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ABSTRACT

The symmetric partial derivatives and the symmetric differentia­
bility of a function of two real variables are introduced as generaliza­
tions of the concepts of ordinary partial derivatives and ordinary diffe­
rentiability. A relationship between the former and the latter concepts
is established. Several properties of the symmetric partial derivatives
and the symmetric differentiability are proved.

l. INTRODUCTION

Differentiability is one of the most fundamental and widely used
concepts in the theory of functions of real variables. Many simple con­
tinuous functions of a real variables such as

1
(i) f(x) = I x 1, ¡(O) = O; (ii) ¡(x) = x sin - , x =P 0, ¡(O) = O;

x

do not have derivatives at the origin in the ordinary sense. In order to
extend the class of ordinary differentiable functions, Riemann, Schwarz,
Peano, Dini and de la Vallée-Poussin (1) had extended the concept of
the ordinary derivative of a function of a real variable in 11 numher of
different ways for various purposes. These authors had also emphalilized
the importance of these generalizations. In particular, Zygtnurtd (1)
shown the significant applícatíons of the generalized deriVl1tives in
studying the theory of trigonometric series.

One of the most common generalizations of ordinary derivatives is
the symmetric derivatives. Although the functions gíven in e~am:ple (i)
and (ii) do not have ordinary derivatives at the peínt ~ """ 0, but do
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have the symmetric derivatives at that point. In fact, these examples
serve as the converse of a theorem which states that if the ordinary
derivative of a function exists at a point, then the symmetric derivativa
oi that function exísts at the point and they are equal in value. The
ínterestíng and contrasting Ieature of the ordinary and symmetric
derivatíves ís that the existence oí the former does guarantee the con­
tinuity, but that of the latter does not imply the continuity. Rather,
a discontinuous function may have the symmetric derivative. It is thus
evident that the class of ordinary differentiable functions is a proper
subclass of that of the symmetric differentiable funtions.

In the past and recent years, Charzynski (2), Khintchine (3), Mazur­
kiewícz (4), Szpilrajn (5), Tolstov (6), Mukhopadhyay (7-10), and many
others have made an extensive study on various propertíes of the sym­
metríc derivative of a function of a single real variable. Recently,
Bruckner and Leonard (11) has made an informative survey on the
developments of the varíous derivatives of a function of a single real
variable. In spite of these developments, it seerns that there is no índí­
cation in the vast literature about any work on the generalization of the
ordinary partial derivatives and the differentiability of a function oí
several real variables. It is however well known that functions oí seve­
ral variables are found to occur frequently and have numerous applica­
tions. In víew of these facts, an extensíve attention has been given to
the development of the theory of functions of several real variables
based on the concepts of ordinary partial derivatives and differentia­
bility. In the theory of functions of several variables, many fundamen­
tal results differ significantly from those in the theory oí functíons of
one variable.

Motivated by the above consideration and the recent work of Mukho­
padhyay (7-10), an attempt is made to make a generalization oí the
ordinary partial derivatives and the differentiability of a function oí
two real variables (12). The symmetric partíal derivatives and the
symmetric differentiability of a function of two variables are íntro­
duced. A relationship between the former and the latter concepts is
established. Several properties or the symmetric partial derivatives and
the symmetric differentiability are proved.

2. SYMMETRIC PARTIAL DERIVATIVES

Definitions: Suppose /(x, y) is a real function of two real variables
x, y defined in an open (rectangular or circular) domain R. The /irst
stpnmeiric partial derivative of /(x, y) with respect to x at a point (x, y)
E; R ís denoted by s]» (x, y) and defined by

/(x + h, y) - /(x - h, y)
s/x (x, y) = lim

h -+ O 2h

provided the limit exists as a finite quantity for a fixed y.

[2.1]
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Similarly, the first symmetric partiaI derivative of ti», y) with
respect to y, keeping x ñxed, is defined by

I(x, y + k} - I(x, y - k)
s/y (x, y) = lim , (2.2]

k ...... O 2k

provided the limit exists as a finite number,
It is easy to show the function I(x, y) = Ix - y I has no first orde­

ordinary partial derivatives at the origin but it possesses the first sym­
metric derivatives at the point (O, O).

Theorem 2.1. If the first order ordinary partial derivatives Ix(x, y),
Iy(x, y) of a function I(x, y) defined in an open domain R exist at a
point (x, y) s R, then the first symmetríc derivatives s/x(x, y) and s/y(x, y)
exíst at that point, and Ix(x, y) = s/x(x, y); te». y) = s/y(x, y).

The proof ís almost trivial and hence may be omítted.
The converse of this theorem is not necessarily true as shown by

the above example.

3. SYMMETRIC DIFFERENTIABILITY

Dejinition: A function I(x, y) deñned in a neighborhood of a point
(x, y) ís said to be symmetrically differentiable at a point (x, y) iff

I(x + h, y + k) - f(x - h, Y - k) =
= 2h A + 2kB + 2h &1 + 2k &2 ,

where (x ± h, y ± k) belong to the neighborhood of (x, y), A,
independent of h or k and El' &2 ...... O as (h, k) ...... (O, O).

Example: Consider the function f defined by

xy .

[3.1 [

B are

This function is not differentiab1e at the origin in the ordinary sense.
However, it ís symmetrically differentiable at the origino

Theorem 3.1. If I(x, y) is defined and differentiable in an open
domaín R%in the ordinary sense, then it is symmetrically differentiable
in R.

Proof: Let (x, y), (x ± h, y ± k) be any points of R. In view of
the given hypothesis, we have

t(x + h, y + k} - I(x, y} = Ah + Bk + h El + k &2 , [3.2]

where A, B are independent of h or k and el' Ea tend to the limit zero
as (h, k) ...... (O, O). Further,

t(x + h, y + k) - t(x - h, Y - k) = f(x + h, y + k) ­
- f(x, y) + t(re, y) - f(re - h, Y - k)
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which is, by [3.2],

= 2h A + 2k B + 2h &1 + 2k &a-

This rneans that ¡(X, y) is syrnrnetrically differentiable at any point of R.
This pro ves the theorern.

The converse is not necessarily true and has been shown by the
above exarnple.

Theorem 3.2. If I(x, y) is syrnrnetrically differentiable at a point
(x, y), then the first syrnrnetric partial derivatives exist at (x, y) and
A = slx(x, y), B = sly(x, y).

Proof: Substituting k = O and taking h ~ O in expression [3.1], it
follows at once A = slx(x, y). Sirnilarly, putting h = Oand k ..... Oin [3.1 [,
it turns out that B = sly(x, y).

Theorem 3.3. If slx(x, y) and sly(x, y) exist and continuous at a11
points of an open dornain R, the function I(x, y) has a syrnrnetric deri­
vative at a point in R.

Proof: Suppose h, k are srnall enough so that (x ± h, y ± k) He
within a srnall neighborhood of (x, y). Then we have I(x + h, y + k) ­
- I(x - h, Y - k) = I(x + h, y + k) - I(x - h, Y + k) + I(x - ñ,
Y + k) - I(x - h, Y - k) = 2h slx(x + 61h, y + k) + 2k slx(x - h,
Y + 6.k) , [3.2]

where -1 < 61, 6. < 1.

In view of the continuity of the partial derivatives, it íollows that

slx (x + 61 h, Y + k) = slx (x + y) + &1 (h, k)

slu (x - h, Y + 6. k) = sly (x, y) + &. (h, k)

where &1' &. ~ O as (h, k) ~ (O, O). Thus

I(x + h, y + k) -/(x - h, y - k) = 2h slx (x, y) + 2k slu (x, y)

+ 2h el (h, k) + 2k e. (h, k)

where &1' ea~ O as (h, k) ~ (O, O). This means that I(x, y) has symmetrícal­
ly differentiable at (x, y).

4. HIGHER ORDER SYMMETRIC PARTIAL DERIVATIVES

With the aid of the definition of the first syrnrnetric partial deriva­
tives, we have the second order partial derivative,

sf1JX (a, b) =
s/7J (a, b + k) - slx (a, b - k)

lirn
~ ~ O 2k
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provided the Iimit exísts,

1 [= Iím -- lim
,. -+ O 2k h -+ O

tia + h, b + k) - tia - h, b + k)

2h

where

- lim
h-+O

= lim
k-+O

tia + h, b - k) - I(a - h, b - k) ]

2h

A2 I(h, k)
lim

h -+ O 4kh
[4.1 ]

A2 [ih, k) = I(a + h, b + k) - I(a - b, b + k) -
- I(a + h, b - k) + tia - h, b - k) , [4.2]

Similarly, we may obtain

slxy (a, b) = lim
h-+O

A2 t(h, k)
lim

k -+ O 4hk
[4.3]

These partial derívatíves are reterred to as the mixed symmetríc partíal
derivatives oí the second order oí t(x, y) at (a, b).

Like the non-commutatíve property oí the ordinary míxed partial
derivatives fxy, fyx, there is no a prior reason Ior the existence oí the
commutatíve property oí the mixed symmetric partíal derivatives.
However, there exist sufficient conditíons on the runction t(x, y) under
which

slxy (a, b) = s/yx (a, b) , [4.4]

We establish a set oí sufficient condítíons for the validity of [4.4[.

Theorem 4.1. Ir (i) f(x, y) ís a continuous function oí x alone Ior all
y in the neighborhood oí the poínt (a, b), (ii) stx, sfy and sfyx exíst in
the neighborhood oí (a, b); then sfxy exísts at (a, b) and stxy(a, b) =

s/yx(a, b).

Proot: Consider the function

Il> (x) = f(x, b + k) - I(x, b - k), a - h <;; x <;; a + h ,

which satisñes the requirements oí the Mean value theorem 111 the
neighborhood oí (a, b). Then

Il>(a + h) - Il>(a - h) = 2h sil>' (a + 61 h), -1 < 61 < 1

= 2h [s/x(a + 61h, b + k) - stx(a + 61h, b - k)]

Since styx exist in the neighborhood of (a, b), we can apply the
Mean Value theorem to deduce

Il>(a + h) - Il>(a - h) = 4hk stilx(a + 61h, b + 62k).
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In view of the assumption (1LL), it turns out that

<I>(a + h) - <I>(a - h) = 4hk {s/yx(a, b) + ~ (h, h)} ,

where
~(h, k) --+ O as (h, k) --+ (O, O).

It follows from [4.2[ that

Do' /(h, h)

4hk
11m 11m ---- = Iim hm {S/¡IX(U, b) f e}

i.-;» k--+O i.-;» k->O

Thus,
sfxy(a, b) = s/yx(ú, b) .

Thus s/xu(a, b) exrsLs and IS equal to sfux(a, ú).

Theorem 4,2, Ir (~) /(x, y) is a continuou-, íunctiou of x, lar all IJ and
ís also continuous tunctron of y, for all x m the neighborhood of Lhe
point (a, b), (ú) s/x, s/u exist in the neighborhood of (11, b) and are
symmetrically differentiable at (a, b); and (1LL) s/xx is a continuous
function of y alone, for every x and s/uu 1" albo continuous m x alone,
for every x m the neighborhood of (a, b); then s/xy and sfyx exist at (a, ú)
and are equal,

Proof: We have

Do' f(l1, h) = U(a + 17, b + h) - /(a + h, b - h)} - U(a - li, ú I lz)­
-/(a-h,b-h)}

= <I>(a + h) - <D(a - h),
where

<1>(x) = f(x, b + h) - ti», b - h), a - h < T < a --¡- h.

In view of the Mean value theorern, rt turns out that

<I>(a + h) - <D(a - h) = 2h s <1>' (a + 6lh) ,-1 < 6 1 < 1

= '2h [sfx (a + 6lh, b + h) - s/" (a + 6 lh, b - 11)]

= 2h [{sfx (a + 6lh, b + h) - s/x (a - 6lh, b - h)}

- {slc (a + 6lh, b - h) - sida - 6lh, b - h)}] , [ I.G]

By virtue of assumption (ti), it follows that the right hand sido 01 [L¡]
IS equal to

2h [{26lh sfxx (a, b) + 2h s/ux (a, b) + 2k E:l }

- {26 lh s/xx (a, b - h) + 2h E:2 } ]

which is, by contínurty of s/xx,

= 4h' sfyx (a, b) + 4h 2 (~l - ~2) , [4.6]

where ~l' ~2 tend to zero as h --+ O.
SimilarJy, we write

Do' /(h, 11) = 'l"(b + h) -- 'F(b ~ h) ,
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where
o/(y) -= I(a + h, y) - I(a -- li, y), b - ti < Y <; b + h.

An argument similar to that advanced aboye grves

f,2 I(h, h) = 4h 2 slx!J (a, b) + 4h 2 (e'l - e'2) , [4.7]

= s/xy (a, ú) = sf!Jx (a, b).
4h 2

lim
h -> O

where e'u e' 2 tend 1,0 zero as h ....... O.
It is cvident from [4.6] and [4.7] that

11 2 f(h, h)

Tlns proves the theorem.
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