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The space S of all non-trivial real places on a real function field
K | & of transcendence degree one, endowed with a natural topology
analogous to that of Dedekind and Weber’'s Riemann Surface, is shown
to be a one-dimensional k-analytic manifold, which is homeomorphic
with every bounded non-singular real affine model of K| k. The
ground field k is an arbitrary ordered, real-closed Cantor field (Defini-
tion below). The function field K | k is thereby represented as a field
of real mappings of S which might be called «meromorphic»y — each f
in K| £ has a convergent power series expansion at each of its finite
points and a convergent Laurent series (finite negative order) in the
vicinity of each of its finite set of infinities (or poles). The treatment
is purely real up to the point where we want to show that K| &
contains every «meromorphicy» function on S. In order to do that we

have had to take k2 = R, the field of all real numbers, and appeal to
complex function theory.

The best reference for the terminology and basic methods used here
is Seidenberg’s Elements of Algebraic Curves. Also helpful in several
places, especially in connection with places, is Chevalley's Algebraic
Functions of One Variable. For the purely real analogues in many
cases, two earlier notes of the authors [3, 4] are frequently used,
especially [3] for convergence properties in Cantor fields.

Throughout, &k denotes a real-closed Cantor field — a Cantor field
is an ordered field containing a wmicrobe, and m is a microbe in k&
provided for every positive x in &, there exists # such that 0 < m" <&
for short, we say «powers of m are arbitrarily small in k». K|k will
always denote a real function field of one variable, i.e. a finitely
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generated real extension of transcendence degree one. A real place
on K is a place mapping onto £ U {oc}. The set of all real places on
K is denoted by S = S (K | k). It is topologized by the weak topology
for B = N {R,; '€ S}, where & is a real place and R, is its valuation
ring. The maximal ideal of % is denoted by M, and the associated
valuation by v,. In the special case k = R, the space S (k|R) is
homeomorphic with the space X (K) of [2].

A real function f of one real variable is meromorphic if it is the
restriction to R of a complex meromorphic function. Ior a real
topological one-manifold S’, a map f from an open subset U of S to
R is meromorphic at I provided for every coordinate system x at 7,
fe (x)* is a real meromorphic function; in case f is meromorphic at
every point of U we say f is meromorphic on U.

1. Statement of Main Theorem. Let %k be a real-closed Cantor
field. Let X be a Hausdorff space. A d-dimensional k-coordinate
systems in X is a homeomorphism of an open set in X onto an open
set in k. (X, C) is a d-dimensional topological k-manifold if X is
covered by the domains of the coordinate systems in C, C being a set
of d-dimensional k-coordinate systems in X. If, in addition, for each
pair x and v of coordinate systems in C, x o y~! is an analytic function
{described, locally, by convergent power series), then (X, C) is a d-
dimensional analvtic k-manifold.

TuEOREM 1.—Suitable restrictions of the uniformizing variables
form a family C of one-dimensional coordinate systems on S satisfying :

A. (5, C) is a topological k-manifold.

B. (S, C) is an analytic k-manifold. Every member f of K| k is
analytic on S except at its finite set of infinities, at each of which it
has a Laurent expansion of finite negative order.

C. Incase k =R, S is compact and K is the field of all real mero-
morphic mappings of S.

D. In case kB = R, S is (topologically) a finite union of pairwise
disjoint circles. _

2. The Coordinate Systems. Observe that for all # in K,

1422t and =z - (1 + 221

belong to B. Let %, be a place mapping into kU {~}. For any x,
we have & = u/v, where '

=1zl + 2%, v=1/(1+ 2?),
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if a () is finite;

u=1/1-+22), v=z"1(14 272

.

if ¥ (h,) = oc. In either case we see that x, as ratio of functions which
are continuous and not both infinite nor both zero at h,, is continuous

at /i,. The same identities show that B separates points so S is Haus-
dorff:

Lemma 1.—S is a Hausdorff space and every number of K is con-
tinuous on S.

Now choose a uniformizing variable x at h,:v () =1. As is
true for any non-zero element, the set of all real zeros of & is finite [7];
say hg, By, ..., I, is 2 complete list of (distinct) real zeros of x.—Since
S is a Hausdorff space, there exists, for each ¢ > 0, an element b; in
B cuch that

hob. =0, 7;0;F0.

Set b = ¥,* b2, Then
by =1y 252 =X (hy 0)2 =0,

and for

7>0, kb= (%48;)*>0.

The identity v = 1/ given above shows that K is the field of quotients
of B. Since K is finite algebraic over k (r) there exists w in

MRy 0<i<nl
such that K = & (v, w); put v = w— i, w, then

K=*Fk(x,v), hov=0, v €NiR 0i<mnl

Let

M=max!| @) |; 0<i<nul, m=min} | kb]|; 1<i<n]

Then M > 0, m > 0. By the strong theorem of the primitive element
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we have for all large p in &,

K=£f(x)(0,0)=Fkx)(v+pb)=h(x,v+pb).

Choose p so large that K = k (x, v + p b) and p m > M (both m and
M belong to & and m > 0). For j >0,

ki +pb)=p | kb | — | kv | =pm—M>0, k(v+pb)=0.

Thus, for y = v + p b we have:

i) K =k (x, v9). il) » is a uniformizing variable at h,. iii) h » =
hy =0 <=> 1l = h, (for real h).

Let

y=n(x)=ZInr,

n; in k, be the /i,-adic expansion for y (sce [3]). Let ' be the affine
curve in & with coordinate ring k [, v]. Then (¢ 7 (¢)) is a branch
representation centered at the origin. The bijective correspondence
between branches and places and the simplicity of T at all points near
the origin (the origin is an inner point of T, since there is a real branch
there) now show (cf. [3]):

iv) For all points ¢ near the origin on T, there is exactly one branch
of I' centered at =. (v) For all 234 (0, 0) on I near (0, 0), £ is simple.

Now we apply the generalized Puiseux theorem [3]; in view of iv)
(recall (¢, 4 (¢)) is the unique branch at the origin) it asserts that for
a small box W centered at the origin,

I'N W ={(a,n(a));(a,0) € W],
while simplicity of points near to but distinct from the origin shows
that we may assume further that for a £ 0, (a, n (a)) is simple and

hence there is exactly one place h with hov =a, v =1 (a). We
have proved that x defines, for some ¢ > 0, a bijection of

Ur=th | bz | <e |hy|<¢
onto the closed interval

L=la €k |a|<g
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in k; earlier we showed that x is continuous. We will show that
{#)7' is continuous (restricted to I. for small enough ¢); by (x)~* we
mean the inverse of the function & :/ +—— &k (x), not the reciprocal
1/x of ». First we prove

Leumma 2.—For a member # (x, y) of the function field & (x, ¥) if
9 is finite at /i, then # is continuous on a neighborhood of (0, 0) on T.

The finiteness hypothesis guarantees that the Laurent series

C@)=u(tn(#)

is actually a power series. I.et o be the map s — (s, 1 (s)), from
2 neighborhood of 0 in %k into I'. Bukowski’s Theorem [3] show that
= is continuous and that » is (locally) a homeomorphism. IHence

n==%oop!

is continuous near (0, 0), as asserted, and the Lemma is proved.
Next we note that near (0, 0), any w (x, y) in B satisfies

#=1u(x.n0x),

and we just showed that # is continuous on I' near (0, 0). The formula
thus shows that for some ¢ > 0 and any place &, in U, the neigh-
borhoods of the form

Vo) = (2t by —d<xh<xh + B

form a base for the neighborhoods of &i;,. To prove continuity of
(#)™* we need only show that the inverse image of V5 (1)) by (#)7! is
open in k. But

((x)=1)71 Vs (hy) = 2 Vs (&)
is just the open interval of all ¢ in k, between x /iy
This completes the proof or:

Zand x iy + 3.

LemMma 3.—(x)"! is continuous. TIn fact, there exists a positive =
in %k such that the restriction of » to

Ua=gk)lkxlgea IIU’IS?-z
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is a topological map onto the closed interval
Il={a;|a| <e} in &

Thus the uniformizing variables, for /i, define coordinate systems.
Let C be the set of all these, as &, ranges over S. Clearly then (S, C)
is a topological manifold, and part A of the Theorem is proved.

3. The analytic structure of S. To get the analytic structure recalt
that for any /i, in S and a uniformizing variable x at h,, we have i)-v),
and also (see definition of U, I. above) we know:

vi) For all a in I, there is exactly one point (e, ) on T near the
origin.

Now = can be chosen so small that:

vii) For all 1 in Ue, ¥ — & I is a uniformizing variable at h. This
holds for h = h, by ii). Let 5% h,. Then

(a,8) = (k x, ky) (0, 0),

by iii). If & is near enough to I, then the tangent is not vertical at
(a, b), and so the branch there has a representation

(@a+2,64+ b6+ ..

Hence.

pxr—a=0rd,(a+t—a)=1:x—a
is a uniformizing variable at &, proving vii).

LemumA 4.—Let f be a member of K | k, let 11, be a real place and
let # be a uniformizing variable at f,. For all real places % close
enough to h,, except possibly #%,,

Sh=2Xc;(x h),
where T ¢; #¢ is the li-adic expansion of f. If f is finite at i, the
equation goes for 1 = fi,.

PRrOOF.—y can be chosen so i)-vii) and Lemma 3 hold. Let T b; #4*
be the h,-adic expansion of y. Now

4, 2b;8)=2X¢; 1’
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by formal power series considerations (regardless of groundfield).
Bukowski’s theorem (loc. cit.) shows that, f being continous,

g, X8 ) =X ¢ s

for 0 <|s | <e, if ¢ is small enough (see Lemma 3); and if /i is the
unique real place mapping # on s, we have

Sh=h(f)=fhxhy)=Ff(s,Xns)=Zc;s=Tc k),

as claimed. In case f is finite at h,, its expansion has no negative
powers and the condition s34 0 is unnecessary. The Lemma is proved.

Suppose next that x and f are both uniformizing variables at h,,
and that the /i,-adic expansion of f is

Zc; 2% ¢, +=0,
i=1
By Lemma 4 we get for all small s = 2 /1,

(fo () Y)s=f(h) =2 c;x (hY =2 ¢; .

Hence fo (¥)™* is analytic at 0 (v i, = 0). Let i, be another real
place, let x, be a uniformizing variable at /i;. Let i be in the inter-
section of the neighborhoods

U, (ko) Ul (A1)
(see Lemma 3), sct a; = &, h. As before we write (f)~! for the inverse
function. We have

%0 (x)" ' =2y 0(x; — @)1 0 (¥, — a;) 0 (% — @) "1 0 (% — a,) 0 (%)t ==
=T_, 0[(x; —a,) 0 (x, — ap)) 1] Tg,

The translations T_,, and T, are analytic. The bracketed map is
likewise: each x; — a; is a uniformizing variable at I, by vii) applied
to each #;, and so by the preceding paragraph the bracketed composi-
tion is analytic. Hence x, o (#,)""! is analytic. Analyticity of (S, C) is
proved. Analyticity of the members f of K, as functions on (S, C),
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follows from Lemma 4. Note that f can’t have morc than a finite
number of infinities.

4. Meromorphic mappings (Case k = R). Let S* be the set of
all places of K* into CU {}, C = R (i) = complex field,

K¥={r+sir,s € Ki;
for I in S,
W (r fsi)=h(r)+ik(s)

is a place of K#* Elements of K arc now extended (as maps) to all
of S* as usual, # (&) = I (). For the inverse of the map x, we write
(x)~, not to be confused with the multiplicative inverse.

Let h, be any member of S, let € K be a uniformizing variable
for h,. Then certainly & is a uniformizing variable for ,*. For any
f in K we know from the classical theory that f o ()~ is a (complex)
meromorphic function on a disc centered at 0 in the complex plane.
Its restriction to the real axis is feo (x)7!, which is therefore a real
meromorphic function. Thus f is meromorphic at /,. Since &, is
arbitrary in S, we have shown that f is a meromorphic mapping of S.
Hence, every member of K is a meromorphic mapping of S. Let f
be a real meromorphic mapping on S, say fe- ()™ is the restriction
to the reals of the complex meromorphic function g (we are still assum-
ing # is a uniformizing variable at /i, € S):

fo(x)t=2¢gl

Define f* on S* by f* = geox. Now f%o (1)7' = g, which is mero-
morphic; hence f* is a meromorphic mapping of S*. For any I in S,
a () is real and hence

& @ (B)=(fo(x)™)(x A) =S (k)
SO

7* (k) = g (x (k) =f (%).

Thus * |s is just f. From the classical theory we haye # and v in
K with

fro@)t=(+ivo)
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ssince every meromorphic mapping of S* is got from a member of K¥*
in this way. We thus have f* = u + iv (as functions on S¥). TFor h
in S, # (k) and v () are real, and

(4 i0) h=w(h) + 10 (h) = /* (h) = f (h),

since f*|s =f. But f(h) belongs to R (since +€S). Hence v () =0.
This holds for all the (infinitely many) /i in S so v is itself zero. Illence
ff*=wu, and in fact, f = f*|s = u€ K. Thus every meromorphic
mapping of S belongs to K, proving the reverse inclusion, and par C
is done.

5. Topological structure in Case & = R. Now S is compact and
locally connected. In fact it is a finite union of pairwise disjoint circles
(topologically). Compactness was proved in |2]. Being a manifold,
'S is locally connected. By compactness it is a finite disjoint union of
-compact and connected real analytic one-manifolds, each homeomorphic
with a circle (see Bishop and Crittenden, p. 5). This proves part D
and finishes the proof of the theorem.

6. Relation to nonsingular bounded models. Such models always
exist [3]. We return to an arbitrary real-closed Cantor field.

THEOREM.—I.et C be a bounded non-singular model in £ with
function field K | £ and coordinate ring k [ay, ..., #,]. The corres-
pondence /i — (h &, ..., h x,) dcfines a topological cquivalence

Proor.—Continuity follows from I.emma 1 (continuity of elements
of K as functions on S), surjectivity from the rcal place cxtension
theorem, injectivity from non-singularity. Continuity of ™' comes
from (cf. Lemma 2) continuity of members of K as functions on C,
at least in regions where they are defined. We give details for the
last claim — the earlier ones are transparent. Let k, be a real place
centered at 5° on C. We must show that »~! is continuous at 2°. Let
‘G be a neighborhood of #,, say for members u,, ..., u,, of K, ¢ >0,
P,y | <e, 1 <7 <m,

G=Il |wh—uh | e 1<;<mi
We need a neighborhood of =" which maps into (-. We have

wihy= Iy (u; (%)) = u; (hy 215 .., by %a) = 1, (2°).
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For z close to 2° on C, ¢ can be substituted in #; () so we may write
wh=rhu=u;(), 2= (hxy, ..., 02,

I being the (unique) place centered at 2, ' = »7* (5). Thus #; is finite
at & so we can apply the continuity of #; on C to assert that for
1 <7 <m and for all 5 close to s° on C,

| #j(2) —u; (29 | <k,

hence

|1¢j/z—u,-}10|<s, ;ZEG

In other words some neighborhood of 2 on C maps by 7! into G
continuity of »~! is proved.

CoroLLARY.—Assume k& = R. Let v be the number of (connected)
components of S. Every nonsingular compact affine real model has +
components. Every compact affine real model has at most v com-
ponents after isolated paints are discarded. v is at most one plus the
genus.

Proor.—The last claim is Harnack’s Theorem, since v is also, by
the first claim, the number of components of a nonsingular model (Har-
nack [11]). The first two assertions are consequences of the proper-
ties of thc map » of the Theorem: In case C has singular points, ¢
might not be injective. But it maps onto the set of all inner points.

NoTe.—All the results of this paper were obtained by the author im
1971, but none have been previously published.

REFERENCES

[1] Biswmor, R. and CrITTENDEX, R.: Geometry of Manifolds. Acade-
mic Press (1964)

[2] Dusors, D. W.: Infinite primes and ordered fields. «Diss. Math.»,
no. LLXIX (1970), 1-43.

[3] Dusors, D. W. and Bukowski, A.: Real commutative algebra.
II. Plane curves. «This Journal».

[+] Dusors, D. W.: Real commutative algebra. I. Places. «This
Journaly».



REAL COMMUTATIVE ALGEBRA. III 167

i5] HARNACK, AX.: Uber die Vieltheiligkeit der ebener algebraische
Kurven., «Math. Ann.», 10 (I1876), 189-198.

{6] SEeipENBERG, A.: Elements of the Theory of Algebraic Curves.
Addison-Wesley (1968). ,

I7] Cnevaiiey, C.: Algebraic Functions of One Variable. «(Mathema-
tical Surveys», no. VI, American Mathematical Society (1951).



