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In the theory of nonarchimedean normed spaces over valued fields
other than R or C, the property of spherical completeness is of utmost
importance in several contexts, and it appears to play the role conven-
tional completeness does in some topics of classical functional analysis.
In this note we give various characterizations of spherical completeness
for general ultrametric spaces, related to but different from the notions
of pseudo-convergent sequence and pseudo-limit introduced by Os-
trowski in [4], and apply them to obtain some new results. Although
we use the language and methods of so-called infinitesimal (or non-
standard) analysis, the way to rephrase some of our statements within
non-infinitesimal analysis is pointed out conveniently.

The first part contains some mnotations and our main result. The
second part deals with some applications. In the third part, one more
characterization of spherical completeness 1s given.

1. In the sequel, (X, d) will denote an ultrametric space, i. e., a
metric space where the strong triangular or ultrametric inequality

vy, 2 E Xa d(x,z)gmaxgd(x,y),d(y,z)%

holds; & will be a superstructure in the sensc of [6], big enough to
include all real numbers and all points of X as individuals; and by *&
we will mean a fixed non-standard 8,-saturated model of &, c¢. g., a
g-incomplete  ultrapower. TFor hyperreal numbers a, b € *R, «a is
infinitely close to b», @ ~ b, means a — b is infinitesimal ; ¢ < b means
a<<b oraxb; a<<a~b means a<<b and a~b. 1 a is any finite
hyperrcal number, st @ is the only real number infinitely close to a.
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As usual, we identify a function with its non-standard extension. For
4,y €*X, wra~y means d (v, y)~0. Sec [6] for more infinitesimal
concepts and notations.

Ingleton, |2], introduced the following notion in order to charac-
terize those nonarchimedean valued fields such that for normed spaces
over them an analog of the Hahn-Banach thcorem is true (see [T] as
a general reference for ultrametric spaces):

Derixition.—X will be said to be spherically complete whenever
every shrinking sequence of nonempty closed balls has nonempty inter-
section.

(Notice its difference with Cantor property: no condition on the
radii of the balls.)

TuroreMm 1.—The following conditions on (X, d) are equivalent:

1) (X, d) is spherically complete.

(2) For every momnnegative real number X and every sequence
(Xa |n€N) in X, if d(Xe, Xayy) Sk whenever o is an infinite sub-
script, then theve exists an x € X such that d (x4, x) < % for all in-
finite =.

(8) For every nonnegative real number X and every Sequence
(X, | n€N) in X, if d(Xa, Xg) &k whenever 2,8 are different infinite
subscripts, then theve exists an x € X such that d (X4, x) < 1 for some
infinite .

(1) For cvery mnonnegative real number L and every sequence
(%2 |n €N) in X, if d(Xa, Xp) ~ 1 whenever », 8 are different infinite
subscripts, then there exists an x € X such that d (xq, X) ~ % for all
infinite =.

ProOF.—(1) ==> (2): Assume X is spherically complete and let
{(x,) be a sequence such that for all infinite subscripts =, d (¥«, Fa.y) S A

N

where % is a real number. Then the sequence
(@ %y Zuay) | 2 € N)
has all its accumulation points within [0, ], so that

N =lim sup 4 (%, %.,,) € [0, 1],
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and for each finite natural #,
7o =SUP & (X, Xpuy,) | m € N, m=n]
exists. Then 7, | 3, and the sequence of closed balls
B.=ly € X|d(y,z,)<r,d, n €N
is decreasing: if y € B,,,, then
Ay, x,) < max {d (F, Zupy)y d (Fpyys Za)d < 70

By hypothesis, there exists +€ N B,. Now, hy a conventional
application of Transfer (or Leibniz’) Principle, for all natural n € *N,
d (%, x,) <7, therefore if » € *N is infinite, then

d(x, x,) <7, =1 <X,

so d (v, x4) S A
(2) ==> (3) is trivial.
(3) ==> (}): Assume that the standard sequence (w,) verifies

d(ﬁfa, 13)%)\ E R

for all infinite x, 8. Then by (3) there exists an » € X and an infinite
e with d (7, x4) < A. We claim that for every infinite

B. d(x, xp) .
Let us first suppose st d (v, 1) << » and show that if 8 is different
from =z, then d (x, 45) &= X:

If std (x, a3) << X, then

A (x,. 25) << max {d (2, %), d(x, 2p)},
so d (r«, xg) = X, impossible.
If st d (v, wg) > X, then by a well-known consequence of the strong
triangular inequality,

d (%4, x3) = max |d (1,. ¥), d(x, 23)} == d (x. xp),

so d (v, +3) I X, impossible.



6 J. M. BAYOD

Next we prove that our assumption st d (#, #4) << % is absurd:

If there is a real number » € (d (x, x4), 1), apply the Transfer Prin-
ciple to what we have just proved:

Ja €FN, VP EFN, B>a=>d(x ) >
to obtain a finite # such that
wm €N, m>n=—=>d(x x,) >7.

Applying Transfer to last sequence again, we conclude d (x, 4) > 7,
absurd.

Then d (x, vo) ~ %. Tor any other infinite 8, we know from the
preceding discussion that st d (v, x5) > A, Now, if std (x, v5) > 2,
then

d(xﬂl' ,’L’p) = max gd(xm x), d (xv X@)g = d(x) Sl’p) :xF )‘1

absurd.

(4) ==>(1): T.et (B,|n€XN) be a shrinking sequence of closed
balls,

Bn=2x E X | d(;r,:r,,)Sr,,

and select a subsequence such that, relabeling, x, § B,., (if this is im-
possible, the proof is over). Then for finite m, n, m > #,

A(Cpy Zupy) XV upyy @ (Fny Zgy) = Ty
0
A (X, %) = MAX S (Xy Xoyy), @ (Xyys Za)} = A Xy Xy
Therefore, if 2, B are infinite and » is finite,
d (%4, 15) << max {d (%o, £a), 4 (23, ) = & (Xny Zuy,)
hence d (vq, #5) is finite, and

d (%e, 73) < k. =1inf{d (x,, 1,,,) | 2 € NL
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‘On the other hand, if m, n are finite, m > #u, then
a («’Vm, '1’") =d (;‘J,,, xn“) Z )‘)

so that if «,8 are different infinite subscripts, then d (v, 25) > A.
Hence d (va, x5) = ).

Apply hypothesis [4] to get an x€ X such that d (&, #.) 2
whenever =« is infinite. We claim that #€ 0 B,: for finite n, if % is
infinite,

d(x, z,) < max {d (2, xa), d (%ay ¥a)} = max (N, d (X, X,y,)| =
=d (%, xﬂ+1) < 7w

and since both members are standard, we conclude d (x, x,) < 7.

Because of the strong triangular inequality, in [2] we can exchange
@ (¥g, Fayy) Sk for all infinite a» by «d (24, 45) < & for all infi-
nite «, By.

Underlying statements [2], [8] and [4] above there is, of course,
a generalization fo Cauchy and convergent sequences: for » = 0, any
of the three properties would read: «every Cauchy sequence is con-
vergentn. Therefore, for X > 0 it is fair to name X-Cauchy or i-
convergent a sequence fulglling one of the conditions contained in [2],
[8] or [4]. We have several possibilities for these definitions, and by
reasons that will become apparent when trying to carry the same
properties over to general metric spaces (which will be published
elsewhre), we choose the following:

DerivitioNn.—Let X be any nonnegative real number. A sequence
(2, | n€N) in X will be said to be r-Cauchy when for all infinite sub-
scripts «, 8,

d (%a, 25) S\

and it will be said to be x-convergent (to x € X) when for all infinite
‘subscripts z,

d(2, 2) S\

A non-infinitesimal characterization of these definitions and a non-
infinitesimal rephrasing of Theorem 1 can be obtained in a «standard»
way, and we leave it to the reader: (#,) is A-Cauchy if and only if
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for every positive ¢, there exists an 7. such that whenever Wy, 0> Ne,
d (Fp, ) << X + ¢ ctc.

Properties |2], [3], [4] of Theorem 1 and last definitions are close
to Ostrowski pseudo-convergence and pseudo-limits (see, e. g., [3]
or [7]). Van Tiel, [8], has proved that a space is spherically complete
if and only if every pseudo-convergent sequence has a pseudo-limit.
Now, it is easy to see that in fact

Ecvery psudo-convergent sequence has a pseudo-limit

amounts to say

For every sequence (x,) in X such that from some n, on, (d (xy, Xnsp) )
is decreasing, call ) = lim d (x,, Xp,,) (the «breadthy of the sequence,
see [3]); then (xu), which is -Cauchy, is also A\-convergent.

2. The non-standard hull (X, d) of the metric space (X, d) is

obtained in the following way: X is the quotient of the set fin *X of
finite elements of *X (i. e., the set of points at a finite distance of
some standard point) by the relation of infiniesimal nearness; and
d (% 9) = std (v, y) for x, y€fin*X. It is well-known that (X, d)

is a complete metric space. Since (X, d) is ultrametric, so is (X, d).

THEOREM 2.—The non-standard hull of any ultrametric space is
spherically complete.

Proor.—ILet X be any real number and (£, |#n'€ N) a standard X

Cauchy sequence in X. Then (, | '€ N) < fin *X can be extended
to an internal sequence (4, |# '€ *N) < *X by 8 -saturation. Given
any finite natural number p, there is a finite n, and (by internality) an
infinite «, such that

v, €XN, ny << m,n < ay==>d(Xm x.) < k4 1/p.

Again by 8, -saturation, there is a (finite or infinite) natural number &
such that for all finite p, #, < k'K a,. Then x,C fin *X and #, is
a A-limit of the sequence (%,).

If I£ is a nonarchimedean normed space over a nontrivially valued

nonarchimedean field K, then E is also a nonarchimedean normed
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space over K (straightforward proof), so over K, and by Theorem 2,

K, E are spherically complete spaces that contain K, E, respectively.
This provides a new way of building a spherically complete field that
contains K as a subfield and extends its valuation (cf. [T], pp. 149-150).

We will use the phrase «spherical completion» in the sense of [7]:

DEerFINITION.—A spherical completion of a nonarchimedean normed
vector space E is a pair (T, i) consisting of a spherically complete
space F and a linear isometry ¢ : E —» F such that I' has no spherically-
complete proper linear subspace containing i (E).

Levma.—Call k (respectively, K) the residue class field of K
respectively, K), and | K| (respectively, | K |) the value group of K
(respectively, K). Then

@ [K|=TK]

(2) If K is discretely valued, then R is cannonically (algebraicly).
isomorphic to *k.

Proor.—(1) is easy. To prove (2) define a map from ¥ onto *k by
assigning the class of 4 to the class of # (notice that discreteness of
| K| ensures that | » |~ 1 implies | x| = 1).

Part (2) of the Lemma is stronger than a result of Diarra ([1],
Corollary to Theorem 1), obtained there in a different way.

The precise relationship between ¥ and k& when K isl densely valued,.
is an open problem.

Regard K as a subfield of K under the isometry i (¥) = %.
COROLLARY 1.—Assume the wvaluation of K is discrete; then the
following are equivalent:

(a) K is topologically dense in K.

(h) K is a spherical completion of K.
(c) k is finite.

(d) K is locally compact.

Proor.—(a) ==> (b) follows easily from the definitions.

(b) ==> (c): Assume K is a spherical completion of K ; then k
and K have the same residue class field, so by the L.emma, k = F = *k,
hence %k is finite.
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(¢c) ==> (d): Suppose *k = k. Then by the Lemma, ¥ is finite;
and K is certainly complete. Now it suffices to observe that in case
K is discretely valued, so is K (again, use the Lemma): it is well-
known that under these conditions, K is locally compact.

(d) ==> (a): If K is locally compact, its subfield K is locally
precompact, so that fin *K = pns*K, Then K is the completion of K.

Another consequence of the LLemma: since a field and its spherical
completions have the same value group, in case | K| is dense in R*

but different from R+, K is #not a spherical completion of K.
TueoreM 3.—If K is algebraicly closed, so is K.

Proor.—From the Transfer Principle applied to the sentence that
says K is algebraicly closed, the following is obtained: if a,, a,, ..., @,
is a s-finite subset of *K (n€ *N, n > 1, finite or infinite), a, %0,
‘then there exists an x € *K such that

a, x4+ ...+ a, x-+a, =0

Now, if n > 1, is finite, 4,, G,, ..., 6. € K, d, 2 O, and x € *K is
a root of @, 4™ + ... + a,, the & is necessarily of finite absolute value:
if | | were infinite, for ¢ =1, ..., n,
laix' | =a| |2] | 27> a2,
then by the ultrametric inequality,

O~ + ... +tax|=|a,| |2}

a

hence a,~ 0, impossible. Then £ € X is a root of 4, £" + ... + d,.

CoroLLARY 2.—If the wvaluation of K is discrete, then K is never

algebraicly closed. In case the valuation of K is dense, K is algebraicly
closed if and only if so is its residue class fiel.

Proor.—Both parts follow from the following characterization of
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algebraic closedness for a spherically complete valued field ([7],
Theorem 4.50): its value group is divisible and its residue class field
is algebraicly closed. Now it suffices to apply the Lemma: if K is

discrete then | K | = | K| is never divisible; and for K dense, |K| =R+
is divisible.

We end up this part with a different sorto of application of Theo-
rem 1: a «-fixed pointy theorem for spherically complete spaces:

TueoreM 4 (StANDARD).—Let X be a sphevically complete ultra-
metric space, and T : X — X. Assume for every x,y € X,

d(Tx, Ty)<o(d(x)
where o : [0, + 00) —> R is such that

= sup (lim sup ¢” (2))
13

exists, o is continuous from the vight at % and for all t < i, o (t) < A
Then there is at least one x, € X such that d(x,, T X,) < .

Proor. — Take any 2 € X and form the iterated sequence
(T« | n€ N). For all finite n,

AT 2, Trx) < o (d(T 2 .2)),
so for infinite z, d (T™* a, T*x) < . By Theorem 1, there exists

x,€ X such that d (v, T* #) < X whenever =z is infinite. Then by the
conditions imposed on o,

0 (d (x,, T 2)) < X,

-S0

d(T*" x, T x,) <\
and
A (xy, T x) << max {d(x,, T* z), d (T2 z, T*" x), d (Tt 2, T 2 ) < A

Now, d (x,, T #,) is standard, so d (x,, T #,) < X.
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From the proof of Theorem 4 it follows that X can be changed by

N =lim sup ¢* (d(T z, x))

for some x€ X,

The class of maps o that verify the conditions of Theorem 4 include
all increasing, right-continuous functions ¢ such that o (¢) << ¢ for all
t in some infinite interval [#;,, + ©0), since in that case X <o (¢,). In
particular, if o (t) = k¢ with k€ (0, 1), then x=0; if o (t) = v ¢,
then X = 1; if o (1) =k / ¢t with k€ (0, + 00), then x = k2.

3. Now we give another characterization of spherical completeness.
through properties of some distinguished points of *X, more in the
spirit of the well-know ecquivalence between «completeness» and «all ap-
proachable points are near-standard».

DEerintTioN.—For any nonnegative real number A and any (possibly
external) subset Y < *¥X, call the set

BI[Y, 2] + {#€*X | there is a y €Y such that d (&, v) < 2)

the S-ball of radius » around Y.

Consider X endowed with the S-topology introducted by Robin-
son, [5], namely the topology a subbasis of which consits of the S-
balls B [{x}, 1], € *X, ) positive real. It is immediate that for any
nonnegative real number A,

B[X,\] @ B[X,A\] < N {B[X,\ 4+ €] | epositive real number.
When X =0, B[X, 0] is the set ns *X of near-standard points, and

B[X,0]=[]BI[X.€]

equals the set pos *X of approachable points. S-closedness of B [X, 0]
is equivalent to completeness of X (again, see [6]).
However, the picture is very different for X > 0:

DEeFNiTION.—For A > 0, call a point in X —ns *X = B [X, }], X
near-standard, and a point in

L —pns* X =[\B[X, Lk +¢],

X-approachable.
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Turorem 5.—Let (X, d) be an ultrametric space. Then

(@) For x>0, the sets »-ns *X and »-pus *X are necessarily S-
closed and S-open.

(b) Spherical compleieness of X is equivalent to all »-approachable
points being i-near-standard for each i > 0.

Proor.—(a) Take »>0 and x € B [X, A]. Then for each finite
natural number #, there exist x, € *X, a,'€ X such that

d(x, x,) < 1/n, d(x,a,) L

‘Then for

1/n<<\, d(x a,)<<maxid(x x,), d@,a) N\

~

hence € B [X, 2]. Thus *ns*X = B [X, x] is S-closed and -
pns ¥X is an intersection of S-closed sets, hence S-closed.
On the other hand, if 2 € i-ns *X, then
B(x,1/2) C h — ns* X,
and if € i-pns *X, then
B (2, A/2) C k — pns* X,
as follows immediately from the strong triangular inequality.

(b) Assume X 1is spherically complete, and take « € A-pns *X,
2> 0. Then for finite n there is an a,'€ X such that

d(x,a)<k+1/nm
Since (a,) is a standard sequence, the set
(n €N | dlx,a) <+ 1/n]

is internal so it contains some infinite =: d (#, ¢*) < %. On the other
hand, the strong triangular inequality implies

A2y an,) <\ 1/n
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for all finite n, so for infinite # as well. Therefore (a,) is A-Cauchy,
hence X-convergent: there exists @€ X such that d (a, aq) < X, and
then d (x, @) < X. Thus, #€ B [X,2].

Conversely, suppose (a,) is a A-Cauchy sequence in X, » > 0. ‘Then
for allinfinite « € *N, @, is X-approachable, hence A-near-standard. Fix
e« and take @€ X such that d (e, ay) < 2. Then the ultrametric in-
equality and the X-Cauchy condition guarantee that for any other infi-
nite B, d (a, ag) < A. Hence (a,) r-converge to a.

It is well-known that the completion of a metric space X is the

non-standard hull of pns *X, contained in X ([6]), Theorem (8.+.28)).

A characterization of a spherical completion within 3(, if it exists, 1s
an open problem.
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