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THE N - D I M E N S I O N À L CÀUCHY-RÎEMANN 
EQUATIONS 

por 

M. O. GONZALEZ 

1. INTRODUCTION. We propose to generalize the Gauchy-Riemann 
equations via the conformality property of analytic functions at points 
where the Jacobian J/{z) 17̂  0. 

Consider in E« a regular arc y* [^J ^Í -^ E" defined by 

X = x(w) = xi{u) ei, a' < u < 6, i == 1, . . . , n 

where the summation convention is used, and {Ci, . . . , e;̂ } is the stan
dard orthonormal basis in E". 

Let f = (/I, . . . . Z'î) be a vector function defined in some region 
Q c En containing y * (the graph of y), with components fi of class C^ 
in O, and let 

f(y) == r : y = f(x) = iji{u) et, a < u < b 

be the image of y under f, so tha t 

yi{u) = f^{x^, . . , , xn) with xi = xi{u) 

for each i. Since 

dyi dfi dxi 

du dxi du 

it follows tha t 

dfi 
J = jf{x) = 

dxi 
\aU\ ^ 0 

at X = p is a sufficient condition for T to be also regular at the corres
ponding point f(p). In what follows we assume tha t the condition Jf{p)^ 0 
is satisfied. 
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2. T H E CAUCHY-RIEMANN EQUATIONS. The element of arc of y 

at p is given by 

ds^ = dx • dx = T,(dxi)* 

the dxi being direction numbers of the tangent line to y* ^t P» The 
corresponding element of arc of F at i(p) is given by 

da^ == dy • rfy == S (dyi)* = My/c dxJ dxh 
i 

j , k = 1, . . . , n, the dyi being direction numbers of the tangent line to 
r * at f{p), and 

^ ^ a/I- efi 

-*iiii dx/ dxfi 
i 

Hence, the square of the magnification ratio p == dalds is given by 

p2 = M;7f dxi dx^l^ {dxiy 
i 

This ratio is independent of the direction numbers dx^ (or, indepen
dent of the particular arc y through p) if, and only if, 

(1) M;7f = 0 for / ^é /c, and M// = M 

M being a positive constant at p . Then we have 

(2) p2 = M 

Equations (1) are also necessary and sufficient conditions for the 
mapping defined by f to be directly or inversely conformai at p. This 
well known fact is easily derived from the formulas giving the cosine 
of the angle between two arcs. 

With the notation aU = dp ¡dxi, and using (2), equations (1) can be 
written as 

(a i i )2 -f . . . + (ani)2 =, _ . = (ain)2 _{_ . _ _|_ (í2nn)2 = p2 

(3) <; tí^i ai3 4. . _ _j_ an^ an^ = ^ 

Considering the n equations containing a^, . . . , anj, namely, 

/ a l l ^ 1 / _j_ a^i ^2/ 4- . . . + tí"! a^j = 0 

aV ay + a^i a^i -\- . . . + a^/ a"/ = p^ 

and solving for aU we get 



(4) . 
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au 

where Aij is the cofactor of aU in J. 

Since 

J 2 = |aí7| X \aií\ 

p2 0 . . . 
0 p 2 . . . 

|0 0 p2| 

we have p* = IJ]^/'*, and equations (4) become 

(5) (sgn J) |J|(n—2)/n aU = A/y 

These are the n-dimensional Cauchy-Riemann equations. 
For n = 2 we have, with f = (f\ /«), 

J = 

8/1 

Sa5> 

a/» 

er 
8X* 

e/« 

dx^ dx^ 

and equations (5) reduce to 

Ô/1 a/« ef^ er 
dX^ 8X^ dX^ dX^ 

which are the ordinary Cauchy-Riemann equations, or to 

5/1 5/« df^ S/« 

dx^ dx^ dx^ dx^ 

the so-called conjugate Cauchy-Riemann equations, depending on 
whether J > 0 or J < 0. Clearly, if f = (f\ /*) has positive Jacobian, 
then the conjugate function f = (/S —f̂ ) has a negative Jacobian. 

For n = 3 we obtain nine equations of the form 

aU VJ A I / 

These equations, in an essentially equivalent form, were given by 
Hedrick and Ingold in 1925 [2], The case n == 4 was considered by 
J. Abercrombie in 1970 [1]. 
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We note tha t in the case n — 3 there are four conjugates, namely 
r = (/S / S —ñ, Ï* = (/s — / s n í* = (—/s / s /^), and —f = (-f\ —l\ 
— t^), corresponding to symmetries with respect to each of the coordina
tes planes, or to all three simultaneously (i.e. with respect to the origin). 
In general, if n is even, the mappings defined by f and —f belong to the 
same class (both are directly or inversely conformai), not so if n is odd. 

3. ANOTHER FORM OF THE CAUCHY-RIEMANN EQUATIONS. Using (3) 

and (4) we obtain 

(6) (ai^Y + . . . + {ain)^ = — {ai^ A ^ + . . . + am Ain) = P* 

and, for i 7^ j , 

9' 

(7) ai^ a/1 + . . . + a*" a^" = — (a*^ Ayi + . . . + ain Ay„) = 0 

Since V/i = aU ey, equation (6) can be written as 

|V//| = p (i = 1, . . . , n) 

and equation (7) as 

Vfi . V// = 0 {i^ j) 

Hence, the mapping defined by a function £ = (/i, . . . , /'i) of class G^ 
in n at a point p where Jf(x) 7^ 0, is conformai if and only if all the 
component functions have gradients with the same magnitude at tha t 
point, and the gradients of any two different components are orthogonal. 
The common magnitude of the gradients is precisely the magnification 
ratio a t p, and the second condition means tha t the hypersurfaces 
fi = ci meet orthogonally at p. 

4. T H E GENERALIZED LAPLACE EQUATION. From (5) we have 

dfi 
[sgn J) |J|(n-2)/n = A,; 

dXJ 

Assuming now tha t the components p are of class G^ in O, this yields 

a / dfi \ e 
^sgn J) |J|(n-2)/n _ = Â y 

dxi \ dXJ I dxi 
and 

n d I dfi \ n d 
(8) (sgn J) E |J|(n-2)/n = s A/y 

/ = 1 dxJ \ dxi I 7 = 1 dxJ 
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since the last sum in (8) can be written as a symbolic determinant 

a/1 a/1 

ai = 

dx^ dxn 

dfn dfn 

dX^ dxn 

where the partial operators 

dxj 

occupy the i-th row, and it follows easily tha t A/ 
Thus, (8) becomes 

n 
S 

7 = 1 
dXJ 

|Jl(n-2)/n j = 0 
\ dxi J 

This is the Laplace-type equation satisfied by each component /« 
of a conformai mapping of class C ^. Clearly, in the particular case n == 2 
it reduces to the ordinary Laplace equation in two dimensions. 
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