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ABSTRACT

J. C. Mathews and D. W. Curtis, [4], have introduced some structures whic
generalize structures of usual uniform types to the product of two sets, and they
obtain a generalized version of Banach’s contraction mapping theorem. In this note
we prove that these structures are obtained from the usual analogues by means of
a particular bijection; hence we have not a meaninglul generalization. For example,
this bijection provides, {from a result of A. S. Davis, [1], an analogue of Banach’s
well-known contraction mapping theorem which trivially implies the main result of [4].

AMS (MOS) Codes: 54 E 15, 54 H 25.

0. IxTrRODUCTION

In all that follows, A and B will be nonvoid sets, FC A x B a
fixed multifunction on A onto B, Ry on A and R; on B the canonical
equivalences associated with a relation R © A x B, that is, + R, &’
and ¥ Rpa” if and only if R(¥) = R (@) and R (y) = R (),
respectively. F, will be the difunctional closure of F, [7]. Of course
F; is a Riguct’s multifunction, that is, a multifunction on A onto B
such that

Fd ° F;l ° F,{: F,/.
The Riguet’s multifunctions G arc characterized by

1 ::GZGA and COG_-l:GB .
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We begin by recalling the F-dependent analogues of the inverse and
> o

composition of relations, which we shall term I™-inverse and I*-compo-

sition. If U, VC A x B define

U,:=Fe¢U’6eF and UzV:=UoF'1:V.

U is called an F-connector if F < U, and U is said to be a relation
Fenlarged if

U_,:=(U_,)_,=U[4],

or equivalently
U= U|{U.s,:n€NJ.

If F a Riguet’s multifunction, it is clear that U TF-enlarged is equiva-
lent to U = Fy0. U I,. Further, some notaticns will be used
without explanation because their meanings arc obvious: for instance,
it U is a family of subsets of A x B, we write

F-toY :=|F-1-U:U€ UL.

We can replace the terms connector, composition and inverse by
its F-dependent analogues in the axioms of quasi-uniformities and uni-
formitics. This is a natural way to define the F-quasi-uniform and
T-uniform structures. An F-quasi-uniformity (T-unifermity) has an IF-
enlarged (F-symmetric) base, that is, a base of F-enlarged (IF-symmetric)
F-connectors ; this fact enables to place, in this natural context, the
«generalized quasi-F-uniformities» and «IF-uniformities» considered by
Curtis and Mathews, which are, respectively, the F-enlarged bases of-
all F-enlarged F-connectors of F-quasi-uniformities and F-uniformitics,
[2], herc denominated canonical bases. On the other hand, for an
P-(quasi-)uniformity U, the families F~!' U and U - F-* are bases
of (quasi-)uniformitics ¥ on A and U, on B, respectively.

This paper consists of two parts. Firts we prove that F-structures
are obtained from the usual analogues by means of a particutar bijec-
tion; here, the word «usualy applics to the case A = B and [¥ the
diagonal D of A x A. Thus, F-structures cannot be considered as a
meaningful generalization. Secondly we use the above bijection to
obtain a result from a thecorem of A. S. Davis, [1], which trivially
implies theorem 2 of [4].



196 VICTOR M. ONIEVA ALEIXANDRE AND JAVIER RUIZ FERNANDEZ DE PINEDO

1. F-STRUCTURES: THE BASIC BIJECTION

Let U be an F-enlarged filter on A x B, that is, U is a filter with
an F-enlarged basc. We consider the following F-axioms:

(1) Fc U for every U €U.

(2) For each U<€ U there exists V € U such that V%V < U.

(8) U€U implies U_ € U.

Lemma.—Let U be a nonvoid family of subsets of A x B. Then
U is an F-enlarged filter if and only if U is an Fe-enlarged filter; in

this case, the canonical base of U =with respect to F and Fq is the
same, this base H satisfies

F' o H = Fyt o H
and
g[ ° F—l = g{ ° Fd_l.

Fuither, being U still an F-enlarged filter, the F-axiom (j) is wvalid
for U if and only if the Fepaxiom (j) is also wvalid, where j = 1, 2, 3.

Proor.—First we can sce that
FdoF_]':F,ich_l:Fda and F—1 OF,,'=F;1 °F,1=F¢'A;

moreover, if R © A x B, we have

FusoRoFyn=U {(FoF-4":m € N|oRo U {(FleFp:ine Nj=
= U{(FoF 1 oR>(F1oFy:n € N|= {R_g,:z € NJ|.

Hence R is F-enlarged if and only if R is Fsenlarged.
Now let U< A x B be F-enlarged. Then

F2oU=F1cF,0F e U=FsnoF ;e U=F;1-U;
likewise U o F1.= U+ F;7'. Therefore U is F-connector if and only

if it is Fs-connector, and U_, = U_, where U_, is the Fyinverse
of U. Hence the lemma follows easily.
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From now on, by virtue of the result just proved, without res-
tricting the generality we may supposc that I’ is a Riguet's multifunc-
tion, so we have I’y = F*- T and F, = F . IF-1.

The basic bijection

We use P (S) for the power set of the set S, and p for the natural
map of A onto A/T,. Let the mapping

b,: P (A x B) —> P (A/Fyx A/E,)

be defined by b, (R): = po -1 Rop~t. Given R, in P(A/Fy x A/F,)
we have

bf)_l(Rc)=gR €EP(AXxB): FgoRoF,=Fop-loRcopi.

ITence b, is surjective and F o p7* o« R, o p is the unique F-enlarged
relation in b,”* (R,). Thus, the restriction b of b, to the set
E(Ax B;F) of all F-enlarged rclations is a bijection of IL(A x B:F)
onto P (A/F. x A/F,), such that b (I) = D, where D, is the diago-
nal of A/Fy x A/F,. We say that b is thc basic bijection.

TreorEM.—(1) The collection of the canonical bases of the F-
enlarged filters on A x B is one-to-one mapped by b onto the collec-
tion of the filters on the set A/Fy x A/F4. _

(i) Let U be an F-enlarged filter with H as its canonical base.
Then U satisfies the F-axiom (j) if and only if b (H) satisfies the
usual axiom (j), where j =1,2,3. Therefore U is F-(quasi-)uni-
formity if and onlv if b (H) is (quasi-)uniformity.

(iii) TLet U be an F-quasi-uniformity, F its canonical base, Ta
the topology on A induced by U Tae the quotient topology by
Fa, and G, the topology on A/Fs induced by the quasi-uniformity
b (H). Then G, = G, and G, is the coarsest topology on A such
that G, is its quotient topology by Fa. Further, being Ty the topo-
logy o the set B induced by Uy, we have Gy = {IF (G): G € B, [3].

Proor.—(i) It suffices to note that if U, is a filter on A/F, x
x A/T,, then b~' (U,) satisfies:
() If U, Veb(U) then UNVEDHLT (UL).
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(b) If U€ b (U,), V F-enlarged and U C V, then V€ b= (U,);
but these conditions characterize the canonical base of an F-enlarged
filter.

(i) We first note that U satisfies (§) if and only if FH satisfies
(7). On the other hand, for U, V€ E(A x B; I') we have

b(UsVymmpol—toUsF1eVopteh(U)ob(V),
b(U_)=pol=lsFoU 1oF op—1==p (UL

Hence (ii) follows easily.

(iii) It suffices to observe that each open G in G, is Fi-saturated
because F'- T = I'y, and an T-quasi-uniformizable topology on A
satisfies I'=" « F (G) = G for each open set G, [3].

2. CONTRACTIONS AND FIXED POINTS

First we recall some definitions of [4] with our terminology.

Let U be an F-quasi-uniformity with & as its canonical base, %B
an F-enlarged base of U, r and s positive integers such that » <Ts,
and R a multifunction on A into B. For U€ U, U" denotes the F-
composition of # terms equal to U. Then:

R F-admissible: R F-enlarged and R R-* o Fc T,

R r/s-map relative to B: U’ R_, = Ur« R for each U € 5.

R #/s-contractive relative to B: Ro 1o Use R™To T U for U€EHB.

If R is T-admissible, then R r/s-map relative to & is equivalent to
R #/s-contractive relative to &B. Moreover, the conditions «F chains
A» and «A FH-completey of [4] mean «(A, U,) well-chained» and
«(A, U,) sequentially complete» with the terminology of Davis in [1].

TueorEM.—ILet U be an F-quasi-uniformity on A x B, B an F-
enlarged base of U and R a multifunction on A into B. Assume that
(A4, U,) is a sequentially complete well-chained space,

Fo=N{U.NU: T € Unt

and R is F-admissible and r/s-contractive relative to 9B. Then there
is a €A such that

FNR = F,(a) x F (a)
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and (u, v) € F N R implies

(u, v) = F, (a) x £ (a).

Proor.—By observing that given U € H and &, ¢ € A, we have
x#€F1oU(a) if and only if p ()€ b (U)(p (a)) =p e F*oU (a),
it is easy to see that if one of (A, U,) or (A/F4, b (H)) is sequentially
complete well-chained then both are.

By means of elementary operations,
Fa=N{U0. N UA_I: U, € CL[A?

is characterized by N {b (U) : U € H} antisymmetric, and this is equi-
valent to (A/F4, b (H)) T,-space.

R multifunction on A into B F-admissible is equivalent to R F-
enlarged such that FC R_, * R and R« R_, < F, that is, to b (R) is
a map. Moreover, R F-admissible and r/s-contractive relative to &B
is obviously equivalent to & (R) r/s-map relative to b ().

Therefore, from theorem 2 of Davis in [1], b (R) has a unique
fixpoint, that is, there is a unique p (a)€ A/F, such that (p (a), p (a)) €
€ D, N b (R), or equivalently such that

Fop=te(p(a) p(a)cp=(Fa(a, F(a))=F NR.

On the other hand, for each (u, v) € (I'y (a), F (¢)) wec have [3],

(#, v) = () x (@)="F,(a) x F (a).

We note that F closed in A x B is equivalent to

F=nN{U,%xU:U€g)}

which characterizes to (A/F4, b (9{)) as T,-space. Thus, theorem 2
of [4] is a particular case of the above result.
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