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A SPHERICAL REPRESENTATION
OF THE REAL DIRECTIONAL DERIVATIVE

por

M. O. GoNzaLEz

Let f: A- R where A is some open subset of the finite dimensional
vector space E, (n > 2). If f is differentiable at x = (x,, ..., Tn) € A,
and u is a unit vector in E,, the directional derivative of f at x, in the
direction specified by u, is the scalar given by

(1) p =Dy f(x) = Vfx)-a

where V7 f = {fz1, ..., fe,) is the gradient of f. We propose to seek a
geometric representation of p as a function of u at a fixed point x. For
convenience, we introduce also a vector v defined by the equation

(2) V=opu

If p 3= 0 this is a vector in the direction of u, or in the opposite di-
rection, depending on whether p > 0 or p < 0. In any case, |v] = lp].

Hfe,=0(i=1,...,n)atx, then<Vf =0and ¢ = 0 for all u.

Assuming

IV fl = (ﬁ fxﬁ)% #= 0,

and letting o = < (u, ¥ f), equation (1) can be written in the form
(3) p = IV [l cos o = proj, vV
If the point P is the tip of the vector v = p u, Q is the tip of the

vector N7 f, and 0 denotes the coordinate origin, it follows that < 0 PQ =
= n/2. Hence the locus of P as u varies in direction is the (n — 1)-dimen-
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sional spherical surface G (a circle if n = 2} with center at § < f and
radius % |7 f|. The graph of G is given in Cartesian coordinates X; by

n

(4) Z (xi — —;— %fz,)a = -;11-— Zr

=1

However, it must be noted that the spherical surface defined by (3)
1s described twice by the tip of v as u takes once every possible diree-
tion m the space Ep. To see this, consider the unit vector u, = — wu.
Then o, = < (0, Vf) = o + = and

p1 = [V flcos @, = — |\ flcos @ = —p
so lhat -
Vy = pU; = pld = V
Also, v, = V OF p, 0, = p uimplies either g, = pand u, = w or p;=——p
and u, = — u. Thus, the same vector v is obtained only for opposite

orientations of wu.

For any vector u orthogonal to <7 f (i.e. for any unitl vector lying in
the tangent hyperplane to G at 0) we have

p=f-u=0

Fig. 1.
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Clearly, from (3) it follows, for & = 0,
pmaz = [ f|
and, for v = =,
prun = — |V f]

Hence, the maximum value of the directional derivative ig attained
when the orientation of u is the same as that of the gradient of f, and
the minimum value is attained when the orientation of u is opposite
to that of the gradient.

EXAMPLES. 1. The plane case. Letting 6 = Argu(0 <6 < 2 =),
a = Arg 7 f, we have

p = |7 f| cos (6 — a), 0 <8 <2nm

This is the equation of the circle G, with center at } <7 f and radius
4 |7 f| described twice in the positive (counterclockwise) direction {Fig. 1.
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Fig. 2.

2. The 3-dimensional case. Similarly, for all positions of the vec-
tor u in the space E; the vector v describes twice the ordinary sphere G,
(Fig. 2).
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3. The Kasner circle. The Kasner circle [1, 2] of a complex function
f = U + iV, with differentiable components U, V at a point z, represents
geometrically the values of the complex directional derivative fg(z)
at z for values of the direction angle 6 in the interval {0, 2 =]. Its equation
is given by

£ = f; + fze—%0, 0<g2n

and so it has center at f; and radius {f; |, the circle being described twice
in the negative (clockwise) direction as 6 varies from 0 to 2 =.

We may associate fo any Kasner circle K the circle H defined by
the equation

E1=f; +f7,62‘e, 0 <0 <2n

This circle has its center at fz and radius [f;]. Tt is described twice
in the positive direction as 6 varies in [0, 2 =].
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Fig. 3.



1t could be asked whether the circles K and H can be constructed
geometrically from the circles Gy and Gy representing the real direc-
tional derivatives of the functions U and V. To answer this question
we note that the circles Gy and Gv are determined by the corresponding
gradients <7 U and <7 V, which in the notation of Complex Analysis are
written

VU=U1;+lUy and VVZVx+lVy
Also, we note that the position and size of the circles H and K are
determined by the partial derivatives fz and fz It is an easy exercise
to show that
f: =30 +iTV)
and
fz=3%(VU +iTV)

Hence, the point f; is the midpoint of the line segment joining the
tips of %/ U and i %/ V, while f7 is the midpoint of the line segment join~
ing the tips of <7 U and { 7 V. Furthermore, the points ' U and i U V
are the endpoints of a diameter of the Kasner circle, since

U =iV =[TU +iVV] =2if|

Similarly, 7 U and { ¥V are the endpoints of a diameter of the H
circle. These observations lead to the construction shown in Figure 3
for the Kasner circle and its associate.

(Department of Mathematics, University of Alabama, University,
Al 35486.)
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