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THE N-DIMENSIONAL C‘AIICHY-R'I;EMANN
EQUATIONS

por

M. O. GONzZALEZ

1. INTrRODUCTION. We propose to generalize the Cauchy-Riemann
equations via the conformality property of analytic functions at points
where the Jacobian Jg(z) 54 0. o

Consider in En a regular arc y: [a, b] — En defined by

X =x(u) =ziw)e,ad <u<bi=1...,n
where the summation convention is used, and {e,, . .., e,} is the stan-
dard orthonormal basis in En,
Let £ = (fY, ..., fr) be a vector function defined in some region

Q C En containing y * (the graph of y), with components fi of class C?
in Q, and let

fly) =T:y =1x) =yi(u)e;,a<u<b
be the image of vy under {, so that
yi(u) = fi(z?, ..., zn) with i = zi(u)

for each i. Since

dyi ofi  dxi
du B oxi du
it follows that
ofi
J =) = [—| = laii| 0
oxJ

at x = p is a sufficient condition for I" to be also regular at the corres-
ponding point f(p). In what follows we assume that the condition J¢(p)s% 0
is satisfied.
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2. THE CaucHY-RIEMANN EQUATIONS. The element of arc of y
at p is given by
ds? = dx - dx = I (dzi)?
’ i

the dri being direction numbers of the tangent line to y* at p. The
corresponding element of arc of I'" at f(p) is given by

de? = dy - dy = X (dyi)® = Mjk dxi dzk

j, k =1, ..., n, the dyi being direction numbers of the tangent line to
T'* at i(p), and
ofi  ofi
Mjk = _
oxi  oxk

i
Hence, the square of the magnification ratio p = ds/ds is given by

p? = Mjk dzi dzk|Z (dxi)?
1

This ratio is independent of the direction numbers dzi (or, indepen-
dent of the particular arc y through p) if, and only if,

(1) Mjx =0forjs<k,and Mj; = M
M being a positive constant at p. Then we have
(?) pP=M

Equations (1) are also necessary and sufficient conditions for the
mapping defined by f to be directly or inversely conformal at p. This
well known fact is easily derived from the formulas giving the cosine
of the angle between two arcs. )

With the notation aii = ofi/oxi, and using (%), equations (1) can be
written as

(a1)2 4 ... 4 (an)?2 = ... = (aln)? 4 ... + (ann)? = p?
attal? 4 ... 4 antan® =0
(3) ¢ atta'® 4+ ...+ antan® =0
abn—1qin{ ,, 4 gnin—1lqgnn = (
Considering the n equations containing a/, . .., a7/, namely,
[ attali 4+ a*ta¥ 4 ...+ antay =0
ay ati + a% a¥% + ... + anji anj = p?
? ain qY 4 ana¥ + ... 4+ awnoanj =

and solving for aij we get
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2

3
(4) . aii = — Ajj
J

where Aj; is the cofactor of aij in J.

Since
e2 0 . 0
0 p?. 0
J2 = |aif] X |aii] =|........ ... = pon
0 0 . p?
we have p? = |J|%n, and equations (4) become
(5) (sgn J) |[J|n—2)n aij = Ay

These éu‘e the n-dimensional Cauchy-Riemann equations.
For n = 2 we have, with = (f?, f2),

oft oft
ox? ox?
- of3 of*
ot -aa:_’
and equations (5) reduce to
oft of* oft of*
ox? - ox? ’ or? - or?

which are the ordinary Cauchy-Riemann equations, or to

3/1 af: afx af:

_— 3 =

oxt ox? ox? oxt

the so-called conjugate Cauchy-Riemann equations, depending on
whether J > 0 or J < 0. Clearly, if £ = (f%, f%) has positive Jacobian,
then the conjugate function f = (f!, —f2) has a negative Jacobian.

For n = 3 we obtain nine equations of the form

3 g
ai Vi = Ajj

These equations, in an essentially equivalent form, were given by
Hedrick and Ingold in 19256 [2]. The case n = 4 was considered by
J. Abercrombie in 1970 [1].
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We note that in the case n = 3 there are four conjugates, namely
i =(fY 13—, 1" = (f*, —1% 2h1" = (—f% 1% f3), and — = (—f* —f%
—f?), corresponding to symmetries with respect to each of the coordina-
tes planes, or to all three simultaneously (i.e. with respect to the origin).
In general, if n is even, the mappings defined by f and —f belong to the
same class (both are directly or inversely conformal), not so if n is odd.

3. ANOTHER FORM OF THE CAUCHY-RIEMANN EQuATIONS. Using (3)
and (4) we obtain

(6) (ait)® + ... + (ain)* = %—(ailAn 4 ov. 4 ain Ajy) = p?

and, for i # j,

3
(7 aitair + ... +ainain=T(ai‘A,-,+... + air Ajy) =0

Since Vfi = aij ej, equation (6) can be written as
IVfi] = ¢ (i=1,...,n)
and equation (7) as
Vfi-Vfi =0 (i # )

Hence, the mapping defined by a function f = (f1, ..., fn) of class G
in Q at a point p where Jg(x) £ 0, is conformal if and only if all the
component functions have gradients with the same magnitude at that
point, and the gradients of any two different components are orthogonal.
The common magnitude of the gradients is precisely the magnification
ratio at p, and the second condition means that the hypersurfaces
fi = c¢i meet orthogonally at p.

4. THE GENERALIZED LAPLACE EQUATION. From (5) we have

ofi

(sgn J) |J|(n—2)jn = Ajj

oxi

Assuming now that the components fi are of class C? in Q, this yields

9 ofi 2
(sgn J) — (1J1<n—==>/n : )=—_Au-
oxJ

oxi oxi

and

n o afl n F)
(8  (sgnJ) T *-(!JK"—*)/" ) = 5 ——A;j=0
j=1 oxi oxi i j
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since the last sum in (8) can be written as a symbolic determinant

oft oft
ozt aan
a 0
pval
A =
ofn afn
or? U oxn
where the partial operators
0
oxi

occupy the i-th row, and it follows easily that A; = 0.
Thus, (8) becomes

n 2 ofi
r — (|J |(n—2)n )
j=1 ouxi j

Il
=

oxl

This is the Laplace-type equation satisfied by each component fi
of a conformal mapping of class C2. Clearly, in the particular case n = 2
it reduces to the ordinary Laplace equation in two dimensions.
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