A NOTE ON ENUMERATION OF PERMUTATIONS OF ($1, . ., \mathrm{n}$) BY NUMBER OF MAXIMA

por

R. C. Entringer

University of New Mexico. Alburquerque, New Mexico, U. S. A

A permutation $\left(a_{1}, \ldots, a_{n}\right)$ of $(1, \ldots, n)$ will be called a circle (line) n.permulation iff a_{1} and a_{n} are (are not) considered adjacent. a_{l} is said to be a maximum of such a permutation iff a_{i} is greater than the mem$\operatorname{ber}(\mathrm{s})$ adjacent to it. For example the permutation 41325 has 2 [3] maxima as a circle (line) permutation.

If we define $\mathrm{M}(n, k)\left(\mathrm{M}^{*}(n, k)\right), n \geqslant 1$ to be the number of circle (line) n-permutations having exactly k maxima and further set $\mathrm{M}(1.0)=$ $=1, \mathrm{M}(n, 0)=0$ for $n \geqslant 2, \mathrm{M}^{*}(0,0)=1, \mathrm{M}^{*}(n, 0)=0$ for $n \geqslant 1$ we have, as was shown in [2], the recurrence relation.
(1) $\mathrm{M}(n+1, k)=\frac{n+1}{n}[2 k \mathrm{M}(n, k)+(n-2 k+2) \mathrm{M}(n, k-1)]$

$$
\text { for } n \geqslant 1, k \geqslant 1
$$

A generating function

$$
\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \mathrm{M}(n, k) \frac{x^{n}}{n^{\prime}} y^{k}=x \frac{1-\sqrt{1-y} \operatorname{Tanh} x \sqrt{1-y}}{1-(\operatorname{Tanh} x \sqrt{1-y}) / \sqrt{1-y}}
$$

and the explicit formula

$$
\begin{gathered}
-68- \\
\frac{(-1) t!}{2^{i}}\binom{r}{k-1}\binom{t-1}{n-2 r-2} \mathrm{~S}(n-1, t)
\end{gathered}
$$

for

$$
n \geqslant 2, k \geqslant 0
$$

where

$$
\mathrm{S}(n-1, t)=\frac{(-1)^{t}}{t!} \sum_{s=1}^{t}(-1) s\binom{t}{s}^{n-1}
$$

is a Stirling number of the second kind were also obtained.
The following result shows the simple relation between $\mathrm{M}^{*}(n, k)$ and $\mathrm{M}(n, k)$. Theorem: $\mathrm{M}(n+1, k)=(n+1) \mathrm{M}^{*}(n, k), n \geqslant 0, k \geqslant 0$.

Proof: By definition the equality holds for $n=0$. Suppose then that $n \geqslant 1$. If ($a_{1}, \ldots, a_{t-1}, n+1, a_{i+1}, \ldots, a_{n+i}$) is a line ($n+1$) permutation with k maxima then $\left(a_{1}, \ldots, a_{1-1}, a_{1+1}, \ldots, a_{n+1}\right)$ is a line n-permutation with k or $k-1$ maxima. Conversely if (a_{1}, \ldots, a_{n}) is a line n-permutation with k maxima then $n+1$ may be inserted in exactly $2 k$ positions (since it must be adjacent to one of the maxima) to form a line ($n+1$)-permutation with k maxima; if $\left(a_{1}, \ldots, a_{n}\right.$) is a line n-permutation with $k-1$ maxima then $n+1$ may be inserted in exactly $n+1-2(k-1)$ positions to form a line $(n+1)$-permutation with k maxima. Since no two of the permutations obtained in this manner can be identical we have

$$
\begin{gather*}
\mathrm{M}^{*}(n+1, k)=2 k \mathrm{M}^{*}(n, k)+(n-2 k+3) \mathrm{M}^{*}(n, k-1) \\
\text { for } \quad n \geqslant 0, k \geqslant 1 \tag{3}
\end{gather*}
$$

If we rewrite this as
$\mathrm{M}^{*}(n, k)=2 k \mathrm{M}^{*}(n-1, k)+(n-2 k+2) \mathrm{M}^{*}(n-1, k-1)$ for $n \geqslant 1, k \geqslant 1$
and compare with [1] we see that the equality of the theorem holds.
This theorem along with [3] could be used in place of the argument in (2) to obtain [1].

The theorem is equivalent to the existence of a one-to-one correspondence between circle ($n+1$)-permutations with k maxima and of the form ($a_{1}, \ldots, a_{n}, n+1$) and all line n-permutations with k maxima; such a correspondence is given by

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}, n+1\right) \Leftrightarrow\left(n+1-a_{1}, \ldots, n+1-a_{n}\right) \text { for } n \geqslant 1 \tag{4}
\end{equation*}
$$

To show [4] actually is a correspondence of the type described we only need observe that ($a_{1}, \ldots, a_{n}, n+1$) has k maxima in the circle sense if and only if (a_{1}, \ldots, a_{n}) has k members each of which is less than its adjacent member(s) in the line sense and this in turn holds if and only if $\left(n+1-a_{1}, \ldots, n+1-a_{n}\right)$ has k maxima in the line sense.

In [1] $\mathrm{A}(n), n \geqslant 3$, was defined to be the number of alternating
n-permutations $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}<a_{2}$ where an n-permutation $\left(a_{1}, \ldots, a_{n}\right)$ was said to be alternating iff $a_{i}<a_{i+1} \Leftrightarrow a_{i+1}>$ $>a_{i+2}, i=1, \ldots, n-2$. Both $\mathrm{A}(1)$ and $\mathrm{A}(2)$ were defined to be 1. We have the following relations between $\mathrm{A}(n)$ and $\mathrm{M}^{*}(n, k)$.

Theorem: $\mathrm{A}(2 n-1)=\mathrm{M}^{*}(2 n-1, n)$ and

$$
\mathrm{A}(2 n)=\sum_{j=0}^{n}(-1)^{n-j}\binom{2 n}{2 j}_{\mathrm{M}^{*}(2 j+1, j+1)} \text { for } n \geqslant 1
$$

Proof: The first equality may be proven by noting that a ($2 n-1$)permutation ($a_{1}, \ldots, a_{2 n-1}$) is alternating iff $a_{2 i} i=1, \ldots, n-1$ are maxima which in turn holds iff $\left(2 n-a_{1}, \ldots, 2 n-a_{2 n-1}\right)$ is a line ($2 n-1$) permutation with n maxima.

If the Euler and Bernoulli numers $\mathrm{E}_{2} n$ and $\mathrm{B}_{2 n+1}, n \geqslant 0$ are defined as in (1) then since in (1) $\mathrm{A}(2 n)$ was shown to be (-1)n $\mathrm{E}_{2 n}$ and $\mathrm{A}(2 n-1)$ to be

$$
(-1)^{n-1} \frac{2^{2 n}\left(2^{2 n}-1\right)}{2 n} B_{2} n-1
$$

for $n>1$ we have from the well-known identity

$$
\begin{gathered}
\mathrm{E}_{\mathrm{z} n}=\sum_{j=1}^{n+1}\left(\begin{array}{c}
2 n-2
\end{array}\right) \frac{2^{2}\left(2^{2} J-1\right)}{2 j} \mathrm{~B}_{2 j-1}, n \geqslant 0 \\
\mathrm{~A}(2 n)=\sum_{j=0}^{n}(-1)^{n-j}\binom{2 n}{2 j}_{\mathrm{A}(2 j+1)}= \\
=\sum_{j=0}^{n}(-1)^{n-1}\binom{2 n}{2 j}_{\mathrm{M}^{*}(2 j+1, j+1), n \geqslant 1}
\end{gathered}
$$

REFERENGES

(1) R. C. Entringer. A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Arch. Wisk. (3) 14 (1966) 241-246.
(2) R. G. Entringer. Enumeration of permutations of ($1, \ldots, n$) by number of maxima, Duke Math. J. 36 (1969) 575-579.

