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ABSTRACT

The symmetric partial derivatives and the symmetric differentia-
bility of a function of two real variables are introduced as generaliza-
tions of the concepts of ordinary partial derivatives and ordinary diffe-
rentiability. A relationship between the former and the latter concepts
is established. Several properties of the symmetric partial derivatives
and the symmetric differentiability are proved.

1. INTRODUCTION

Differentiability is one of the most fundamental and widely used
concepts in the theory of functions of real variables. Many simple con-
tinuous functions of a real variables such as

1
() fz) = = |, f(0) = 05 (ii) flz) = Sin;— » 7% 0, f(0) = 0;

do not have derivatives at the origin in the ordinary sense. In order to
extend the class of ordinary differentiable functions, Riemann, Schwarz,
Peano, Dini and de la Vallée-Poussin (1) had extended the concept of
the ordinary derivative of a function of a real variable in a number of
different ways for various purposes. These authors had also emphasized
the importance of these generalizations. In particular, Zygmund (1)
shown the significant applications of the generalized derivatives in
studying the theory of trigonometric series.

One of the most common generalizations of ordinary derivatives is
the symmetric derivatives. Although the functions given in example (i)
and (ii) do not have ordinary derivatives at the point # =« 0, but do
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have the symmetric derivatives at that point. In fact, these examples
serve as the converse of a theorem which states that if the ordinary
derivative of a function exists at a point, then the symmetric derivative
of that function exists at the point and they are equal in value. The
interesting and contrasting feature of the ordinary and symmetric
derivatives is that the existence of the former does guarantee the con-
tinuity, but that of the latter does not imply the continuity. Rather,
a discontinuous function may have the symmetric derivative. It is thus
evident that the class of ordinary differentiable functions is a proper
subclass of that of the symmetric differentiable funtions.

In the past and recent years, Charzynski (2), Khintchine (3), Mazur-
kiewicz (4), Szpilrajn (5), Tolstov (6), Mukhopadhyay (7-10), and many
others have made an extensive study on various properties of the sym-
metric derivative of a function of a single real variable. Recently,
Bruckner and Leonard (11) has made an informative survey on the
developments of the various derivatives of a function of a single real
variable. In spite of these developments, it seems that there is no indi-
cation in the vast literature about any work on the generalization of the
ordinary partial derivatives and the differentiability of a function of
several real variables. It is however well known that functions of seve-
ral variables are found to occur frequently and have numerous applica-
tions. In view of these facts, an extensive attention has been given to
the development of the theory of functions of several real variables
based on the concepts of ordinary partial derivatives and differentia-
bility. In the theory of functions of several variables, many fundamen-
tal results differ significantly from those in the theory of functions of
one variable.

Motivated by the above consideration and the recent work of Mukho-
padhyay (7-10), an attempt is made to make a generalization of the
ordinary partial derivatives and the differentiability of a function of
two real variables (12). The symmetric partial derivatives and the
symmetric differentiability of a function of two variables are intro-
duced. A relationship between the former and the latter concepts is
established. Several properties of the symmetric partial derivatives and
the symmetric differentiability are proved.

2. SYMMETRIC PARTIAL DERIVATIVES

Definitions: Suppose f(z, y) is a real function of two real variables
z, y defined in an open (rectangular or circular) domain R. The first
symmeiric partial derivative of f(z, y) with respect to xz at a point (z, y)
e R is denoted by sfz (z, y) and defined by

. @+ hy)—fz—hy)
sfz (®, y) = Hm ) [2.1]
h—0 2h

provided the limit exists as a finite quantity for a fixed y.
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Similarly, the first symmetric partial derivative of f(x, y) with
respect to y, keeping x fixed, is defined by

flz, gy + k) — Hz, y — k)
o ’

sfu (2, y) = lim [2.2]
k —
provided the limit exists as a finite number.

It is easy to show the function f{z, y) = | ¢ — y | has no first orde-
ordinary partial derivatives at the origin but it possesses the first sym-
metric derivatives at the point (0, 0).

Theorem 2.1. If the first order ordinary partial derivatives fx(z, 1),
Js(z, y) of a function f{z, y) defined in an open domain R exist at a
point {(z, y) = R, then the first symmetric derivatives sfxz(x, y} and sfy(z, y)
exist at that point, and fo(z, y) = sfa(@, ¥); fu(®, ¥) = sly(z, y).

The proof is almost trivial and hence may be omitted.

The converse of this theorem is not necessarily true as shown by
the above example.

3. SYMMETRIC DIFFERENTIABILITY

Definition: A function f(z, y) defined in a neighborhood of a point
(x, y) is said to be symmetrically differentiable at a point (=, y) iff

He +h g + k) —flz—h y—Fk =
=2 A + 2B +2he + 2We,, [3.1]

where (z + h, y + k) belong to the neighborhood of (z, y), A, B are
independent of h or k and ¢,, ¢, — 0 as (h, k) - (0, 0).

Ezample: Consider the function f defined by
zy
f(.'l?, y) ) (.’E, y) * (01 0)
Va2 £ g

=0,(a:,y) 2(0’0)
This function is not differentiable at the origin in the ordinary sense.
However, it is symmetrically differentiable at the origin.

Theorem 3.1. If f(z, y) is defined and differentiable in an open
domain R, in the ordinary sense, then it is symmetrically differentiable
in R,

Proof: Let (x, y), (x & h, y £ %) be any points of R. In view of
the given hypothesis, we have

He +-hy+ k) —fz,y) =Ah + Bk + he, + ke, [3.2

where A, B are independent of k or k and ¢,, ¢, tend to the limit zero
as (h, k) — (0, 0). Further,

flea +hy+ k) —flea—hy—k =fle+hy+k—
— f(x, y) + flz, y) — flg — h, gy — k)
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which is, by [3.2],
=2h A + % B 4 2h ¢, + 2k ¢,.

This means that f(z, y) is symmetrically differentiable at any point of R.
This proves the theorem.

The converse is not necessarily true and has been shown by the
above example.

Theorem 3.2. 1f f(z, y) is symmetrically differentiable at a point
(z, y), then the first symmetric partial derivatives exist at (z, y) and
A = ofz(z, y), B = sfylz, 1)

Proof: Substituting & = 0 and taking h — 0 in expression [3.1], it
follows at once A = sfy(z, y). Similarly, puttingh = O and k-~ 0 in [3.1],
it turns out that B = gfy(z, y).

Theorem 3.3. 1f sfz(x, y) and sfy(z, y) exist and continuous at all
points of an open domain R, the function f(z, y) has a symmetric deri-
vative at a point in R.

Proof: Suppose h, k are small enough so that (z 4+ h, y + k) lie
within a small neighborhood of (x, y). Then we have f(x + h, y + k) —
—fe—hy—k =fz+hy+k—FHo—hy+k + fz—h,
y+k) —fz—hy—k = 2hsfala + 0k g + k) + 2k ofa(z — h,
y+ 6k, [3.2]

where —1 < 6,, 6, < 1.
In view of the continuity of the partial derivatives, it follows that
sfa (¢ + 0, h y + k) = sfz (¢ + y) + e (b k)
sfy (@ —h, g + 0, k) = sfy (z, y) + =a (B, )
where ¢, ¢, - 0 as (h, k) — (0, 0). Thus
Ho + hy + k) —f{z—h, gy — k) = 20 sfs (2, y) + 2k sfy (2, ¥)
+ 2h e, (b, k) + 2k &, (h, k)

where ¢, €, — 0 as (h, k) — (0, 0). This means that f(z, y) has symmetrical-
ly differentiable at (z, y).

4. HIGHER ORDER SYMMETRIC PARTIAL DERIVATIVES

With the aid of the definition of the first symmetric partial deriva-
tives, we have the second order partial derivative,

sfr (@, b + k) — sfz (a, b — k)
sfyz (a, b) = b]imo y ’
L - "‘f
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provided the limit exists,

1 fla + kb + k) —fla—h, b + k)

= lim —— lim

E—-0 2 (h-0 2h

fla +h b—~k)y—fla—h b—F)

— lim

h—-0 2h

Az f(h, k)
lim lim —m—, [4.1]

- E-0 h-0 4kh
where
A2 f(h, k) = fla + kb + k) —fla — b, b + k) —
—flo + h,b—k) + fla—h, b—Fk), [4.2]
Similarly, we may obtain
A% f(h, k)

sfey (@, b) = lim lim —mm—, [4.3]
h—>0 k-0 4hk

These partial derivatives are referred to as the mixed symmetric partial
derivatives of the second order of f(z, y) at (a, b).

Like the non-commutative property of the ordinary mixed partial
derivatives fzy, fyz, there is no a prior reason for the existence of the
commutative property of the mixed symmetric partial derivatives.
However, there exist sufficient conditions on the function f(z, y) under
which

sfay (@, b) = sfyz (a, b), [4.4]
‘We establish a set of sufficient conditions for the validity of [4.4[.

Theorem 4.1. 1f (i) f(z, y) is a continuous function of z alone for all
y in the neighborhood of the point (a, b), (ii) sfz, sfy and sfyz exist in
the neighborhood of (a, b); then sfzy exists at (a, b) and e¢fzy(a, ) =
= sfya(a, b).

Proof: Consider the function

(I)(.’.U)=f($,b+l£)—-—f(93,b-——k),a-—-h <z <a-++h,

which satisfies the requirements of the Mean value theorem in the
neighborhood of (e, b). Then

®la + h) — Pla —h) =2 s® (a + 0, k), —1 < 6, <1
= %h [sfz{a + 0.1, b + k) — sfz(a + 6,0, b — k)]

Since sfyz exist in the neighborhood of (a, ), we can apply the
Mean Value theorem to deduce

®(a + h) — ®(a — h) = 4Rk sfyzla + 0.k, b + B5k).
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In view of the assumption (i1), 1t turns out that

®la + h) — Dla — h) = 4hk {sfyz(a, b) + (I, k)},
where
e(h, k) — 0 as (h, k) — (0, 0).
It follows from [4.2[ that

Az f(h, k)
hm im —— = lIm hm  {sfyc(u, b) 1 €}
h—-0 k-0 4hk h—-0 k-0

Thus,
sfzyla, b) = sfya(u, ) .
Thus sfzy(a. b) exists and 1s equal Lo sfyz(a, b).

Theorem 4.2. 1 (1) f(z, y) is a continuous funciion of x, for all y and
is also continuous function of y, for all z 1n the neighborhood of the
point (a, b), (it) sfz, sfy exist in the neighborhood of (o, b) and are
symmetrically differentiable at (a, b); and (:11) sfzr I8 a conlinuous
function of y alone, for every z and gfyy Is also continuous i z alone,
for every z 1n the neighborhood of (a, b); then sfzy and sfy. exist at (a, D)
and are equal.

Proof: We have

A% flh, by = {fla + h,b + h) —fla + h, b — h)} — {fla — I, b | 0)—
— Ha —h, b — h)}
= O(a + h) — ®la — h),
where
d(z) = flz, b + h) —flz, b —h),a—h <7T <a~+ h

In view of the Mean value theorem, it turns out that
O{a + h) — @®la — h) =2~ @ (a + 0,h), —1 < 0, <1
= 2h [sfz (@ + O:h, b + h) — sfo (@ + 0,1, b — IY]

= 2n [{sfo (@ + Ok, b + h) — sfz (@ — 0,0, b — h)}
— {sfe (@ + 0.k, b — ) — sfo{a — 6,1, b — h)}] , [1.5]

By virtue of assumption (i), 1t follows that the right hand side of [1.5]
1s equal to

2h [{26112 sf¢x ((l, b) + 2h sfy.z: (LZ, b) + Rk El}
— {20,h sfuz (@, b — h) 1 2 &,)]

which is, by continuity of sfzs,
= 4h? sfyz (a, b) + 4h?% (e; — &), [4.6]

where ¢, ¢, tend to zero as h - 0.
Similarly, we write

A f(h, h) = P(b + B) — Wb — h),
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where

W(y) = fla + hy) —fla—hy)b—h <y <b+h

An argument similar to that advanced above gives

A2 f(h, h) = 4h? sfay (a, b) + 4h% (e’ — &"s), [4.7)

where &'y, &', tend lo zero as h — 0.

It is evident from [4.6] and [4.7] that

A® f(h, )
lim ————— = sfzy (a, U) = sfyz (n, b).
-0 45

This proves the theoremn.
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