A SPHERICAL REPRESENTATION OF THE REAL DIRECTIONAL DERIVATIVE

por
M. O. Gonzalez

Let $f: \mathbf{A} \rightarrow \mathbf{R}$ where \mathbf{A} is some open subset of the finite dimensional vector space $\mathrm{E}_{n}(n \geqslant 2)$. If f is differentiable at $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{A}$, and \mathbf{u} is a unit vector in E_{n}, the directional derivative of f at x, in the direction specified by \boldsymbol{u}, is the scalar given by

$$
\begin{equation*}
\rho=\mathbf{D}_{\mathbf{n}} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot \mathbf{u} \tag{1}
\end{equation*}
$$

where $\nabla f=\left(f_{x_{1}}, \ldots, f x_{n}\right)$ is the gradient of f. We propose to seek a geometric representation of p as a function of u at a lixed point x. For convenience, we introduce also a vector v defined by the equation

$$
\begin{equation*}
\mathbf{v}=\rho \mathbf{u} \tag{2}
\end{equation*}
$$

If $p \neq 0$ this is a vector in the direction of \mathbf{u}, or in the opposite direction, depending on whether $p>0$ or $p<0$. In any case, $|v|=|p|$. If $f_{x_{l}}=0(i=1, \ldots, n)$ at \mathbf{x}, then $\nabla f=0$ and $\rho=0$ for all u.

Assuming

$$
|\nabla f|=\left(\sum_{1}^{n} f_{x_{l}}^{2}\right)^{\frac{1}{2}} \neq 0
$$

and letting $\omega=<(\mathbf{u}, \nabla f)$, equation (1) can be written in the form (3)

$$
\rho=|\nabla f| \cos \omega=\operatorname{proj}_{\mathbf{u}} \nabla
$$

If the point P is the tip of the vector $v=p u, Q$ is the tip of the vector ∇f, and 0 denotes the coordinate origin, it follows that $<0 \mathrm{PQ}=$ $=\pi / 2$. Hence the locus of P as \mathbf{u} varies in direction is the $(n-1)$-dimen-
sional spherical surface G (a circle if $n=2$) with center at $\frac{1}{2} \nabla f$ and radius $\frac{1}{2}|\nabla f|$. The graph of G is given in Cartesian coordinates X_{i} by
(4)

$$
\sum_{i=1}^{n}\left(\mathrm{X}_{i}-\frac{1}{2} \frac{1}{2} f_{x_{i}}\right)^{2}=\frac{1}{4} \sum_{t=1}^{n} t^{2} x_{i}
$$

However, it must be noted that the spherical surface defined by (3) us described twice by the tip of \mathbf{v} as \mathbf{u} takes once every possible direction in the space F_{n}. To see this, consider the unit vector $\mathbf{u}_{\mathbf{1}}=-\mathbf{u}$. Then $\omega_{1}=<\left(\mathbf{u}_{1}, \nabla f\right)=\omega+\pi$, and

$$
\rho_{1}=|\nabla f| \cos \omega_{1}=-|\nabla| \mid \cos \omega=-\rho
$$

so that

$$
\mathbf{v}_{1}=\rho_{1} \mathbf{u}_{1}=\rho \mathbf{u}=\mathbf{v}
$$

Also, $\mathbf{v}_{2}=\mathbf{v}$ or $\rho_{2} \mathbf{u}_{2}=\rho \mathbf{u}$ implies either $\rho_{2}=\rho$ and $\mathbf{u}_{2}=\mathbf{u}$ or $\rho_{2}=-\rho$ and $\mathbf{u}_{2}=-\mathbf{u}$. Thus, the same vector \mathbf{v} is obtained only for opposite orientations of \mathbf{u}.

For any vector u orthogonal to ∇f (i.e. for any unit vector lying in the tangent hyperplane to G at 0) we have

$$
\rho=\nabla f \cdot \mathbf{u}=0
$$

Fig. 1.

Clearly, from (3) it follows, for $\omega=0$,

$$
\rho_{\max }=|\nabla f|
$$

and, for $\omega \rightleftharpoons \pi$,

$$
\rho_{m i n}=-|\nabla f|
$$

Hence, the maximum value of the directional derivative is attained when the orientation of u is the same as that of the gradient of f, and the minimum value is attained when the orientation of \mathbf{u} is opposite to that of the gradient.

EXAMPLES. 1. The plane case. Letting $\theta=\operatorname{Arg} \mathbf{u}(0 \leqslant \theta \leqslant 2 \pi)$, $\alpha=\operatorname{Arg} \nabla f$, we have

$$
\rho=|\nabla f| \cos (\theta-\alpha), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

This is the equation of the circle G, with center at $\frac{1}{2} \nabla f$ and radius $\frac{1}{2}|\nabla f|$ described twice in the positive (counterclockwise) direction(Fig. 1).

Fig. 2.
2. The 3-dimensional case. Similarly, for all positions of the vector \mathbf{u} in the space E_{3} the vector v describes twice the ordinary sphere G_{2} (Fig. 2).
3. The Kasner circle. The Kasner circle [1, 2] of a complex function $f=\mathrm{U}+i \mathrm{~V}$, with differentiable components U, V at a point z, represents geometrically the values of the complex directional derivative $f^{\prime} \theta(z)$ at z for values of the direction angle θ in the interval $[0,2 \pi]$. Its equation is given by

$$
\xi=f_{z}+f_{z} e^{-2_{i} \theta}, \quad 0 \leqslant \theta<2 \pi
$$

and so it has center at f_{z} and radius $|f \bar{z}|$, the circle being described twice in the negative (clockwise) direction as θ varies from 0 to 2π.

We may associate to any Kasner circle K the circle H defined by the equation

$$
\xi_{1}=f_{z}+f_{z} e^{2^{2} \theta}, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

This circle has its center at f_{z} and radius $\left|f_{z}\right|$. It is described twice in the positive direction as θ varies in $[0,2 \pi]$.

Fig. 3.

It could be asked whether the circles K and H can be constructed geometrically from the circles G_{U} and G_{v} representing the real directional derivatives of the functions U and V. To answer this question we note that the circles G_{U} and G_{V} are determined by the corresponding gradients $\nabla \mathrm{U}$ and $\nabla \mathrm{V}$, which in the notation of Complex Analysis are written

$$
\nabla \mathrm{U}=\mathrm{U}_{x}+i \mathrm{U}_{y} \text { and } \nabla \mathrm{V}=\mathrm{V}_{x}+i \mathrm{~V}_{y}
$$

Also, we note that the position and size of the circles H and K are determined by the partial derivatives f_{z} and $f_{\bar{z}}$. It is an easy exercise to show that

$$
f_{z}=\frac{1}{2}(\bar{\nabla} \overline{\mathrm{U}}+i \bar{\nabla} \overline{\mathrm{~V}})
$$

and

$$
f_{z}=\frac{1}{2}(\nabla \mathrm{U}+i \nabla \mathrm{~V})
$$

Hence, the point f_{z} is the midpoint of the line segment joining the tips of $\overline{\nabla \mathrm{U}}$ and $i \bar{\nabla} \overline{\mathrm{~V}}$, while $f_{\bar{z}}$ is the midpoint of the line segment joining the tips of $\nabla \mathrm{U}$ and $i \nabla \mathrm{~V}$. Furthermore, the points $\overline{\nabla \mathrm{U}}$ and $i \bar{\nabla}$ are the endpoints of a diameter of the Kasner circle, since

$$
|\overline{\nabla \mathrm{U}}-i \bar{\nabla} \overline{\mathrm{~V}}|=|\nabla \mathrm{U}+i \nabla \mathrm{~V}|=2\left|f_{\bar{z}}\right|
$$

Similarly, $\nabla \mathrm{U}$ and $i \nabla \mathrm{~V}$ are the endpoints of a diameter of the H circle. These observations lead to the construction shown in Figure 3 for the Kasner circle and its associate.
(Department of Mathematics, University of Alabama, University, Al 35486.)

REFERENCES

1. M. O. González, «Some topics on differentiation and integration of functions of a complex variable», Revista Matemática y Fisica Teórica, Universidad de Tucumán (Argentina), 19 (1969), 91-104.
2. E. Kasner, "General theory of polygenic or non-monogenic functions. The derivative congruence of circles, Proc. Nat.», Acad. Sciences, Washington, D.C. (USA), 14 (1928), 75-82.
