SIMPLICES INFINITOS EN RETICULOS

por

Jose M.a Brunat

En las «Notas sobre la teoría de la dimensión para retículos» (Gaceta Matemática, números 1 y 2 de 1976) se amplió el concepto de longitud de un módulo al de longitud de un retículo y el de base finita de un espacio vectorial al de símplice finito de ciertos retículos. Numerosas definiciones y teoremas, referentes al retículo de submódulos de un módulo dado, admiten generalizaciones semejantes: módulos simples y semisimples, finito generados, noetherianos y artinianos, Teorema de Jordan-Hólder, etc. Todo esto puede verse en [1]. Aquí vamos únicamente a demostrar que el análogo al Teorema de la Base de espacios vectoriales es válido en un retículo modular atómico y complementado.

En lo sucesivo supondremos que L es un retículo completo, es decir, que para cada parte $S \subset L$ existen supremo $V\{s; s \in S\}$ e ínfimo $\land \{s; s \in S\}$. En particular existen máximo, 1, y mínimo, 0, que son, respectivamente, el supremo y el ínfimo de L.

COMPACTOS.

Un subconjunto D´ \subset L es dirigido si para cada dos elementos $d_1, d_2 \in$ D existe un $d \in$ D, tal que $d_1 \leqslant d$ y $d_2 \leqslant d$.

L es superiormente continuo si para cada subconjunto $D \subset L$ dirigido y cada $a \in L$ se verifica

$$(V\{d; d \in D\}) \land a = V\{d \land a; d \in D\}$$

Dualmente se define la continuidad inferior.

Un elemento $c \in L$ es compacto si, siendo $D \subset L$ dirigido, $c \leqslant V\{d; d \in D\}$ implica que existe un $d \in D$ con $c \leqslant d$. En retículos superiormente continuos esta definición puede precisarse:

Proposición 1.

Sea L superiormente continuo. Entonces $c \in L$ es compacto si y sólo si para cada $D \subseteq L$ dirigido, tal que $c = V\{d; d \in D\}$ existe un $d \in D$ con c = d.

Demostración.

Si $c = V\{d; d \in D\}$ es compacto, existe $d \in D$ con c < d. Por ser c el supremo de D también c > d. Así, c = d.

Reciprocamente, si se cumple la condición y $c \leq V\{d; d \in D\}$, por ser L superiormente continuo se cumple

$$c = (V\{d; d \in D\}) \land c = V\{d \land c; d \in D\}$$

El conjunto $\{d \land c; d \in D\}$ es dirigido, luego existe un $d \in D$ con $c = d \land c$. Entonces, $c \leqslant d$ y c es compacto. \square

Proposición 2.

Si L es superiormente continuo, cada átomo es compacto.

Demostración.

Sean $a \in L$ un átomo, $D \subseteq L$ dirigido y $a \leq V\{d; d \in D\}$. Si a no es compacto para cada $d \in D$ es $a \leq d$, luego $a \wedge d < a$ y, por ser a átomo, $a \wedge d = 0$. Entonces

$$a = a \wedge (V\{d; d \in D\}) = V\{a \wedge d; d \in D\} = 0$$

lo que es contradictorio. 🗆

SIMPLICES INFINITOS.

Una parte $G \subset L$ es un sistema de generadores si su supremo es 1. Una parte $I \subset L$ es independiente si para cada conjunto finito $F \subset I$, $a \in I$ — F implica $a \leqslant V\{f; f \in F\}$.

Un símplice de L es un sistema de generadores independiente formado por átomos.

Usaremos repetidamente la siguiente observación: Si $A \subseteq L$ y designamos por D(A) al conjunto de los supremos de las partes finitas de A, entonces D(A) es dirigido y su supremo coincide con el de A.

Teorema 1.

Sea L un retículo superiormente continuo.

Entonces:

- (a) Si G es un sistema de generadores compactos y S es un símplice infinito, se verifica Gard $G \geqslant CardS$.
- (b) Si L tiene un símplice infinito, todos los símplices tienen el mismo cardinal.

Demostración.

(a) Para cada $x \in G$ tenemos

$$x \leqslant 1 = V\{s; s \in S\} = V\{d; d \in D(S)\}$$

Por ser x compacto y D(S) dirigido, existe un $d(x) = s_{x_1} \vee \ldots \vee s_{x_n} \in D(S)$ con $x \leq d(x)$. Pongamos

$$S(x) = \{s_{x_1}, \ldots, s_{x_n}\} y C = V\{S(x); x \in G\}$$

Desde luego, $C \subseteq S$. Si existiera $s \in S$ — C, s es compacto por la Proposición 2, y de la desigualdad

$$s \leq 1 = V\{g; g \in G\} = V\{d; d \in D(G)\}$$

se deduce que existe $d(s) = g_{s_1} \vee \ldots \vee g_{s_n} \text{ con } s \leqslant d(s)$.

El conjunto $F = U\{S(g_i); 1 \le i \le m\}$ es finito y está contenido en C. Puesto que $s \notin C$ es $s \notin F$; sin embargo, $s \leqslant d(s) = d(g_{s_1}) \vee \ldots \vee d(g_{s_m}) \leqslant V\{f; f \in F\}$, lo que contradice el hecho de ser S independiente. Así, también $S \subset C$ y tenemos C = S. Como S es infinito, C es infinito y también G, cumpliéndose CardG \geqslant CardC = CardS.

(b) Sea S un símplice infinito y S_1 un símplice. Tomando $G=S_1$, en el apartado anterior, resulta $CardS_1 \geqslant CardS$. S_1 es, pues, también infinito y por el mismo razonamiento $CardS \geqslant CardS_1$. En definitiva, $CardS = CardS_1$. \square

Teorema 2.

Sea L modular atómico y complementado. Entonces.

- (a) Si I es una parte independiente formada por átomos, existe un símplice S de L con I \subset S.
 - (b) Si $L \neq O$ existe un símplice.

Demostración.

(a) Ordenemos la familia $J = \{S \subset L; I \subset S \text{ y } S \text{ es independiente formado por átomos} \}$ por inclusión. Desde luego $J \neq \emptyset$, ya que $I \in J$. Si $\mathcal{C} \subseteq J$ es una parte totalmente ordenada, el conjunto $R = U\{T; T \in \mathcal{C}\}$ pertenece a J: Si F es un subconjunto finito de R y $a \in R$ — F, por ser \mathcal{C} totalmente ordenado, existe un $T \in \mathcal{C}$ tal que $F \subset T$ y $a \in T$. Como T es independiente, $a \leqslant V\{f; f \in F\}$ y R es independiente. Es claro, entonces, que R es cota superior de \mathcal{C} y, por tanto, el orden de J es inductivo. En virtud del Lema de Zorn existe un elemento maximal S.

Para ver que S es el símplice buscado bastará demostrar que es un sistema de generadores. Si $V\{s; s \in S\} < 1$, existe (como se demostró en lema del artículo citado al principio) un átomo a tal que $a < V\{s; s \in S\}$. Entonces S está estrictamente incluido en S U $\{a\} \in J$, lo que contradice

la maximalidad de S. Tenemos, pues, $V\{s; s \in S\} = 1$ y S es un sistema de generadores.

(b) Si L \neq 0 existe un átomo $a \in L$. Basta tomar $I = \{a\}$ en el punto anterior para obtener el resultado. \square

APLICACIÓN.

Las demostraciones anteriores se han obtenido mediante las dadas en [2] y usando las equivalencias que enunciamos en la siguiente proposición, cuya demostración, ahora, es inmediata.

Proposición 3.

Sea E un espacio vectorial sobre un cuerpo K y V(E) el retículo de sus subespacios vectoriales. Entonces:

- (a) $\{x_i; i \in I\}$ es un sistema de generadores de E si y sólo si $\{Kx_i; i \in I\}$ es un sistema de generadores de V(E).
- (b) $\{x_i; i \in I\}$ es un conjunto de vectores linealmente independientes si y sólo si $\{Kx_i; i \in I\}$ es una parte independiente de V(E).
- (c) $\{x_i; i \in I\}$ es una base de E si y sólo si $\{Kx_i; i \in I\}$ es un símplice de V(E).

Los teoremas $1 \ y \ 2 \ y$ las anteriores equivalencias implican los siguientes resultados:

Teorema 3.

Sea E un espacio vectorial. Entonces:

- (a) Si E tiene una base infinita, todas las bases tienen el mismo cardinal.
- (b) Si I es un conjunto de vectores linealmente independientes, existe una base que lo contiene.
 - (c) Todo espacio vectorial tiene una base.

BIBLIOGRAFÍA.

- 1. Modular Lattices. Ring of Quotiens, Chapter III Bo Stenstróm Die Grundleheren der mathematischen... Band 217. Springer-Verlag
- Espacios vectoriales. Capítulo III de «Geometría Básica», de P. Abe llanas. Editorial Romo.
- Retículos. Complementación en retículos y Algebras de Boole Capítulo II del «Curso de Probabilidades», de F. de Sales. Facultado de matemáticas de Barcelona.