SOME EXTENSIONS OF THE MULTIPLICATION THEOREMS

bу

MANILAL SHAH

(Continuación)

§.4 COROLLARIES

This section discusses certain illustrations on important corollaries for our master or key formulas which will give rise to generalizations of some well-known results for Fox's H- and Meijer's G-functions etc available in the theory of Special-Functions.

However, some illustrative cases are recorded below:

(1) If we substitute $A_j = B_i = \ldots$ etc. If $(1 \le j \le p_1, 1 \le i \le q_1, \ldots$ etc.) in (3.1) and by specific adjustment of parameters etc., we arrive at the multiplication theorem for Meijer's G-function of two variables as

$$\begin{aligned} \text{(4.1)} \qquad & \mathbf{G}\begin{bmatrix} \lambda & u \\ \lambda & v \end{bmatrix} \begin{bmatrix} m_1, & 0 \\ p_1, & q_1 \end{bmatrix} a_{p_1} \left| \begin{pmatrix} m_2, & n_2 \\ p_2, & q_2 \end{pmatrix} d_{q_2} \right| \begin{pmatrix} m_3, & n_3 \end{pmatrix} e_{p_3} \\ p_3, & q_3 \end{pmatrix} f_{q_3} \end{bmatrix} \\ & = \lambda^{a_{p_1}-1} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{\lambda} - 1 \right)^k \\ & \mathbf{G}\begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} m_1, & 0 \\ p_1, & q_1 \end{bmatrix} a_{p_1}-1, & a_{p_1}-k \\ p_2, & q_2 \end{bmatrix} \begin{pmatrix} m_2, & n_2 \\ p_2, & q_2 \end{pmatrix} d_{q_2} \left| \begin{pmatrix} m_3, & n_3 \\ p_3, & q_3 \end{pmatrix} f_{q_3} \right| \end{bmatrix} \\ \text{where} \\ & \mathbf{Re} \ \lambda \geqslant \frac{1}{2}, & q_1 < p_1, & \left| \frac{1}{\lambda} - 1 \right|^{fq_3} < 1 \end{aligned}$$

and other conditions of validity are obtainable from (3.1) with necessary changes.

Next specializing $m_1=p_1=\sigma$, $q_1=\nu$, $m_2=m_3=p_2=p_3=\mu$, $n_2=n_3=1$, $q_2=q_3=\varrho+1$, $d_1=f_1=0$ and replacing $1-a_J$, b_J , $1-e_I$, $1-d_J$ and $1-f_J$ by α_J , γ_J , β_J , δ_J , β_J' , and δ_J etc., and then operating (2.6), our formula (4.1) would reduce to the elegant Multiplication Theorem for Kampé de Férier's function which, inturn yields for Whittaker functions in consequences of (2.8)-(2.10).

(ii) Yet another special case of (3.1) would seem to occur when (2.5) is afforded. Indeed we thus find

(4.2)
$$\begin{array}{c|c} m, n \\ H \\ p, q \end{array} \lambda x \left| \begin{array}{c} \{(a_p, A_p)\} \\ \{(b_q, B_q)\} \end{array} \right|$$

$$= \lambda \frac{a_{p}-1}{A_{p}} \sum_{k=0}^{\infty} \frac{1}{k!} (\lambda \frac{1}{A_{p}} - 1)^{k} H_{p, q}^{m, n} \left[\left| \{(u_{p-1}, \Lambda_{p-1})\}, (u_{p}-k, A_{p})\} \right| \right|$$

provided

where

Re
$$\lambda > \frac{1}{2}$$
, $q < p$, $|\lambda| - \frac{1}{A_p} - 1$, $|\langle 1 \rangle$

and valid by analytic continuation for the conditions referred to (3.1) with obvious alterations.

A corollary of special interest:

If we make use of (2.11), our formula (4.2) would involve a known result of Meijer [4, p. 213, (4)]:

$$G = \lambda \begin{bmatrix} m, n \\ p, q \end{bmatrix} \begin{pmatrix} \lambda x & a_1, \dots, a_p \\ b_1, \dots, b_q \end{pmatrix}$$

$$= \lambda \begin{bmatrix} \frac{1}{k!} \left(\frac{1}{\lambda} - 1 \right)^k & m, n \\ p, q & b_1, \dots, b_q \end{bmatrix}$$

n < p, Re $\lambda > \frac{1}{2}$.

(iii) If we put $p_1 = m_1 = 0$, the H-function reduces to the product of two Fox's H-functions and delete

$$\prod_{p_2, q_2}^{m_2, n_2} \left[u \right]$$

etc., from (3.2), we find

(4.3)
$$H_{p,q}^{m,n} \left[\lambda x \middle| \frac{\{(a_p, \Lambda_p)\}}{\{(b_q, B_q)\}} \right]$$

$$= \lambda \frac{b_1}{B_1} \sum_{k=0}^{\infty} \frac{1}{k!} (1 - \lambda \frac{1}{B_1})^k H_{p,q}^{m,n} \left[x \middle| \frac{\{(a_p, \Lambda_p)\}}{\{(b_1 + k, B_1), \{(a_p, A_p)\}\}} \right]$$

which provides a generalization of Meijer's formula [4, p. 213, (1)]:

$$G_{p, q}^{m, n} \left[\lambda x \middle| a_{1}, \dots, a_{p} \middle| b_{1}, \dots, b_{q} \right]$$

$$= \lambda^{b_{1}} \sum_{k=0}^{\infty} \frac{1}{k!} (1 - \lambda)^{k} G_{p, q}^{m, n} \left(x \middle| a_{1}, \dots, a_{p} \middle| b_{1} + k, b_{2}, \dots, b_{q} \right)$$

where m > 1, $|\lambda - 1| < 1$.

(10) Evidently, with the aid of (2.5) and let $v \rightarrow 0$ etc., then (3.3) shows that

$$(4.4) \qquad H_{p, q}^{m, n} \left[\lambda x \begin{vmatrix} \{(a_p, \Lambda_p)\} \\ \{(b_q, B_q)\} \end{vmatrix} \right]$$

$$= \lambda \frac{a_1 - 1}{A_1} \propto \frac{1}{k!} (1 - \lambda - \frac{1}{A_1})^k H_{p, q}^{m, n} \left[x \begin{vmatrix} (a_1 - k, \Lambda_1), \{(a_2 - k, \Lambda_2)\} \\ \{(b_q, B_q)\} \end{vmatrix} \right]$$

valid render the following assumptions:

(1) m. n, p, q are positive integers such that $1 \leqslant m \leqslant q, 1 \leqslant n < p$;

(2) Let
$$\sum_{1}^{q} B_{I} - \sum_{1}^{p} A_{I} > 0$$
, when $x \neq 0$; $\sum_{1}^{q} B_{I} - \sum_{1}^{p} A_{I} = 0$; and

$$0 < |x| < D^{-1}$$
 where $D = \frac{p}{\pi} (A_j)^{A_j} \frac{q}{\pi} (B_j)^{-B_j}$;

(3) Let
$$\sum_{1}^{m} B_{I} - \sum_{m+1}^{q} B_{I} + \sum_{1}^{n} A_{I} - \sum_{n+1}^{p} A_{I} \equiv \Psi > 0$$
, $|\arg x| < \frac{1}{2} \pi \Psi$; and

(4) Let Re
$$\lambda > \frac{1}{2}$$
, $q > 1$, $|1 - \lambda| < 1$.

An important deduction:

When the parameters are adjusted with the help of (2.11), our formula (4.4) affords a relation

$$G_{p, q}^{m, n} \left(\lambda x \middle| \begin{array}{c} a_1, \dots, a_p \\ b_1, \dots, b_q \end{array} \right)$$

$$= \lambda^{a_1 - 1} \sum_{k = 0}^{\infty} \frac{1}{k!} \left(1 - \frac{1}{\lambda} \right)^k G_{p, q}^{m, n} \left(x \middle| \begin{array}{c} a_1 - k, a_2, \dots, a_p \\ b_1, \dots, b_q \end{array} \right)$$

where $n \geqslant 1$, Re $\lambda > 1/2$.

This is a special case of a result due to Meijir [1, p. 213, (3)].

Obviously, (3.4) also provides a generalization of MILLER's formula [4, p. 213, (3)] to which it would reduce when (2.5) is operated.

v) Finally, we take $p_1 = m_1 = 0$, and cancell

$$\begin{bmatrix}
m_2, & n_2 \\
n_2, & q_2
\end{bmatrix} u$$

etc. from both the sides of (3.5), our theorem becomes

(4.5)
$$H \begin{bmatrix} m, n \\ p, q \end{bmatrix} \lambda x \begin{vmatrix} \{(a_p, A_p)\} \\ \{(b_q, B_q)\}$$

$$= \lambda \frac{b_q}{B_q} \sum_{k=0}^{\infty} \frac{1}{k!} (\lambda \frac{B_q}{B_q} - 1)^k H_{p, q}^{m, n} \left[x \frac{\{(a_p, A_p)\}}{\{(b_{q-1}, B_{q-1})\}, (b_q + k, B_q)} \right]$$

which would further reduce to a well-known result by Meijfr [4, p. 213, (2)]:

$$G_{p, q}^{m, n} \left(\lambda x \middle| a_1, \dots, a_p \right)$$

$$= \lambda^{b_q} \sum_{k=0}^{\infty} \frac{1}{k!} (\lambda - 1)^k G_{p, q}^{m, n} \left(x \middle| a_1, \dots, a_p \right) \right)$$

where m < q, $|\lambda - 1| < 1$.

It may be of interest to conclude with the remark that formulas (4.2)-(4.5) yield the results for MacRobert's E-functions by virtue of (2.12).

In conclusion, we find that very recently Shan [8-15] has given a detailed account of various interesting and important Generalization,

Extension, Unification, Co-ordination and Co-relation for many generalized functions and their basic properties.

LITERATURE CITED

- [1] Appell Paul, and Kampé de Fériet, J., «Fonctions Hypergéométriques et Hypersphériques; Polynomes d' Hermites». París: Gauthier-Villars, 1926.
- [2] AGARWAL, R. P., «An extension of Meijer's G-function», Proc. Nat. Inst. Sci., India Part A, 31 (1965), 536-546.
- [3] Bromwich, T. J. I'a., «An Introduction to the Theory of Infinite Series», MacMillan & Co., Ltd., New York, 1959.
- [4] Erdélyi, A., «Higher Transcendental Functions», Vol. I, McGraw-Hill, New York, 1953.
- [5] Fox, C., «Gand H-functions as symmetrical Fourier-kernals», Trans. Amer. Math. Soc., 98 (1962), 395-429.
- [6] Munot, P. C. and Kalla, S. L., «On an extension of generalized function of two variables», Univ. Nac. Tucumán, Rev. Ser. A., 21 (1971), 67-84.
- [7] Shah Manilal, «On a unified result involving generalized function of two variables», Nanta Mathematica, Vol. VII, No. 1 (1974), 1-7.
- [8] Shah Manilal, «Several properties of generalized Fox's Hfunctions and their applications», Port. Math. 32 (1973), 179-200.
- [9] Shah Manilal, «On some applications related to Fox's H-functions of two variables», Publ. Inst. Math. (Beograd), (N. S.), 16 (30), 123-133.
- [10] SHAH MANILAL, «On generalized Meijer functions of two variables and some applications», Comment. Math. Univ. St. Paul, 19 (1971), 93-122.
- [11] Shah Manilal, «Applications of Laguerre polynomials», Univ. Lisboa-Revista Fac. cl. A. Vol. XV (1974) (In Press).
- [12] SHAH MANILAL, «Some multiplication theorems involving Fox's H-functions of two variables», Univ. Nac. Tucumán, Rev. Ser A., 23 (1973), 143-151.
- [13] Shah Manilal, «Some properties associated with generalized functions (In Press). Rev. Mat. Hisp.-Amer.
- [14] Shah Manilal, «A note on a generalization of Edelstein's addition theorem on G-functions», Glasnik Matematicki, 7 (27) (1972), 201-205.
- [15] Shah Manilal, Some results involving a generalized Meijer function, Mat. Vesnik (Belgrade), Vol. 8 (23), No. 1 (1971), 3-16.