!} \hat{d}^n f(\theta) \right\| \mathbf{B}_{a_n}(\mathbf{K}) \leq \left\| \frac{1}{n!} \hat{d}^n f(\theta) \right\| \mathbf{B}_{\beta_n}(\mathbf{K})$$

for all $f \in \mathcal{H}(U)$ and all $n \in N$, so that

$$p_{\mathrm{K},\,\alpha}\left(f\right) = \sum_{0}^{\infty} \left\| \frac{1}{n!} \, \hat{d}^{n} f\left(\theta\right) \right\| \mathbf{B}_{\alpha_{n}}(\mathrm{K}) \leq \sum_{0}^{\infty} \left\| \frac{1}{n!} \, \hat{d}^{n} f\left(\theta\right) \right\| \mathbf{B}_{\beta_{n}}(\mathrm{K}) = p_{\mathrm{K},\,\beta}\left(f\right)$$

holds for all $f \in \mathcal{H}(U)$, that is $\tau_{\omega} \leq \tau$.

Now, let $p_{K,\beta}$ be an arbitrary seminorm of the form (2). For all $f, g \in \mathcal{H}(U)$ and all $n \in N$ we have,

$$\hat{d}^{n}\left(fg\right)\left(\theta\right) = \sum_{i=1}^{n} \binom{n}{i} \hat{d}^{j} f\left(\theta\right) \cdot \hat{d}^{n-j} g\left(\theta\right)$$

hence,

$$\left\| \frac{1}{n!} d^{n}(f \cdot g) \left(\theta \right) \right\| \mathcal{B}_{\beta_{n}}(\mathcal{K}) \leq$$

$$\leq \sum_{j=0}^{n} \left\| \frac{1}{j!} \hat{d}^{j} f \left(\theta \right) \right\| \mathcal{B}_{\beta_{n}}(\mathcal{K}) \cdot \left\| \frac{1}{(n-j!)} \hat{d}^{n-j} g \left(\theta \right) \right\| \mathcal{B}_{\beta_{n}}(\mathcal{K}) \tag{3}$$

J. M. ISIDRO

But β is a decreasing sequence, so that the relations $j \leq n$ and $n - j \leq n$ imply $\beta_n \leq \beta_j$ and $\beta_n \leq \beta_{n-j}$; therefore

$$\left\| \frac{1}{j!} \, \hat{d}^{j} f(\theta) \right\| \mathcal{B}_{\beta_{n}}(\mathcal{K}) \leq \left\| \frac{1}{j!} \, \hat{d}^{j} f(\theta) \right\| \mathcal{B}_{\beta_{j}}(\mathcal{K})$$

$$\left\| \frac{1}{(n-j)!} \, \hat{d}^{n-j} g(\theta) \right\| \mathcal{B}_{\beta_{n}}(\mathcal{K}) \leq \left\| \frac{1}{(n-j)!} \, \hat{d}^{n-j} g(\theta) \right\| \mathcal{B}_{\beta_{n-j}}(\mathcal{K})$$

$$(4)$$

From (3), (4) and the definition of $p_{K,\beta}$ one gets:

$$p_{K,\beta}(f \cdot g) = \sum_{n=0}^{\infty} \left\| \frac{1}{n!} \hat{d}^{n}(f \cdot g)(x) \right\|_{B\beta_{n}}(K) \le$$

$$\le \sum_{n=0}^{\infty} \sum_{j=0}^{n} \left\| \frac{1}{j!} \hat{d}^{j} f(\theta) \right\|_{B\beta_{j}}(K) \left\| \frac{1}{(n-j)!} \hat{d}^{n-j} g(\theta) \right\|_{B\beta_{n-j}}(K) =$$

$$= \left(\sum_{0}^{\infty} \left\| \frac{1}{r!} \hat{d}^{r} f(\theta) \right\|_{B\beta_{r}}(K) \right) \left(\sum_{0}^{\infty} \left\| \frac{1}{s!} \hat{d}^{s} g(\theta) \right\|_{B\beta_{s}} \right) = p_{K,\beta}(f) p_{K,\beta}(g)$$

which completes de demostratión.

Definition 3.—We define R (U) to be the set consisting of the functions $f \in \mathcal{H}$ (U) such that $f(x) \neq 0$ for all $x \in U$.

It is known that for $f \in R(U)$, the function

$$\frac{1}{f}: x \longrightarrow \frac{1}{f}(x) = \frac{1}{f(x)} \quad x \in U$$

verifies $\frac{1}{f} \in \mathcal{H}(U)$, so that R (U) is the set of the regular or invertible elements of the algebra $\mathcal{H}(U)$, hence a group relative to the natural multiplication.

Corollary 2.—R (U) endowed with the topology induced by $(\mathcal{H}(U), \tau_{\omega})$ is a topological group, and the application

$$f \longrightarrow \frac{1}{f} \quad f \in \mathbb{R}(\mathbb{U})$$

is a topological automorphism of it.

Indeed, given a complex topological algebra with a unit element $e \neq 0$, and assuming that its topology may be defined by a submultiplicative family of seminorms, it is known [4] that the set of the regular elements is a topological group relative to the induced topology and that the division operation is a topological automorphism.

BIBLIOGRAPHY

- [1] Aron, R.: Holomorphy types for open subsets of a Banach space. «Studia Math.», 45 (1973), 273-289.
- [2] Dineen, S.: Holomorphic functions on locally convex topological spaces. I. Locally convex topologies on $\mathcal{H}(U)$. «Ann. Inst. Fourier Grenoble», XXIII, fasc. 1 (1973), 19-54.
- [3] Dineen, S.: Holomorphic functions on (c_0, X_b) -modules. «Math. Annalen», 196 (1972), 106-116.
- [4] ISIDRO, J. M.: Topologías en cuerpos, to appear in «Rev. Mat. Hispano-Americana».
- [5] Mujica, J.: Spaces of germs of holomorphic functions. Doctoral Thesis, University of Rochester, 1974, to appear in «Advances in Math.».
- [6] NACHBIN, L.: Topologies on Spaces of holomorphic mappings. «Ergebnisse der Mathematick», 47, Springer-Verlag, 1969.

Departamento de Análisis Matemático Facultad de Ciencias Universidad de Santiago de Compostela S p a i n