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A NOTE ON A CERTAIN SEQUENCE

By
B. K. Lamr: & P. L. GANGuLI

Let U; 4+ Uy + Uz + ...+ Un + ... be an infinite series of real
terms. Let, as usual,

SnEU1+U5+.-.+Un

denote the n-th partial sum of the series & Un. The series = Un conver-
ges or diverges according as the sequence {Sn} is convergent or di-
vergent.

Let us consider all possible sums like

Ury 4+ Ury + ... 4+ Urn

where ry, 13, . . . 'n are any n distinet positive integers (n =1, 2, 3, ...).
Two such sums, even though they may have the same value, will be
treated as different if there is at least one Ug in one sum which does not
appear in the other. All such sums can obviously be arranged in the form
of a sequence {Pn}. It is easy to see that several elements of {Pn} may
have the same value and that all the elements of the sequence {Sn} of
partial sums as well as all the terms of the series ¥ Un appear in the
sequence {Pn}.

The object of the present note is to study the convergence of the
sequence {Pn}, examine its limit points and to discuss incidentally
how far the convergence of the series £ Un can be characterised by the
sequence {Pn}.

Let us suppose that the sequence {Pn} is convergent. Then the se-
quence {Sn} is also convergent, which implies that the series Z Un is
convergent. Hence Un — o as n — . But the sequence {Pn} contains
each Un. Hence in this case the sequence {Pn} must converge to zero.
Thus, if the sequence {Pn} at all converges, it must converge to zero.
Also the convergence of the sequence {Pn} implies the convergence of
the series = Un and it further implies that the series X Un has the sum
zero. It at once follows that if the series £ Un be convergent with a
non-zero sum or if it be divergent then the sequence {Pn} must be di-
vergent. Thus the convergence of £ Un does not necessarily imply the
convergence of the sequence {Pn}.
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Let the sequence {Pn} be convergent. Then, as we have seen, the
series X Un is also convergent. We shall show that the series ¥ Un must
converge absolutely in such a case.

If possible, let X Un be not absolutely convergent. Then X Un is
conditionally convergent. Hence we can rearrange its terms to obtain
a new series % U’n which will have a non-zero sum [4}. If the sequen-
ce {P’n}, associated with the series X U’n, corresponds to the sequence
{Pn}, then it is clear that {P’'n} is obtained by merely rearranging the
elements of {Pn}. Considering the series £ U’n, we conclude that the
sequence {Pn} is divergent. Thus, if the sequence {Pn} be convergent,
the series & Un must be absolutely convergent.

If G denote the set of all series for which {Pn} is convergent, A the
set of all absolutely convergent series and C the set of all convergent
series, then it follows that.

G CACC

the inclusion being proper. It will, in fact, be shown that the set G has
just one element.

Upper and lower limits of {Pn}

Let the series Z Un be convergent with a non-zero sum S. Then the
sequence {Pn} is divergent. If all Un > O, then clearly the sequence
{Pn} is bounded and as such {Pn} must oscillate between finite limits.
In this case Iim Pn = S and lim Pn = 0.

Next, let & Un be condifionally convergent. Then the sequence
{Pn} is divergent. Also the series of positive terms of £ Un and the
series of absolute values of negative terms of X Un both diverge to + co.
Hence in such a caselim Pn = + o, lim Pn = — .

If, however, the series & Un be absolutely convergent with a non-
zero sum, then {Pn} must oscillate between finite limits.

Next we examine the behaviour of the sequence {Pn} in the case
when ¥ Un converges to zero. Several cases may arise.

It & Un == O, but the series is not absolutely convergent, then as
seen above, {Pn} must oscillate between 4+ « and — .

If the series X Un be absolutely convergent to zero, then the sequen-
ce {Pn} may or may not converge. Let us considerer the series

1 1 1 1 1 1
—— e ——— .
21 2t | 2o 20 20 g

which converges to zero absolutely. If « denotes the sum

1 1 1

then clearly . .
lim Pn =u,l_§_1r_1Pn = — .



—14 —

1t follows that if £ Un consists of an infinity of positive and an infinity -
of negdtive terms and if X Un converges to zero absolutely, then {Pn}
is divergent and oscillates between finite limits.

If £ Un, consisting only of a finite number of positive {or negative)
terms, converges to zero, then also {Pn} is divergent and oscillates
between finite limits.

If all but a finite number of Ur be zero, then also the sequence {Pn}
caniot be convergent.

The following resulls can now be stated.

THEOREM 1

The sequence {Pn} is convergent if and only if each Un = O.

This incidentally shows that it is not possible to characterise the
convergence of a series X Un by the convergence of the corresponding
sequence {Pn} except in the trivial case when each Un is zero.

Also it follows that the set G has just one element.

THEOREM 2
For any series % Un with Un - O,

lim Pn < O < lim Pn

TaeorREM 3

A necessary and sufficient condition that a series & Un may be abso-
lutely convergent is that lim Pn and lim Pn are both finite.

TueoreEM 4

For any absolutely convergent series £ Un having a sum S, we have
§ = lim Pn + lim Pn.
Limit poinls of {Pn}.

Let % Un be a convergent series of positive térms with a sum S. Then
the sequence {Pn} is divergent and lim Pn = S and lim Pn = O. Let
us further assume in this case that _

Un <Rn=Un+1+Un+2+ ...t0 00
and
Un> Un g4,y
forn =1,%2,3,...

Then Kakeya [3] has proved that the sef 6 of all numbers of the form

o0
OC-—-'—ZUIn
1
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where
Un=00Un,n=1,2%23,...

consists of the whole interval O < =z < S. It follows that, under the
above conditions, every point of the stretch O < z < S is a limit point
of the sequence {Pn}.

If the series £ Un, consisting of an infinity of positive as well as ne-
gative terms, be convergent with sum S, then S i3 certainly a limit
point of {Pn} but S cannot coincide with lim Pn or lim Pn.

Let us suppose that the series = Un is conditionally convergent. Then
it has been seen that.

m Pn = + o and lim Pn = — o

Now, it is known that the terms of a conditionally convergent series
can be rearranged to make the resulting series converge to any pre-
assigned sum. It, therefore, follows that in such a case every real num-
ber is a limit point of {Pn}.

It has been shown by the authors [2] that an oscillatory series
(whose n-th term tends to zero) can, by a suitable rearrangement of

its terms, be converted into a conditionally convergent series. It there-
fore, follows that the above results in respect of a conditionally conver-
gent series hold equally well for such oscillatory series also. As a matter
of fact the above results hold for any series £ Un having the following
properties (1) Un - O as n - o (2) the sum of positive terms of X Un
is + oo (3) the sum of negative terms of T Un is — oo.

If £ Un be an unrestricted convergent series, then it is not a fact
that every point in the interval (lim Pn, lim Pn) is a limit point of the

sequence {Pn}. This can be seen by considering series like.

1 1 1
10 + + + 4+ ... tow
2 22 28
and
1 1 1
10 — -+ — + ...tow
2 22 28

If X Un is a divergent series of positive terms where Um — O then
it is known [1] that, given any positive number s, there exists a sub-
series of ¥ Un which converges to s, It follows that, in such a case,
every positive number is a limit point of {Pn}.

Lastly we prove the following result.

THEOREM b.

Let £ Un be any series (convergent or divergent) where Un - O
as n — co. Then the corresponding sequence {Pn} is dense-in-itself
{in the sense that every element of the sequence {Pn} is a limit point
of {Pn}).
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For, let « = Ur, 4+ Ury + ... + Urp be any element of {Pn}. Then
there exists a positive integer m such that no Un with n > m appears
in «. Now the numbers.

a, 0 + Um, o 4+ Um 4+ 4, ...,¢ +Un, ...

all belong to {Pn} and they converge to «. Hence « is a limit point of
the sequence {Pn}.
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