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SOME EXTENSIONS OF THE
MULTIPLICATION THEOREMS

by

MANILAL SHAH

(Continuacion)

§.4 COROLLARIES

This section discusses certain illustrations on important corollaries

for our master or key formulas which will give rise to generalizations
of some well-known results for Fox’s H- and MewER’s G-functions ete
available in the theory of Special-Functions.

(1)

However, some illustrative cases are recorded below:

If we substitute Aj =B; =...etc=1(1 <j <pp,1 €<i <¢qy....
ete.) in (3.1) and by specific adjustment of parameters etc., we
arrive at the multiplication theorem for MEerER’s G-function of

two variables as
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and other conditions of wvalidity are obtainable from (3.1) with
necessary changes.
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Next specializing m; = p, = 6, ¢, = v, my = My = P, = p3 = W,
ny =ng = 1,4, = ¢q3 = p + 1, d; = f, = 0 and replacing 1 — g, b,
1—e,1—d;and 1 —f, by oy, v;, B;, §;, B’; and §; etc., and then operat-
ing (2.6), our formula (4.1) would reduce lo the elegant Multiplication
Theorem for Kampg pe FErier's function which, inturn yields for
WarrttakeR funclions in consequences of (2.8)-(.10).

(i) Yet another special case of (3.1) would seem to occur when (2.5)
is afforded. Indeed we thus find
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and valid by analytic continuation for the conditions referred to (3.1)
with obvious alterations.

A corollary of special interest: i
If we make use of (R.11), our formula (4.2) would involve a known
result of MEIJER [4, p. 213, (4)]:
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n<p, Rer>—.
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(iii) If we put p; = m, = 0, the H-funclion reduces to the product
of two Fox’s H-functions and delete

my, My
131 [u]
P2 42

ele., from (3.2), we find
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which prov1des a generalization of MEsER’s formula [4, p. 213, (1)]:
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where m > 1, |» — 1] < 1.

Evidently, with the aid of (2.5) and let v - 0 ete., Lthen (3.3) shows
that
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valid render the following assumptions:

(1)

(?)

and

(3)

(4)

m. n, p, q are positive integers such that 1 < m < ¢, 1 <n < p;

g P q P
let 2B, —Z A ;> 0, whenz £ 0; X B, — X A; = 0;
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An importlant deduction:
When the parameters are adjusted with the help of (2.11), our for-
mula (4.4) affords a relation
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where n > 1, Re A > 1/,

This is a special case of a result due to Merirw | 1, p. 213, (3)].
Obviously, (3.4) also provides a generahization of Mriyer’s formu-
la {4, p. 213, (3)] to which it would reduce when (2.5) 15 operated.

v) Fnally, we take p, = m; = 0, and cancell
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ele. from both the «ides of (3.5), our theorem hecomies
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which would further reduce to a well-known result by Mrowurr

[4, p. 213, (2)]:
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where m < ¢, |» — 1] < L.

It may be of interest Lo conclude with the remark thal formulas
(4.2)~(4.5) yield the results for MacRoserT's E-functions by virtue of
(2.12).

In conclusion, we find that very recently Smam [8-15] has given a
detailed accounl of various interesting and important Generalizalion,
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Extension, Unification, Co-ordination and Co-relation for many gene-
ralized functions and their basic properties.
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