A SPHERICAL REPRESENTATION OF THE REAL DIRECTIONAL DERIVATIVE

por

M. O. GONZALEZ

Let $f: A \to R$ where A is some open subset of the finite dimensional vector space E_n $(n \ge 2)$. If f is differentiable at $\mathbf{x} = (x_1, \ldots, x_n) \in A$, and \mathbf{u} is a unit vector in E_n , the directional derivative of f at \mathbf{x} , in the direction specified by \mathbf{u} , is the scalar given by

$$\rho = D_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}$$

where $\nabla f = (f_{x_1}, \ldots, f_{x_n})$ is the gradient of f. We propose to seek a geometric representation of ρ as a function of u at a fixed point x. For convenience, we introduce also a vector v defined by the equation

$$\mathbf{v} = \rho \, \mathbf{u}$$

If $\rho \neq 0$ this is a vector in the direction of **u**, or in the opposite direction, depending on whether $\rho > 0$ or $\rho < 0$. In any case, $|\mathbf{v}| = |\rho|$.

If
$$f_{x_i} = 0$$
 $(i = 1, ..., n)$ at x, then $\nabla f = 0$ and $\rho = 0$ for all u.

Assuming

$$|\nabla f| = \left(\sum_{1}^{n} f_{x_{l}^{2}}\right)^{\frac{1}{2}} \neq 0,$$

and letting $\omega = \langle (\mathbf{u}, \nabla f), \text{ equation (1) can be written in the form} \rangle$

$$\rho = |\nabla f| \cos \omega = \operatorname{proj}_{\mathbf{n}} \nabla$$

If the point P is the tip of the vector $\mathbf{v} = \mathbf{p} \mathbf{u}$, Q is the tip of the vector ∇f , and 0 denotes the coordinate origin, it follows that < 0 PQ = $\pi/2$. Hence the locus of P as \mathbf{u} varies in direction is the (n-1)-dimen-

sional spherical surface G (a circle if n=2) with center at $\frac{1}{2} \nabla f$ and radius $\frac{1}{2} |\nabla f|$. The graph of G is given in Cartesian coordinates X_i by

(4)
$$\sum_{i=1}^{n} \left(X_{i} - \frac{1}{2} \frac{1}{2} f_{x_{i}} \right)^{2} = \frac{1}{4} \sum_{i=1}^{n} f^{2}x_{i}$$

However, it must be noted that the spherical surface defined by (3) is described twice by the tip of v as u takes once every possible direction in the space E_n . To see this, consider the unit vector $u_1 = -u$. Then $\omega_1 = \langle (u_1, \nabla f) = \omega + \pi$, and

$$\rho_1 = |\nabla f| \cos \omega_1 = -|\nabla f| \cos \omega = -\rho$$

so that

$$\mathbf{v_1} = \rho_1 \, \mathbf{u_1} = \rho \, \mathbf{u} = \mathbf{v}$$

Also, $v_2=v$ or $\rho_2\,u_2=\rho\,u$ implies either $\rho_2=\rho$ and $u_2=u$ or $\rho_2=-\rho$ and $u_2=-u$. Thus, the same vector v is obtained only for opposite orientations of u.

For any vector ${\bf u}$ orthogonal to ∇f (i.e. for any unit vector lying in the tangent hyperplane to G at 0) we have

$$\rho = \nabla f \cdot \mathbf{u} = 0$$

Fig. 1.

Clearly, from (3) it follows, for $\omega = 0$,

$$\rho_{max} = |\nabla f|$$

and, for $\omega = \pi$,

$$\rho_{min} = - |\nabla f|$$

Hence, the maximum value of the directional derivative is attained when the orientation of \mathbf{u} is the same as that of the gradient of f, and the minimum value is attained when the orientation of \mathbf{u} is opposite to that of the gradient.

EXAMPLES. 1. The plane case. Letting $\theta = \text{Arg } \mathbf{u} \ (0 \leqslant \theta \leqslant 2 \ \pi)$, $\alpha = \text{Arg } \bigtriangledown f$, we have

$$\rho = |\nabla f| \cos (\theta - \alpha), \quad 0 \leq \theta \leq 2 \pi$$

This is the equation of the circle G, with center at $\frac{1}{2} \nabla f$ and radius $\frac{1}{2} |\nabla f|$ described twice in the positive (counterclockwise) direction (Fig. 1).

Fig. 2.

2. The 3-dimensional case. Similarly, for all positions of the vector ${\bf u}$ in the space E $_3$ the vector ${\bf v}$ describes twice the ordinary sphere G $_2$ (Fig. 2).

3. The Kasner circle. The Kasner circle [1, 2] of a complex function f=U+iV, with differentiable components U, V at a point z, represents geometrically the values of the complex directional derivative $f'\theta(z)$ at z for values of the direction angle θ in the interval $[0, 2\pi]$. Its equation is given by

$$\xi = f_z + f_{\overline{z}} e^{-2i\theta}, \qquad 0 < \theta < 2 \pi$$

and so it has center at f_z and radius $|f_{\overline{z}}|$, the circle being described twice in the negative (clockwise) direction as θ varies from 0 to 2 π .

We may associate to any Kasner circle K the circle H defined by the equation

$$\xi_1 = f_z^- + f_z e^{2i\theta}, \qquad 0 \leqslant \theta \leqslant 2 \pi$$

This circle has its center at $f_{\overline{z}}$ and radius $|f_z|$. It is described twice in the positive direction as θ varies in $[0, 2 \pi]$.

Fig. 3.

It could be asked whether the circles K and H can be constructed geometrically from the circles G_U and G_V representing the real directional derivatives of the functions U and V. To answer this question we note that the circles G_U and G_V are determined by the corresponding gradients $\bigtriangledown U$ and $\bigtriangledown V$, which in the notation of Complex Analysis are written

$$\nabla \mathbf{U} = \mathbf{U}_x + i\mathbf{U}_y$$
 and $\nabla \mathbf{V} = \mathbf{V}_x + i\mathbf{V}_y$

Also, we note that the position and size of the circles H and K are determined by the partial derivatives f_z and $f_{\overline{z}}$. It is an easy exercise to show that

$$f_z = \frac{1}{2} \left(\overline{\nabla U} + i \, \overline{\nabla V} \right)$$

and

$$f\bar{z} = \frac{1}{2} (\nabla U + i \nabla V)$$

Hence, the point f_z is the midpoint of the line segment joining the tips of ∇U and $i \nabla V$, while $f_{\overline{z}}$ is the midpoint of the line segment joining the tips of ∇U and $i \nabla V$. Furthermore, the points ∇U and $i \nabla V$ are the endpoints of a diameter of the Kasner circle, since

$$|\overline{\nabla U} - i \overline{\nabla V}| = |\nabla U + i \nabla V| = 2 |f_{\overline{z}}|$$

Similarly, ∇ U and $i \nabla$ V are the endpoints of a diameter of the H circle. These observations lead to the construction shown in Figure 3 for the Kasner circle and its associate.

(Department of Mathematics, University of Alabama, University, Al 35486.)

REFERENCES

- M. O. González, «Some topics on differentiation and integration of functions of a complex variable», Revista Matemática y Física Teórica, Universidad de Tucumán (Argentina), 19 (1969), 91-104.
- 2. E. Kasner, «General theory of polygenic or non-monogenic functions. The derivative congruence of circles, Proc. Nat.», Acad. Sciences, Washington, D.C. (USA), 14 (1928), 75-82.