ON THE MAXIMUM MODULUS THEOREM FOR NONANALYTIC FUNCTIONS IN SEVERAL COMPLEX VARIABLES

by

MARIO O. GONZALEZ University of Alabama, U. S. A.

Let $w = f(z_1, \ldots, z_n) = u(x_1, \ldots, y_n) + i v(x_1, \ldots, y_n)$ be a complex function of the *n* complex variables z_1, \ldots, z_n , defined in some open set $A \subset \mathbb{C}^n$. The purpose of this note is to prove a maximum modulus theorem for a class of these functions, assuming neither the continuity of the first partial derivatives of *u* and *v* with respect to x_k and y_k , nor the conditions $f_{z_k} = 0$ in A for $k = 1, 2, \ldots, n$ (the Cauchy-Riemann equations in complex form).

For the notation used in what follows, see reference [1].

THEOREM 1.—Suppose:

- 1) The combonents u and v are differentiable in A (in the real sense).
- 2) $|f_{z_j}| |f_{z_j}| \neq 0$ at each point of A for some $j \in \{1, 2, ..., n\}$, not necessarily the same j at different points.

Then $| f(z_1, \ldots, z_n) |$ does not attain a maximum value anywhere in A.

PROOF.—Let $z = (z_1, \ldots, z_n) \in A$ and z + dz another point in the component of A, containing z.

Since u and v are differentiable in A, we have

$$\Delta u = \sum_{k=1}^{n} u_{x_k} d x_k + \sum_{k=1}^{n} u_{y_k} d y_k + \sum_{k=1}^{n} \varepsilon_k d x_k + \sum_{k=1}^{n} \varepsilon_k' d y_k$$

$$\Delta v = \sum_{k=1}^{n} v_{x_k} d x_k + \sum_{k=1}^{n} v_{y_k} d y_k + \sum_{k=1}^{n} \eta_k d x_k + \sum_{k=1}^{n} \eta'_k d y_k$$

where ε_k , ε'_k , η_k , $\eta'_k \to 0$ as $|dz| = \sqrt{|dz_1|^2 + ... + |dz_n|^2} \to 0$. Hence,

$$\Delta w = \Delta u + i \Delta v = \sum_{k=1}^{n} (u_{x_k} + i v_{x_k}) dx_k + \sum_{k=1}^{n} (u_{y_k} + i v_{y_k}) dy_k + \sum_{k=1}^{n} \lambda_k dx + \sum_{k=1}^{n} \lambda'_k dy_k$$
(1)

where $\lambda_k = \varepsilon_k + i \eta_k \to 0$, $\lambda'_k = \varepsilon'_k + i \eta_k \to 0$ as $|dz| \to 0$.

From

$$f_{z_k} = \frac{1}{2} (f_{x_k} - i f_{y_k}), \quad f_{\bar{z}_k} = \frac{1}{2} (f_{x_k} + i f_{y_k})$$

we obtain

$$f_{z_k} + f_{\overline{z}_k} = u_{x_k} + i v_{x_k}, \quad i (f_{z_k} - f_{\overline{z}_k}) = u_{y_k} + i v_{y_k}$$

and using

$$dx_k = \frac{1}{2} (dz_k + d\overline{z}_k), \quad dy_k = (-i/2) (dz_k - d\overline{z}_k)$$

equation (1) can be written as

$$\Delta w = \sum_{k=1}^{n} (f_{z_k} dz_k + f_{z_k} d\overline{z}_k) + \sum_{k=1}^{n} \lambda_k dx_k + \sum_{k=1}^{n} \lambda'_k dy_k$$

or

$$f(z_1 + dz_1, ..., z_n + dz_n) = f(z_1, ..., z_n) + \sum_{k=1}^n (f_{z_k} dz + f_{\overline{z}_k} d\overline{z_k}) + \sum_{k=1}^n \lambda_k dx_k + \sum_{k=1}^n \lambda'_k dy_k$$
(2)

Let

$$f(z_1, ..., z_n) = M e^{i\theta}, \qquad f_{z_k} = A e^{i\alpha_k},$$

 $f_{z_k} = B e^{i\beta_k}, \qquad d z_k = r_k e^{i\phi_k}$

where any argument is chosen arbitrarily if the corresponding modulus

is zero. Substituting in (2) we get

$$f(z_1 + d z_1, ..., z_n + d z_n) = M e^{i\theta} + \sum_{k=1}^{n} r_k \left[A_k e^{i(a_k + \psi_k)} + B_k e^{i(\beta_k - \psi_k)} \right] + \sum_{k=1}^{n} \lambda_k r_k \cos \psi_k + \sum_{k=1}^{k} \lambda'_k r_k \sin \psi_k$$
(3)

First suppose that for k = j we have $|f_{z_j}| - |f_{\bar{z}_j}| = A_j - B_j > 0$ at the point $z \in A$. Choose $r_k = 0$ for $k \neq j$ and $r_j \neq 0$. Also, choose ψ_j such that $\alpha_j + \psi_j = \emptyset$. Then (3) becomes

$$f(z_1, ..., z_j + dz_j, ..., z_n) = (M + A_j r_j) e^{i\theta} + B_j r_j e^{i(\alpha_j + \beta_j - \theta)} + r_j (\lambda_j \cos \phi_i + \lambda'_j \sin \phi_{ij})$$

and it follows that

$$|f(z_1, ..., z_j + d z_j, ..., z_n)| \ge M + A_j r_j - r_j (B_j + |\lambda_j| + |\lambda'_j|) =$$

= $M + r_j (A_j - B_j - |\lambda_j| - |\lambda'_j|)$

By taking r_j small enough, so that $A_j - B_j - |\lambda_j| - |\lambda_j'| > 0$, we obtain

$$|f(z_1,...,z_i+dz_i,...,z_n)| > M = |f(z_1,...,z_i,...,z_n)|$$

Hence, the modulus of f does not attain a maximum at the point $z \in A$. Next suppose that $|f z_j| - |f_{z_j}| = A_j - B_j < 0$ at z.

Choose $r_k = 0$ for $k \neq j$, $r_j \neq 0$, as before, and ϕ_j such that $\beta_j = 0$. Then we obtain

$$f(z_1, ..., z_j + d z_j, ..., z_n) = (M + B_j r_j) e^{i\theta} + A_j r_j e^{i(\alpha_j + \beta_j - \theta)} + r_j (\lambda_j \cos \phi_j + \lambda'_j \sin \phi_j)$$

and it follows that

$$|f(z_1,...,z_i+dz_i,...,z_n)| > M + r_i(B_i-A_i-|\lambda_i|-|\lambda_i'|)$$

Again, taking r_j small enough, so that

$$B_i - A_i - |\lambda_i| - |\lambda'_i| > 0,$$

there results

$$|f(z_1,...,z_i+dz_i,...,z_n)|>M.$$

As a consequence of Theorem 1, the following form of the maximum modulus theorem holds.

THEOREM 2.—Suppose:

- 1) u and v are differentiable in A, where $A \subset \mathbb{C}^n$ is open and bounded.
 - 2) f = u + i v is continuous on the closure of A.
- 3) $|f_{z_j}| |f_{z_j}| \neq 0$ at each point of A for some $j \in \{1, 2, ..., n\}$, not necessarily the same j at different points.

Then the maximum of $| f(z_1, ..., z_n) |$ is attained on ∂A (the bodndary of A).

Similar theorems hold for the minimum modulus of f, provided f does not vanish anywhere in A.

REFERENCE

(1) Nachbin, L.: Holomorphic Functions, Domains of Holomorphy and Local Properties. North-Holland Publishing Co., Amsterdam, 1970.