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SUMMARY

The canonical form theorem, applied to a certain group of symmetry transforma-
tions of certain Fuchsian equations, leads automatically to the integration of them..
The result can be extended to any n-order differential equation possessing a certain
pointlike group of symmetries with a maximal abelian Lie-subgroup of order c.

The following points should be recalled as theoretical background in
all what follows: A) A second order ordinary differential equation
cannot have a Lie group of pointlike transformations of symmetry with
more than eight parameters [1], B) An ordinary differential equation
of order n does not possess, in general, groups (Lie groups) of pointlike
transformations of symmetry [2], and C) The maximum number of
parameters of a pointlike Lie group of symmetry transformations of
an ordinary differential equation of order n (n>>2) is equal to » + 4 [3]..

Consider now the following Fuchslike differential equation:

N
> 4,537 (0)=0, a, €R (1)

n=20

It is clear that, in addition to the banal group of symmetries defined by

Yy =ay
Y=z (2)
a € R*®
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equation (1) admits, as well, the following monoparametric Lie group
«©of symmetries:

=y
¥ ==Fkx 3)
ke R,k 0

Now, applying the canonical form theorem [4] to the vector field X
.associated with (3), we would be induced to the introduction of the
new local coordinates (#', y") defined through the equations:

-> 0 le]
S P
a dx )
._y=___=dt
0 x
x=e*
§ (5)
Y=y

But since in this new local coordinates the group defined by (8) adopts
‘the form:

ry=x4+8
y' =y (6)
BeR

and, at the same time the change of coordinates defined by (5), does
preserves the linear character of (1), it is obvious that the symmetry (6)
of the transformed differential equation forces to this one to be (and
we do not need to make any calculations in order to assert it) a
linear differential equation but with constant coefficients). We have,
therefore, before us, now, a purely algebraic problem of finding roots
(and the multiplicities of them) of a certain polinomial (the charac-
teristic polinomial associated with the final differential equation). In
-accordance with all this results, it is now quite clear the purely algebraic
-origin of the presence of the terms '

z% z° (log ), z* (log #)?,..., a € C
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in the general solution of (1). The root of this fact is seen to be
purely algebraic, and is connected with the multiplicity of « in the finak
characteristic polinomial associated (by the substitution given by the
equations (5)) to the linear differential equation (with constant coeffi-
cients) obtained by the procedure explained above. The same can be:
said on the behaviour, in the neighbourhood of # = 0, of the linear
differential equation,

S o (x) 2y (2) =0,

n=20

a, (x) being analytic functions such that a, (0)540 for all the values of #..

It is interesting to recall here that the multiplicity of a certain root
of the characteristic polinomial associated with a given linear differen-
tial equation of constant coefficients has, as well, important consequen-
ces in relation with the representations induced, by the general solutiom
of the given equation, of the symmetry group, given by equations (6),
that all these linear equations do possess. Indeed, when « is a simple
root of the characteristic polinomial, then the solution exp (« %) induces-
the realization of (6) given by:

B 1—> e2f.

But if = is, for instance, a double root of the characteristic polinomial,.
then the symmetry group (6) is linearly represented in the two-dimen-
sional vectorial space of the solutions of the form,

(Cx—+D) exp (a zx).

In this case the representation of (6) obtained is given by:
ap
Bi— ( ¢ 0 ).

Beab g2B

This representation is reducible, but not completely reducible. This
not completely reducible character is to be ascribed, as well, to the
algebraic fact of the non-simplicity of the root « in the caracteristic
polinomial. The non-completely reducible character can be understood
given the non-compact nature of the group given by (6) (in the compact
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case the reducibility of the representation would automatically induce:
the complete reducibility of it).

Consider now a generic differential equation of order =,
E(z,9,0' 0., 9™ =0 y

Let Gp be a certain Lie group of pointlike transformation of symmetry
of (7). Let G;* be the associated Lie group associated to Gp, by means
of the standard prolongations procedures [5]. Calling now

to the generators of it, then all of them (considered as vector fields:
acting on the x, v, 9’ ..., 9" space) must be tangent to the hyper--
surface of this space defined by (7). Now, let A, be a certain maximal’
abelian Lie subgroup of Gy, and let ¢ be the number of independent
generators of it. In that case the canonical form theorem applied to~
A, would introduce a set of n local coordinates over the manifold

defined by (7) such that ¢ of them would transform, under the action:
of G/ in the way:

xi=x;} ¢

@®)

i=1,...,c

Therefore in this new local variables we would obtain a new differen-
tial equation of order # (or possibly less than #) in which only"
n — ¢ + 1 variables can appear. In that way we have now considerably
reduced the problem of integrating eq. (7).

It is to be remarked that in contrast with the above example the new
local coordinates used here (in order to apply the canonical formr-
theorem) do involve not only the original variables (#, y) but also the-
derivatives y’, 9”7, ..., y®. Note, as well, that our result can be repeat-
ed, without any modifications, for groups of contact transformations.
(of generators tangent to the hypersurface defined by (7)) not neces-
sarily induced by a pointlike group of transformations G, acting on:
the (#, y) plane, as considered above. It is for this class of groups
that the abelian subgroups A, have a certain entity and it is for this
reason that the reader should be recalled, and induced, here to study-
the contact structures.
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