GENERAL NUMERATION I. GAUGED SCHEMES
by

D. W. DUBOIS

The paper deals with special partitions of whole numbers in the
following form: given a sequence of pairs {[G;; D;]} of positive
integers in which the G; form a strictly increasing sequence, sums of
the form X #u; G, with 0 < #n; < D,;, are considered. The correspon-
dence

[#e ... 7] |—~>Z n; G;

iZk

defines then a mapping a from a set M of numerals, called «Neuge-
bauer symbolsy, satisfying 0 < n; < D;, into the set 4@ of all non-
negative integers. In M, initial zeros are suppressed and M is
ordered in the usual numerical order. Such a au is called a gauged
scheme.

Basic questions which are posed and answered in part, include:
how does the structure of the sequence {[G;; D;]} affect the mapping
a, especially as regards injectivity, surjectivity, preservation of order,
additivity especially carrying, when the termwise sum of two numerals
in M falls outside M. The most important conditions involve com-
parison of G, with

TkEl —-'l— Z D;G,’.

i< k

The condition that for all %, G, > T,, implies injectivity of a, it is
implied by the condition that the addition of two summands involves
nothing more complicated than carrying a one to the next place to the
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left, and it is equivalent to strict order preservation (m > n implies
am >an); the condition that for all k2, G, < 7T,, is equivalent to
surjectivity of a; the condition that for all &, G, = T,, is equivalent
to bijectivity of w. Proofs are combinatorial.

The class of gauged schemes contains, along with almost all cultural
schemes, a large number of unusual schemes which might conceivably
be used for arithmetic and a large class of schemes which are quite
impractical for either counting or calculating, exhibiting numerous
weird features. In a sequel to this paper another class is presented,
the class of divided schemes. It too, has most of the cultural schemes
and many most unusual ones. Together, the papers constitute a
mathematical theory of generalized numeration schemes. The advan-
tages of such a theory are the usual ones of mathematical generaliza-
tion. The familiar schemes appear against a Dbackground of related
objects, rather than in isolation, standing out as the «nice objects»
1. e. the regular, symmetric species. But appreciation of symmetry
increases as asymmetry is better understood and the relations between
the various nice, regular, fatures of the familiar types are elucidated.
It is hoped that these commonplace mathematical advantages may also
be helpful to teachers of arithmetic in base ten as well as other bases.
For example, some gauged schemes are useful models of preconser-
vation (in Piaget’s sense) and other unusual or improper arithmetic
‘behaviors [3].

There appears to be no precedent for such a theory as this. To be
sure, many authors (see Menninger [1], and Neugebauer [2], and
teferences given in these hooks) have given excellent classifications of
numeration schemes, and the «numeralsy used in the present paper are
Neugebauer’s invention. But none of these authors had any intention
of making a mathematical theory of generalized numeration schemes.

1. Notations and definitions. The script capital 99) is the set of
all non-negative integers (whole numbers). Finite sequences of whole
numbers are listed in backward order, as are numerals (n,, n,, #,), etc.
For twe finite sequences m and én, the relation «m ~ n» signifies that
m and n are the same except Hbssibly for initial zeros: i. e., there
exists § such that for :zill i, if 1 <7 then m; and #u. are defined and
equal to each other, and if i > 7 then each of m; and »n; is either zero
or undefined. A numeral (in the sense of Neugehauer) is an equivalence
class of finite sequences. The set of all these Neugebauer numerals,
ordered in the usual way, is denoted bv the script capital letter EN.
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Finite sequences may sometimes be treated as numerals, but sometimes
not. If m = (m, ... m,) is a sequence then the numeral containing it
is denoted [, ...m,], or [m]. But if no confusion is probable, the
letter m may itself be used for this numeral. The zero numeral 1s
denoted [0]. For a non-zero numeral =, with, say, #,70, n, = 0
for all i > k, the length of n is k. The length of zero is — 1.

Linguistic Axiom: <0 NN is empty.

In other words, a numeral is never a number.

A generalized numeration scheme is any mapping

C:-M — W,

where M is a subset of N with the inherited order. When € n = S,
the interpretations following may be used: «n is a representative of
S», «n is a numeral for S».

The generalized scheme € is wunivalent provided the mapping is
univalent in the usual sense, i. e. injective. € is said to be complete
provided € (M) is an initial segment of W), i. e. for some k < + X,
C (M) = {S;0'<S<k}. The scheme is finite or infinite according
as M is finite or infinite.

2. Gauges and gauged schemes. Let D; be a sequence (finite or
infinite) of positive integers, let G; be a strictly increasing sequence
(finite or infinite) of positive integers, ¢.=0,1,2, ... The pair of
sequences is a gange. It is denoted in two ways, by a script capital
a, and script lower case g:

@ :[Gy; Dol, [Gy; DT, ...
[N N PR PN

where the sequence g is constructed by listing the G, in order with
each G; appearing D; times in the list. Thus

G,, if 0<<i< D,
G,, if Dy<i< D, + D,

Ge. if D' D;j<i<< D Dy

A AL
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ExampLe 1.—a: [1; 5], [4; 2], [17; 1]. Then g is the sequence
1,1,1,1,1, 4, 4, 17.

Given a gauge o or g, and a number S, a a-representation of S is
a numecral #n, such that 0 < #n, < D,, and T#; G; = S. The gauge «
may be uscd to define a generalized numeration scheme, also denoted
by a, as follows:

M — W, M={n; 0<#n,<D; forall 7}

M being ordered, as usual, and a [#] = T #n; G,. Thus, if a [#] =S
then # is a a-representative of S, and conversely.

DEeriNiTION.—A gauged scheme is a generalized numeration scheme
defined as above via a gauge @ (or g).

Examrie 2.—For the gauge a defined in Example 1,
a[3]=3, a[1,2]=1.-442.1=6, etc.
This scheme is not univalent:
a[h]l=b=u[l11],
and not complete: the equation @ [#] = 16 has no solution.

ExampLE 3.—Cultural numeration schemes.

A. Babylonian. Tt is base sixty. The gauge is
B:[60%; 59], £=0,1, ...
B. Mayan (Priestly type). Mixed base, gauge is
[1,19], [20;17], ..., [360(20)%*; 197, ...,

k ranging from 0 upwards.

C. Roman without subtractive features like XIV = 14. Let

i=2;4+k, 0<k<1. Take G;=2/.5/*% D;,=21%_ k.
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D. Modern symbolic numeration scheme :

[10%; 9], £=0,1,2,...

E. Oral numeration in, e.g., U.S.A. and France (but not England).
The common usage of «thirty-five hundred» but not «four million
thirty-five hundred» makes the system fall, at best, into some mixed
up imitation of a gauged scheme, which is necessarily not univalent.
TFor the case where such usage is excluded there are two reasonable
gauged schemes for modeling our oral scheme:

1:01;9], [10;9], [100;9], [1000%;999] (£=1,2,...)
11:[10007;999] 7=0,1,2, ...

In the interpretation given by gauge number II, it is understood that
the «digits», ranging between 0 and 999, are spoken in a base ten
fashion, gauged, naturally, by [1; 9], [10; 9], [100; 9].

TeciNicaL LEmmas.—Let a be a gauged scheme, let g be the other
notation for @. For each k, let a, be the gauged scheme obtained by
restricting @ to the first & of the G;: let g% be the gauged scheme,
generally different from a,, defined by the sequence

(g(k):gO) gl)"')gk' Let Uk=z D;Gi‘ u(k)=2gi'

iLk iLk
LEmMMa A.—Assume g, is univalent and that G,,, > 1 + U,. Then
(;., is also univalent.

LemMa B.—Assume g™ is complete and that g,., <1 + u'®. Then
g% is also complete.

LemMa C.—Assume Gy, >1 + U,. Then a,,, is not complete;
in fact 1 + U, has no representation.

Lemma D.—Assume that g, is complete and that G,., <1 + U,.
Then 1., is not univalent.

Proor A.—Suppose each of m and » represents the same number

Z n; G,‘ = 2 m; G,' .

LR i<kt

in 4.,:
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It can be assumed that
M p+1 2 Rt say Mp+1 — Mgyl == dz 0.

‘Subtraction of #,,, G, from the displayed equality leaves

Z n;G,-=dG;,+1 —I— Zm;G,—.

iZk iLk

But by hypothesis, G;,, is, all by itself, larger than the left side, so
@4 must be zero, whence it follows that m,,, = #n,.,. Moreover

m =[mg...m] and n =[ns...n,]

both represent the same number in a,, which is assumed to be univalent.
Therefore m; = n; for ¢ < k, as well as for i = k; i.e. m and un are
equal numerals. This proves univalence of a,,.

B. Let T be a number which doesn't exceed "V, It is required
merely to find a representative for T. The assumption of completeness
of g™ settles the case of smaller values so it is assumed that T exceeds
#® which, in view of the assumed inequality g, <1 + # implies
that T is at least as large as g,.,. Therefore it follows that

Gt ST < wktll =g, 4 a®

0T —gpoy S u'® .

Completeness of g'+» guarantees a representation for T — g, in
£™, from which a representation of T in g%V is immediately derived.

C. The given inequality G,,, > 1 + U, shows clearly why 1 + U,
‘has no representation: g, can’t get up to it (it reaches only to U,)
while the next gauge size up, namely G,.,, in q,.,, is too large to start.

D. Failure of univalence is proved by the existence of two distinct
representations of Gy.,, namely [1,,,0...0] and a shorter represen-
tation in wn,, which exists by virtue of the assumed small size of G,
and the completeness of .

Derixtrioxs. — Let C be a generalized numeration scheme,
M — W@W. C is order-preserving-in-the-strong-sense provided for
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every, m, n in M, if m >n then € m > Cn. C is order-preserving
provided for all m, n in ‘M, if m > n then Cm > C n.

TueorREM 1.—Let @ be a gauged scheme, M — 9.
A. ais order-preserving in the strong sense if and only if condition

(£) holds:

(L) Forall £, Go=1+ D' D;G;.
1 &

B. Condition (£) implies that a is univalent.

Proor.—A. First, assume a is order preserving in the strong
sense. In the order of N and therefore of eM, [1,0 ... 0] = ¢, exceeds
every numeral of length less than k. Since @ preserves order, a [e]
must exceed

0 [Dsy--.Do]; ice. Ge=1+4 D' DG
1< k

Since k is arbitrary, condition (£) is valid. Now suppose, conversely,
that condition (L) is valid. T.et m and n belong to N, and assume
m > n. There are two cascs: Case (i). m and n have the same
length. The given inequality implies that ; > n; holds for all i,
while for some 17, m; > n,. These incqualities imply, since every G; is

positive :

am=3Sm;G;>Tn;G;= an,

as required for strong order preserving. Case (ii). The length of »
is k& and m is longer than k. The smallest numeral of length & + 1 is
[14:20...0] = e. By condition (£), Gi., > ;=5 D; G, which implies
afe] > [D,...D,], and so by Case (i), a [e] > a [#]. Now a routine
induction yields the conclusion that a [m] > a [n]. The proof is
complete.

Proor or B.—By induction. First, a, is surely univalent in any
case. The induction is completed by application of Lemma A.
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TneoREM 2.—A necessary and sufficient condition that the gauged
slcheme @ be complete is

(S) Forall #,G,< D' D;G;.

i Lk

Proor.—Sufficiency is rcadily proved by induction 'with the induction
step supplied by Lemma B. To prove necessity, assume condition (S)
fails ; then it can be assumed that for some £k,

G<1+4 D> DG (0<;<#)
i<j
Ge>1+ D' D;G;=1+TU,_,.

1<k

From Lemma C it follows that 1 + U,_, has no representation in ay;
but in any w, for h >k, the new gauge values, Gi.,, ..., G, are all
larger than G,, and so of even less use in the search for a representat’ve
for 1 + U,_,. Thus a is incomplete.

TneoreM 3.—ILet a be a gauge scheme. FEach of the following
conditions is necessary and sufficient for a to be both complete and
univalent :

(LS) Forall £, Gi=1+4 D' D;G;
1< A

(ls) Forall £, g,=14- 2 g

£;< &,

(R) Foral £, Gy=(1-+Ds_;)Gs_,

(L) Forali £, G,,=H (14 D;).
1 k

Proor.—The first two conditions are simply versions for ¢ and g,
respectively, of the same condition. It is an exercise in elementary
algebra to verify that (£ S), (R) and (&) are equivalent. Tinally it
must be proved that these conditions are equivalent to the completeness
and univalence. Assume (£ S). Then both (L) and (S) are valid so
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by Theorems 1 and 2, respectively, o is univalent and complete.
Conversely, suppose a is both univalent and complete. Theorem 2 then
assures the validity of (S). Then for all &, G, <1 + U,_,, which,
by Theorem 2 again, implies that a, is complete. Univalence of a
implies univalence of a;,, (4., is simply a restriction of the mapping a),
which permits, by application of [.emma D, the conclusion that
Gpy > 1 4+ Ug. Thus the condition (£) is valid, which, combined
with the already verified condition (S), proves that condition (£ S)
is valid.

DEeFINITION.—A based schenie is a gauged scheme which is complete,
univalent, and has the same value for every D;, say D; = D for all 7.
The base is 1 + D.

TuEOREM 4.—In order that a be a based scheme, it is necessary
and sufficient that for some D > 1, D; =D and G; = (1 + D) for all 7.

Proor.—This is a special case of Theorem 3; condition (&) applies.

3. Calculations. The TB algorithm. Let a be a gauged scheme,
let S be a nonzero whole number. The TB algorithm produces a
sequence of subscripts, m (0), (1), ..., and a sequence of whole
numbers, S,, S,, ..., as follows:

S, =S > 1.
m(0)=max {7,8:=So!; S; =S¢ — &m0 -

m(l)=max {7;i<m (0) and g;<<S,}, S, =S, —gmq) -

m(k)y=max {i;i<m(k—1) and g =<Si},S4,1=Sr— Zun -

Since the m (i) are forced to decrease, an empty set is bound to appear
and then the algorithm is finished on the previous line. Suppose, in
calculation of m (p), no empty set appears but that the next set is
empty :

7ll(ﬁ)=max§i;z'<711(/)—}_) and gigs/lzy S;’+I=S}5_gm(ﬁ)
¥

Viyi<m(p) and g =S, [ 25 empty.

The emptiness of the last set arises from just one of two causes:
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i) S;.; = 0. ii) S,.; %4 0 but there are no g; < S,,, having i < m (p).
In any case set

Sl = Z Em () »

iLp

If case i) holds then § is obviously equal to S, and the algorithm shows
how to find a representation of S. In case ii), S’ is not equal to S
and the algorithm has not produced a representation for S.

DerixtrioNn.—If, in a gauged scheme a, case i) holds for every S
which has a representation, then it is said that «the TB algorithm is
effective for a».

ExamrLe.—lLet g: 1,3, 4,5 be a gauge scheme. Now 7 has the
representation [110], since T = 4 + 3, but the TB algorithm produces
[1001], which represents 6, not 7. Therefore the algorithm is not

cffective for g. However, see the next theorem.

TurorREM 5.—Assume 0 is a complete gauged scheme. Then the
TB algorithm is effective for a.

Proor.—The proof, using the g™ ; is done by induction on k. The
case ¢ is evidently no problem. Supposc for all i<k (k> 1), the
TDB algorithm is effective for g?. Let

1<S<ub= > g.
iZlk

It must be shown that case i) holds when the algorithm is applied, in
g® to S, i e., that S’ = S. The algorithm gives:

S, =S, m (0)=max {z7; i<k, g:<Sy}, $;=S), —gunn,

for the first round of calculations. The completeness criterion of

~

Theorem 2 implies

g1+m(0)S1+ Z &is
i Z m(0)
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while the definition of  (0) implies that g,y < Sy < £iim (. Com-
bined, these inequalities imply

1) gmo) =S, < &i+mo =1+ Z gi
iZm (0)

05, — Emi) = S5y < 2 & — &m0)

i £ m(0)

2) 0<s, < D &
7 < m (0)

Thus, S, is no larger than u™ -9 and m (0) — 1 is less than k. The
induction hypothesis asserts that a representation of S, is obtained by
applying the TB algorithm in g™ @ -9 This algorithm is merely the
continuation of the algorithm already started on S, in ¢“. [It must
be checked that the first computation for S, actually produces m (1),
since, taking place in g™ @ -b it restricts attention to 7 < m (0) — 1,
i.e, to i <<m(0), as is required.] Since S = gn ¢, + S,, and

Sl - Z Em (i)

it

S itself is equal to
Z Em (@)
ixo

that is, to S’, and the algorithm does indeed produce a representation
for S. Since S was an arbitrary member of ¢, the algorith is effec-
tive on g, The induction is complete.

NoTe.—The converse is false. The algorithm is effective for the
incomplete scheme g : 1,3.

Finally, a few arithmetical results are collected. Let a: M — W
be a gauged scheme; let & = a (M). For each k, let a, be defined
as usual, let M, = domain a,, let &, = a, (M,), let U, = max &,.

TueorREM 6.—A. TFor everv k, if S helongs to &, then U,—S
also belongs to &,.
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B. Let x4 + y; = 2z, and suppose [x], [y] and [2] all belong to
M. Then a[x] +aly] =un[z].
C. For all k, and all d,, if [d, 0 ... 0] €M, then

a[d,,O...O]= db- a[lkO...O].

D. Carrying. Assume that addition of two numerals in M never
involves carrying 2 or more to the next place, and never influences
the 2 place over. Then for all &

Gi=1+4+ D D:iG;.

i<k

E. Assume @ is univalent. @ is complete if and only if for all k,
@ [1;,,0...0] is a multiple of a[1,0...0]. « is a based numeration
scheme if and only if for all 2, @ [1,0 ... 0] is equal to the k* power
of a [10].

Proor.—The first 3 parts are quite obviously true, and part E is
an immediate consequence of Theorems 3 and 4. The carrying, part
D, will be proved now, in contrapositive form. Assume the condition
fails. Then for some k,

Giyy = D D;Gi=U,.
ik

In adding U, to itself, the numeral form
[Dig...Dg] + [Ds...Dg],

involves either a carry of «2» into the (k + 1)* place, or, possibly, a
carry into the (B + 2)™ place, since 2 U, > 2 Gy, ; the latter number
is represented by [2,,0...0].

ExampLEs.—The following three gauge schemes are all univalent.

1. g:1,4,4,6,6. Addition of [20] to [10] given [200], a
carry of 2.

2. £:1,9,9,12,12,12. Then [20] + [20] = [300], a carry of 3.

3. g:1,5,7,9. Here [10] + [10] = [1001], a carry of 1 into
the second place over.
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Famous examples. In Roman numerals, Neugebauer form, [10] x
x [10] = [210]. In the Priestly Mayan, [10] x [10] = [120] (i.e-
20 x 20 = 1(360) + 2 (20)).

NotE.—There are some cultural schemes which fail to fit the gauged
scheme models, apart from subtractive features. One such is the Aus-
tralian Aboriginal numeration, which has only pebble tallies and spoken:
numerals. It is like a gauge scheme except that there is no upper
bound on the number of 2's which may appear. The gauge then is
g:41,2, 2,2, ...
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