ON A FORM OF BI-VARIATE-t DISTRIBUTION

por

G. S. LINGAPPAIAH

1. Summary.

Distribution of a statistic of the form bi-variate $\it t$ has been obtained when the sample size is even and the probability integral has been tabulated for certain values of ρ and the sample size.

2. Introduction.

Among the many forms of bi-variate t available, some of the recent ones could be found in [2] and [3]. Suppose $\mathbf{v}_1=C_1\mathbf{X}/\!\!/\overline{U_1}$ and $\mathbf{v}_2=C_2\mathbf{Y}/\!\!/\overline{U_2}$ where \mathbf{X} and \mathbf{Y} are distributed at bi-variate Normal independent of \mathbf{U}_1 and \mathbf{U}_2 and \mathbf{C}_1 , \mathbf{C}_2 are constants. Also \mathbf{U}_1 and \mathbf{U}_2 are distributed as chi-square random variables. In [3], distribution of \mathbf{v}_1 and \mathbf{v}_2 is obtained where \mathbf{U}_1 and \mathbf{U}_2 have the bi-variate chi-square distribution. In [2], in the place of \mathbf{U}_2 , a quantity $\mathbf{U}_1+\mathbf{U}^*$ is used where \mathbf{U}^* is $\chi^2(n-1)$ and \mathbf{U}_1 is $\chi^2(m-1)$. In both these cases [2] and [3], expression for the probability integral $p[\mathbf{v}_1\leqslant a,\ \mathbf{v}_2\leqslant b]$ is given. So, also in [4] and [5], where this integral is being expressed in terms of the parabolic Cylinder functions in [4] and in terms of the normal probability integral in [5]. Evaluation in each of the above cases is quite heavy.

3. Distribution of the statistic ($\mu=0$).

Here, the distribution of $\mathbf{v_1}$ and $\mathbf{v_2}$ is considered in relation to $\mathbf{U_1} - \mathbf{U_2}$ when the sample size m is even. Then, new variables are

$$t_1 = \sqrt{m} \ \overline{x} / \sqrt{\mathbf{v}} \text{ and } t_2 = \sqrt{m} \ \overline{y} / \sqrt{\mathbf{v}}$$
 (1)

where $\mathbf{v} = \mathbf{U_1} - \mathbf{U_2}$.

Taking the variances as unity, $(\overline{x}, \overline{y})$ has the density

$$f(\overline{x}, \overline{y}) = \frac{\sqrt{m}}{2\Pi \sqrt{1 - \rho^2}} \exp \left[-m(\overline{x^2} - 2 \rho \overline{xy} + \overline{y^2})/2 (1 - \rho^2)\right] (2)$$

and the density of v when m even is from [1]

$$f(\mathbf{v}) = \sum_{i=0}^{\infty} \frac{(\rho^2)^i \Gamma^{-1}(m/2)}{i! 2^{m+2i-1}}$$

$$\frac{m}{2} + i - 1 \underbrace{e^{-\mathbf{v}/2(1-\rho^2)}}_{\mathbf{v}} \frac{\frac{m}{2} + i - j - 1}{\Gamma\left(\frac{m}{2} + i + j\right)}$$

$$\cdot \sum_{j=0} \frac{j! (1-\rho^2)^{i-j} \Gamma\left(\frac{m}{2} + i - j\right)}{j! (1-\rho^2)^{i-j} \Gamma\left(\frac{m}{2} + i - j\right)} \tag{3}$$

from (1), (2) and (3), we have

$$f(t_1, t_2, \mathbf{v}) = \frac{1}{2\Pi (1-\mathbf{p}^2)^{1/2}} \sum_{i=0}^{\infty} \frac{(\mathbf{p}^2)^i \Gamma^{-1}(m/2)}{i! \ 2m+2i-1}$$

(4)

 $\cdot \sum_{j=0}^{\frac{m}{2}+i-1} \frac{e^{-\mathbf{v}(1+Q)/2(1-\mathbf{p}^2)} \frac{\frac{m}{2}+i-j}{\mathbf{v}} \Gamma\left(\frac{m}{2}+i+j\right)}{(1-\mathbf{p}^2)^{i-j} j! \Gamma\left(\frac{m}{2}+i-j\right)}$

where $Q = t_1^2 + t_2^2 - 2\rho t_1 t_2$.

From (4), we have,

$$f(t_1, t_2) = \frac{\frac{m+1}{2}}{2\Pi} \sum_{i=0}^{\infty} \frac{(\rho^2)^i \Gamma^{-1}(m/2)}{\frac{m}{2} + i - 2}$$

$$\frac{\frac{m}{2} + i - 1}{\sum_{j=0}^{m} \frac{\left(\frac{m}{2} + i - j\right) \Gamma\left(\frac{m}{2} + i + j\right)}{\frac{m}{2} + i - j + 1}}$$

$$\frac{m}{2} + i - j + 1$$

$$\frac{m}{2} + i - j + 1$$

$$P[t_1 \leqslant a, t_2 \leqslant b] = \int_{-\infty}^{a} \int_{-\infty}^{b} f(t_1, t_2) dt_1 dt_2$$

is expressed in terms of polar coordinates as

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{(\rho^{2})^{i} (m/2)_{i}}{\sum_{i=0}^{m} \frac{m}{2} + i-1} \sum_{j=0}^{m} \frac{(m+1)_{j}}{2^{j} j!}$$

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{m}{2^{i} + i-1} \sum_{j=0}^{m} \frac{(m+1)_{j}}{2^{j} j!}$$

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{d\theta}{1-\rho \sin 2\theta} - \frac{d\theta}{1-\rho \sin 2\theta}$$

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{d\theta}{1-\rho \sin 2\theta} - \frac{d\theta}{1-\rho \sin 2\theta}$$

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{d\theta}{1-\rho \sin 2\theta} - \frac{d\theta}{1-\rho \sin 2\theta}$$

$$= (1-\rho^{2}) \sum_{i=0}^{\infty} \frac{d\theta}{1-\rho \sin 2\theta} - \frac{d\theta}{1-\rho \sin 2\theta}$$

where $(a)_n = a(a+1) \dots (a+n-1)$.

(6) is used to generate the probability integral for the values of ρ and m. The attached tables are for

$$\rho = 0, .1, .5, .9$$
 and for $m = 2, 6, 10, 20.$

Table of the integral for other values of $\rho=.2,.3,.4,.6,.7,.8$ and for m=4,16,30 and 50 are available with the author.

4. ACKNOWLEDGEMENT.

The author wishes to thank assistance of Mr. David O'Connell in programming the integral.

5. References.

- [1] Krishnaiah, P. R. and Waiker, B. P. (1973): On the distribution of a linear combination of correlated quadratic forms. *Communications in Statistics*, Vol. 1, p. 371-379.
- [2] Bulgren, W. G. and et al. (1974): A Bi-variate t-distribution with applications. Journal of American Statistical Association. Vol. 69, p. 525-532.

- [3] Krishnan, Marakatha (1972): Series representation of a bivariate singly non-central t-distribution. Journal of American Statistical Association, Vol. 67, p. 228-231.
 [4] Amos, D. E. and Bulgren, W. G. (1969): On the Computation of
- [4] Amos, D. E. and Bulgren, W. G. (1969): On the Computation of a Bi-variate t-distribution. *Mathematics of Computation*, Vol. 23, p. 319-333.
- [5] DUNNETT, C. and SOBEL, M. (1954): A Bi-variate generalisation of Student's t-distribution, with tables for certain special cases. Biometrika, Vol. 41, p. 153-169.