ON A FORM OF BI-VARIATE-t DISTRIBUTION

por
G. S. Lingappaiah

1. Summary.

Distribution of a statistic of the form bi-variate t has been obtained when the sample size is even and the probability integral has been tabulated for certain values of ρ and the sample size.
2. Introduction.

Among the many forms of bi-variate t available, some of the recent ones could be found in [2] and [3]. Suppose $v_{1}=C_{1} X / / \overline{U_{1}}$ and $v_{2}=$ $=\mathrm{C}_{2} \mathrm{Y} / / \overline{\mathrm{U}}_{2}$ where X and Y are distributed at bi-variate Normal independent of U_{1} and U_{2} and C_{1}, C_{2} are constants. Also U_{1} and U_{2} are distributed as chi-square random variables. In [3], distribution of ν_{1} and v_{2} is obtained where U_{1} and U_{2} have the bi-variate chi-square distribution. In [2], in the place of U_{2}, a quantity $\mathrm{U}_{1}+\mathrm{U}^{*}$ is used where U^{\star} is $\chi^{2}(n-1)$ and U_{1} is $\chi^{2}(m-1)$. In both these cases [2] and [3], expression for the probability integral $p\left[\nu_{1} \leqslant a, \nu_{2} \leqslant b\right]$ is given. So, also in [4] and [5], where this integral is being expressed in terms of the parabolic Cylinder functions in [4] and in terms of the normal probability integral in [5]. Evaluation in each of the above cases is quite heavy.
3. Distribution of the statistic $(\mu=0)$.

Here, the distribution of v_{1} and v_{2} is considered in relation to $U_{1}-U_{2}$ when the sample size m is even. Then, new variables are

$$
\begin{equation*}
t_{1}=\sqrt{m} \bar{x} / \sqrt{v} \text { and } t_{2}=\sqrt{m} \bar{y} / V \bar{v} \tag{1}
\end{equation*}
$$

where $v=U_{1}-U_{8}$.
Taking the variances as unity, (\bar{x}, \bar{y}) has the density

$$
\begin{equation*}
f(\bar{x}, \bar{y})=\frac{\sqrt{m}}{2 \Pi \sqrt{1-\rho^{2}}} \exp \left[-m\left(\bar{x}^{2}-2 \rho \overline{x y}+\bar{y}^{2}\right) / 2\left(1-\rho^{2}\right)\right] \tag{2}
\end{equation*}
$$

and the density of v when m even is from [1]

$$
\begin{gather*}
f(v)=\sum_{i=0}^{\infty} \frac{\left(\rho^{2}\right)^{i} \Gamma^{-1}(m / 2)}{i!2 m+2 i-1} \\
\frac{m}{2}+i-1-v / 2\left(1-\rho^{2}\right) \sum_{\nu}^{\frac{m}{2}+i-j-1} \sum_{j=0} \frac{\Gamma\left(\frac{m}{2}+i+j\right)}{j!\left(1-\rho^{2}\right)^{i-j} \Gamma\left(\frac{m}{2}+i-j\right)} \tag{3}
\end{gather*}
$$

from (1), (2) and (3), we have

$$
f\left(t_{1}, t_{2}, v\right)=\frac{1}{2 \Pi\left(1-\rho^{2}\right)^{1 / 2}} \sum_{i=0}^{\infty} \frac{\left(\rho^{2}\right)^{i} \Gamma^{-1}(m / 2)}{i!2^{m+2 i-1}}
$$

(4)

$$
\sum_{j=0}^{\frac{m}{2}+i-1 \frac{e^{-v(1+Q) / 2\left(1-p^{2}\right)} \frac{m}{2}+i-j}{v^{\frac{m}{2}}+\left(\frac{m}{2}+i+j\right)}}
$$

where $Q=t_{1}{ }^{2}+t_{\mathbf{2}}{ }^{2}-2 p t_{1} t_{3}$.
From (4), we have,

$$
\begin{array}{r}
f\left(t_{1}, t_{2}\right)=\frac{\frac{\left(1-\rho^{2}\right)}{2}}{2 \Pi} \sum_{i=0}^{\infty} \frac{\left(\rho^{2}\right)^{i} \Gamma^{-1}(m / 2)}{\frac{m}{2}+i-2} \\
\frac{m}{2}+i-12 \\
\sum_{j=0} \frac{\left(\frac{m}{2}+i-j\right) \Gamma\left(\frac{m}{2}+i+j\right)}{\frac{m}{2}+i-j+1}
\end{array}
$$

(5)

$$
\mathrm{P}\left[t_{1} \leqslant a, t_{2} \leqslant b\right]=\int_{-\infty}^{a} \int_{-\infty}^{b} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

is expressed in terms of polar coordinates as

$$
\begin{gathered}
=\left(1-\rho^{2}\right) \frac{m+1}{2} \sum_{i=0}^{\infty} \frac{\left(\rho^{2}\right)^{i}(m / 2)_{i}}{\frac{m}{2}+i-1} \sum_{i=1}^{\frac{m}{2}} \frac{\sum_{j=0}^{2}}{2 j j!} \\
-\int_{0}^{\theta_{0}} \frac{\left(\frac{m}{2}+i\right)_{j}}{1-\rho \operatorname{Sin} 2 \theta}- \\
-\int_{0}^{\theta_{0}}-d \theta \\
(1-\rho \operatorname{Sin} 2 \theta)\left[1+r_{0}^{2}(1-\rho \operatorname{Sin} 2 \theta]\right.
\end{gathered}
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$.
(6) is used to generate the probability integral for the values of ρ and m. The attached tables are for
$\rho=0, .1, .5, .9$ and for
$m=2,6,10,20$.
Table of the integral for other values of $\rho=.2, .3, .4, .6, .7, .8$ and for $m=4,16,30$ and 50 are available with the author.

4. Acknowledgement.

The author wishes to thank assistance of Mr. David O'Connell in programming the integral.

5. References.

[1] Krishnaiah, P. R. and Waiker, B. P. (1973): On the distribution of a linear combination of correlated quadratic forms. Communications in Statistics, Vol. 1, p. 371-379.
[2] Bulgren, W. G. and et al. (1974): A Bi-variate t-distribution with applications. Journal of American Statistical Association. Vol. 69, p. 525-532.
[3] Krishnan, Marakatha (1972): Series representation of a bivariate singly non-central t-distribution. Journal of American Statistical Association, Vol. 67, p. 228-231.
[4] Amos, D. E. and Bulgren, W. G. (1969): On the Computation of a Bi-variate t-distribution. Mathematics of Computation, Vol. 23, p. 319-333.
[5] Dunnett, C. and Sobel, M. (1954): A Bi-variate generalisation of Student's t-distribution, with tables for certain special cases. Biometrika, Vol. 41, p. 153-169.

