A THEOREM CONCERNING THE MEANS OF AN ENTIRE FUNCTION AND ITS DERIVATIVES

by

J. P. Singe

1. Let $f(z)$ be an entire function of order ρ and lower order λ.

For $0<\delta<\infty$, and $z=r e^{i \theta}$, let

$$
\left\{\mathrm{M}_{\delta}(r, f)\right\}^{\delta}=\mu_{\delta}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

and

$$
\left\{\mathrm{M}_{\delta}\left(r, f^{(m)}\right)\right\}^{\delta}=\mu_{\delta}\left(r, f^{(m)}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(m)}\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where $f(m)(z)$ denotes the mth derivative of $f(z)$. It is known [3] that

$$
\begin{equation*}
\lim _{\mathrm{r} \rightarrow \infty \inf } \frac{\log \log \mathrm{M}_{\delta}(r, f)}{\operatorname{logr}}=\frac{\mathrm{P}}{\lambda} . \tag{1.1}
\end{equation*}
$$

It was proved by Juneja [1] that, 'for every entire function $\mathrm{f}(\mathrm{z})$, other than a polynomial,

$$
\limsup _{r \rightarrow \infty} \frac{\log r\left[\mu_{\delta}\left(r, f^{(m)}\right) / \mu_{\delta}(r, f)\right]^{1 / m \delta}}{\log r}=\rho(0<\delta<1),
$$

where r tends to infinity through values excluding an exceptional set of at most finite measure.'

In this note, we generalise the above result of Juneja [1]. Our theorem is not only more general than Juneja's theorem, but has the different proof and more widely applicable.
2. First of all we point out an important point (*) over looked by Juneja

In the proof of the theorem he has used two lemmas. His Lemma 3 is based on the following result of Valiron [4; p. 106]

$$
\frac{f(m)(z)}{f(z)}=\left(\frac{v(r)}{z}\right)^{m}\left[1+h_{m}(z) v(\mathrm{R})^{-1 / 1} \theta\right],\left|h_{m}(z)\right|<k
$$

i.e.

$$
\begin{equation*}
|f(m)(z) / f(z)| \geqslant\left(\frac{\cdot v(r)}{r}\right)^{m}\left[1-k v(\mathrm{R})^{1} /^{1} \mathrm{~g}\right] . \tag{2.1}
\end{equation*}
$$

This result is valid at the points on the circle $|z|=r$ at which one of the functions

$$
f(z), \ldots \ldots,\left(\frac{z}{v(r)}\right)^{m} f(m)(z)
$$

is greater in modulus than $\mathrm{M}(r)\{v(r)\}^{-1 / 8}$. At remaining points, the validity of this result is not known. Now, $\mu_{\delta}(r, f)$ is the mean of $\left|f\left(r e^{i \theta}\right)\right|^{\delta}$ taken over the circle $|z|=r$. We can carry out integration in (2.1) to form the means of $f(z)$ and $f^{(m)}(z)$ over the circle $|z|=r$, provided of course the set of omission points has a measure zero.

Now, consider the entire function $\exp (z)$. For this function $M(r)=$ $=\exp (r),|\exp (z)|=\exp (r \cos \theta)$ and $v(r)=n$, for $E_{n}=n \leqslant r<n+1$. Let

$$
\mathrm{J}(r)=\left\{r e^{i \theta} \mid r \varepsilon \mathrm{E}_{n}: \theta \geq \cos ^{-1}\left(1-\frac{\log r}{8 r}\right)\right.
$$

according as $0 \leqslant \theta \leqslant \pi$, or $\pi \leqslant \theta \leqslant 2 \pi\}$.
Clearly the total variation of logr in E_{n} tends to infinity with n. Also, at all points of the above set J, we have both the numbers

$$
|\exp (z)| \text { and }\left|\left(\frac{z}{v(r)}\right)^{m} \exp (z)\right|
$$

are less than or equal to $\mathrm{M}(r)\{\nu(r)\}^{-1 / 8}$ and $m(J)>0$. This establishes the fact that entire functions with $|f(z)|,\left|(z / v(r))^{m} f^{m}(z)\right|$ less than or equal to $M(r)\{v(r)\}^{-1 / 8}$ over a set of measure greater than zero exists. Thus, for all entire functions the integration carried out by Juneja is not justified. Hence, his proof is incorrect.

* This point is not observed in the review of Juneja's paper [1] MR [33 \# 2814].

Lemma 4 of Juneja [ibid] is based on the following unproved assertion

$$
\left|\frac{f^{(1)}(z)}{f(z)}\right| \leqslant\left(r^{(\rho+\varepsilon-1)}\right) .
$$

3. Now, we state and prove our Theoren.

THEOREM For every entire function,

$$
\lim _{\mathbf{r} \rightarrow \infty \inf }^{\sup } \frac{\log \left[r \left\{\mathrm{M}_{\delta}\left(r, f(m) / \mathrm{M}_{\delta}(r, f)\right\}^{1 / m}\right.\right.}{\log r}=\frac{\rho}{\lambda}
$$

where $m=1,2 \ldots m$ and $0<\delta<1$.
Proof. We know that for $\varepsilon>0$ and large r

$$
\begin{equation*}
\frac{\mathrm{M}_{\delta}(r, f(1))}{\mathrm{M}_{\delta}(r, f)} \leqslant r^{(\rho+\varepsilon-1)}, 0<\delta<1, \rho<\infty . \tag{2}
\end{equation*}
$$

Since order function is invariant under differentiation, therefore we have

$$
\left.\mathrm{M}_{\delta}(r, f(p)) / \mathrm{M}_{\delta}(r, f(p-1)) \leqslant r^{(\rho+z-1}\right)
$$

Giving p the values $1,2,3, \ldots, m$ and multiplying the m inequalties thus obtained, we get,

$$
\left.\mathrm{M}_{\delta}(r, f(m)) / \mathrm{M}_{\delta}(r, f) \leqslant r^{(\rho+\varepsilon-1}\right) m
$$

Further, if $f(z)$ is an entire function of finite lower order λ, then we get similarly, for a sequence of values of r tending to infinity,

$$
\mathrm{M}_{\delta}\left(r, f^{(m)}\right) / \mathrm{M}_{\delta}(r, f) \leqslant r^{(\lambda+\varepsilon-1) m} . \quad \lambda<\infty
$$

Consequently, we get

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \frac{\log \left[r\left\{\mathrm{M}_{\delta}\left(r, f^{(m)}\right) / \mathrm{M}_{\delta}(r, f)\right\}^{\mathbf{1}(m]}\right.}{\log r} \leqslant \cdot{ }_{\lambda}^{\rho} \tag{3.1}
\end{equation*}
$$

By the property of a derivative, we have

$$
\begin{aligned}
& \left|f(p-1)\left(r e^{i \theta}\right)\right| \leqslant\left|f^{(p)}\left(r e^{i \theta}\right)\right| \varepsilon r+\varepsilon^{2} r+\left|f(p-1)\left(\overline{r-r \varepsilon} e^{i \theta}\right)\right| \\
& \sim\left|f^{(p-1)}\left(r e^{i \theta}\right)\right| \varepsilon r+\left|f(p-1)\left(\overline{r-r \varepsilon} e^{i \theta}\right)\right|
\end{aligned}
$$

Owing to $(a+b)^{\delta} \leqslant a^{\delta}+b \delta,(0<\delta<1)$, we have $\left|f(p)\left(r e^{i \theta}\right)\right|^{\delta}(r \varepsilon)^{\delta}>\left|f(p-1)\left(r e^{i \theta}\right)\right|^{\delta}-\left|f(p-1)\left(\overline{r-r \varepsilon} e^{i \theta}\right)\right|^{\delta}$
or

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(p)}\left(r e^{i \theta}\right)\right| \delta d \theta \geqslant \\
\geqslant\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(p-1}\left(r e^{i \theta}\right)\right|^{\delta} d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(p-1)}\left(\overline{r-r \varepsilon} e^{i \theta}\right)\right|^{\delta} d \theta /(\varepsilon r)^{\delta}\right\} .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\mu_{\delta}(r, f(p)) \geqslant \frac{\delta r^{(1-\delta)}}{\left\{\mu_{\delta}\left(r, f^{(p-1)}\right)\right\}^{\left(1 / \delta^{-1}\right)}} \frac{d}{d r} \mathrm{M}_{\delta}\left(r, f^{(p-1)},\right. \tag{3.2}
\end{equation*}
$$

by virtue of the fact $\left(a^{1 / \delta}-b^{1 / \delta} \leqslant(1 / \delta) a^{(1 / \delta)^{-1}}(a-b), 1 / \delta \geqslant 1\right)$. Let

$$
\mathrm{S}(r)=\frac{\log \mathrm{M}_{\delta}\left(r, f\left(p^{-1}\right)\right)}{\log r}
$$

As $\mathrm{S}(r)$ is an increasing function of r, we have $\mathrm{S}^{\prime}(r)>0$ and hence

$$
\begin{aligned}
\frac{d}{d r} \log \mathrm{M}_{\delta}(r, f(p-1)) & =\left(\frac{\mathrm{S}(r)}{r}\right)+\mathrm{S}^{\prime}(r) \log r \\
& >\frac{\mathrm{S}(r)}{r}=\frac{\log \mathrm{M}_{\delta}(r, f(p-1))}{r \log \mathrm{r}} .
\end{aligned}
$$

This together with (3.2) gives us

$$
\begin{gather*}
\mathrm{M}_{\delta}(r, f(p))>\alpha\left\{\frac{\mathrm{M}_{\delta}(r, f(p-1))}{r}\right\}\left(\frac{\log \mathrm{M}_{\delta}(r, f(p-1))}{\log r}\right)^{1 / \delta}, \\
0<\alpha<1 \tag{3.3}
\end{gather*}
$$

Owing to the fact that

$$
\frac{\log \mathrm{M}_{\delta}\left(r, f^{(p-1)}\right)}{\log r}
$$

tends to ∞ with r, we find that
$\log \mathrm{M}_{\delta}(r, f(p))>\log \alpha+\{1+0(1)\} \log \mathrm{M}_{\delta}\left(r, f^{(p-1)}\right)-\{1+0(1)\} \log \mathrm{r}$ $\sim \log \mathrm{M}_{\delta}(r, f(p-1)) \quad(r \rightarrow \infty)$.
Hence

$$
\log \mathrm{M}_{\delta}(r, f(p-1))>\mathrm{O}(1)\left\{\log \mathrm{M}_{\delta}(r, f)\right\}
$$

This together with (3.3) gives us

$$
\mathrm{M}_{\delta}(r, f(p))>\mathrm{O}(1)\left\{\frac{\mathrm{M}_{\delta}(r, f(p-1))}{r}\right\}\left(\frac{\log \mathrm{M}_{\delta}(r, f)}{\log \mathrm{r}}\right) .
$$

Finally, we have

$$
\begin{gather*}
\mathrm{M}_{\delta}(r, f(m))>\mathrm{O}(1)\left\{\frac{\mathrm{M}_{\delta}}{r^{m}}\right\}\left(\frac{(r, f)}{\log r}\right)^{\log \mathrm{M}_{\delta}(r, f)} \mathrm{for}^{m} \text { all } \\
r>r_{0}>0 . \tag{3.4}
\end{gather*}
$$

Combining (3.4) and (3.1), we obtain

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log \left[r\left\{\mathrm{M}_{\delta}(r, f(m)) / \mathrm{M}_{\delta}(r, f)\right\}^{1 / m}\right]}{\log r} \geqslant \frac{\rho}{\lambda} . \tag{3.5}
\end{equation*}
$$

The desired conclusion follows at one from (3.1) and (3.5) viz.

$$
\lim _{r \rightarrow \infty \inf } \sup ^{\log \left[r\left\{\mathrm{M}_{\delta}(r, f(m)) / \mathrm{M}_{\delta}(r, f)\right\}^{1 / m}\right]} \log r \quad=\stackrel{\rho}{\lambda}, 0<\delta<1
$$

I take the opportunity to express my sincere thanks to Dr. S. H. Dwivedi, University of Udaipur, and Dr. V. Sreenivasulu, University of Poona for their helpful suggestions.

REFERENCES

[1] O. P. Juneja, On the means of an entire function and its derivatives, Monatsch Math. 70(1966), 33-38.
[2] T. V. Lakshminarasimhan, On the mean of an entire function and the mean of the product of two entire functions, Tohoku Math. J (4) 19(1967), 471-422.
[3] Q. I. Rahman, On means of entire functions, Quart. J. Math. Oxford Ser. (2), 7(1956), 192-195.
[4] G. Valiron, Lectures on the general theory of integral functions. Chelsa Publishing Company (1949).

