A NOTE ON A CERTAIN SEQUENCE

Вy

B. K. Lahiri & P. L. Ganguli

Let $U_1 + U_2 + U_3 + \ldots + U_n + \ldots$ be an infinite series of real terms. Let, as usual,

$$S_n \equiv U_1 + U_2 + \ldots + U_n$$

denote the *n*-th partial sum of the series Σ U*n*. The series Σ U*n* converges or diverges according as the sequence $\{Sn\}$ is convergent or divergent.

Let us consider all possible sums like

$$Ur_1 + Ur_2 + \ldots + Ur_n$$

where $r_1, r_2, \ldots r_n$ are any *n* distinct positive integers $(n = 1, 2, 3, \ldots)$. Two such sums, even though they may have the same value, will be treated as different if there is at least one U_k in one sum which does not appear in the other. All such sums can obviously be arranged in the form of a sequence $\{Pn\}$. It is easy to see that several elements of $\{Pn\}$ may have the same value and that all the elements of the sequence $\{Sn\}$ of partial sums as well as all the terms of the series Σ Un appear in the sequence $\{Pn\}$.

The object of the present note is to study the convergence of the sequence $\{Pn\}$, examine its limit points and to discuss incidentally how far the convergence of the series Σ Un can be characterised by the sequence $\{Pn\}$.

Let us suppose that the sequence $\{Pn\}$ is convergent. Then the sequence $\{Sn\}$ is also convergent, which implies that the series Σ Un is convergent. Hence $Un \rightarrow o$ as $n \rightarrow \infty$. But the sequence $\{Pn\}$ contains each Un. Hence in this case the sequence $\{Pn\}$ must converge to zero. Thus, if the sequence $\{Pn\}$ at all converges, it must converge to zero. Also the convergence of the sequence $\{Pn\}$ implies the convergence of the series Σ Un and it further implies that the series Σ Un has the sum zero. It at once follows that if the series Σ Un be convergent with a non-zero sum or if it be divergent then the sequence $\{Pn\}$ must be divergent. Thus the convergence of Σ Un does not necessarily imply the convergence of the sequence $\{Pn\}$.

Let the sequence $\{Pn\}$ be convergent. Then, as we have seen, the series $\Sigma \ Un$ is also convergent. We shall show that the series $\Sigma \ Un$ must converge absolutely in such a case.

If possible, let Σ Un be not absolutely convergent. Then Σ Un is conditionally convergent. Hence we can rearrange its terms to obtain a new series Σ U'n which will have a non-zero sum [4]. If the sequence {P'n}, associated with the series Σ U'n, corresponds to the sequence {Pn}, then it is clear that {P'n} is obtained by merely rearranging the elements of {Pn}. Considering the series Σ U'n, we conclude that the sequence {Pn} is divergent. Thus, if the sequence {Pn} be convergent, the series Σ Un must be absolutely convergent.

If G denote the set of all series for which $\{Pn\}$ is convergent, A the set of all absolutely convergent series and C the set of all convergent series, then it follows that.

the inclusion being proper. It will, in fact, be shown that the set G has just one element.

Upper and lower limits of $\{Pn\}$

Let the series Σ Un be convergent with a non-zero sum S. Then the sequence $\{Pn\}$ is divergent. If all Un > O, then clearly the sequence $\{Pn\}$ is bounded and as such $\{Pn\}$ must oscillate between finite limits. In this case $\overline{\lim} Pn = S$ and $\lim Pn = 0$.

Next, let Σ Un be conditionally convergent. Then the sequence $\{Pn\}$ is divergent. Also the series of positive terms of Σ Un and the series of absolute values of negative terms of Σ Un both diverge to $+\infty$. Hence in such a case $\lim Pn = +\infty$, $\lim Pn = -\infty$.

If, however, the series Σ Un be absolutely convergent with a nonzero sum, then {Pn} must oscillate between finite limits.

Next we examine the behaviour of the sequence $\{Pn\}$ in the case when Σ Un converges to zero. Several cases may arise.

If Σ Un = 0, but the series is not absolutely convergent, then as seen above, $\{Pn\}$ must oscillate between $+\infty$ and $-\infty$.

If the series Σ Un be absolutely convergent to zero, then the sequence $\{Pn\}$ may or may not converge. Let us considerer the series

$$\frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^3} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^4} + \cdots$$

which converges to zero absolutely. If α denotes the sum

$$\frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^4} + \dots$$

then clearly

$$\overline{\lim} Pn = \alpha, \lim Pn = -\alpha.$$

It follows that if Σ Un consists of an infinity of positive and an infinity – of negative terms and if Σ Un converges to zero absolutely, then $\{Pn\}$ is divergent and oscillates between finite limits.

If Σ Un, consisting only of a finite number of positive (or negative) terms, converges to zero, then also $\{Pn\}$ is divergent and oscillates between finite limits.

If all but a finite number of Un be zero, then also the sequence $\{Pn\}$ cannot be convergent.

The following results can now be stated.

THEOREM 1

The sequence $\{Pn\}$ is convergent if and only if each Un = O.

This incidentally shows that it is not possible to characterise the convergence of a series Σ Un by the convergence of the corresponding sequence $\{Pn\}$ except in the trivial case when each Un is zero.

Also it follows that the set G has just one element.

THEOREM 2

For any series Σ Un with Un \rightarrow O,

$$\lim Pn \leq 0 \leq \lim Pn$$

THEOREM 3

A necessary and sufficient condition that a series ΣUn may be absolutely convergent is that $\overline{\lim} Pn$ and $\lim Pn$ are both finite.

THEOREM 4

For any absolutely convergent series $\Sigma \ Un$ having a sum S, we have

 $S = \overline{\lim} Pn + \lim Pn.$

Limit points of $\{Pn\}$.

Let Σ Un be a convergent series of positive terms with a sum S. Then the sequence $\{Pn\}$ is divergent and $\overline{\lim} Pn = S$ and $\underline{\lim} Pn = O$. Let us further assume in this case that

$$Un \leq Rn = U_{n+1} + U_{n+2} + \dots \text{ to } \infty$$
$$U_n \geq U_{n+1}$$

and

for
$$n = 1, 2, 3, \ldots$$

Then Kakeya [3] has proved that the set 6 of all numbers of the form

$$\alpha = \sum_{1}^{\infty} \mathbf{U}'_{n}$$

where

$$U'n = 0$$
 or Un , $n = 1, 2, 3, ...$

consists of the whole interval $O \le x \le S$. It follows that, under the above conditions, every point of the stretch $O \le x \le S$ is a limit point of the sequence $\{Pn\}$.

If the series Σ Un, consisting of an infinity of positive as well as negative terms, be convergent with sum S, then S is certainly a limit point of $\{Pn\}$ but S cannot coincide with $\overline{\lim} Pn$ or $\lim Pn$.

Let us suppose that the series $\Sigma \text{ Un}$ is conditionally convergent. Then it has been seen that.

$$\lim_{n \to \infty} Pn = +\infty \text{ and } \lim_{n \to \infty} Pn = -\infty$$

Now, it is known that the terms of a conditionally convergent series can be rearranged to make the resulting series converge to any preassigned sum. It, therefore, follows that in such a case every real number is a limit point of $\{Pn\}$.

It has been shown by the authors [2] that an oscillatory series (whose *n*-th term tends to zero) can, by a suitable rearrangement of its terms, be converted into a conditionally convergent series. It therefore, follows that the above results in respect of a conditionally convergent series hold equally well for such oscillatory series also. As a matter of fact the above results hold for any series Σ Un having the following properties (1) Un \rightarrow O as $n \rightarrow \infty$ (2) the sum of positive terms of Σ Un is $+\infty$ (3) the sum of negative terms of Σ Un is $-\infty$.

If Σ Un be an unrestricted convergent series, then it is not a fact that every point in the interval ($\lim Pn$, $\lim Pn$) is a limit point of the sequence $\{Pn\}$. This can be seen by considering series like.

$$10 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \text{ to } \infty$$

and

$$10 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots \text{ to } \infty$$

If Σ Un is a divergent series of positive terms where Um \rightarrow O then it is known [1] that, given any positive number s, there exists a subseries of Σ Un which converges to s, It follows that, in such a case, every positive number is a limit point of $\{Pn\}$.

Lastly we prove the following result.

THEOREM 5.

Let Σ Un be any series (convergent or divergent) where Un \rightarrow O as $n \rightarrow \infty$. Then the corresponding sequence {Pn} is dense-in-itself (in the sense that every element of the sequence {Pn} is a limit point of {Pn}).

For, let $\alpha \equiv Ur_1 + Ur_2 + \ldots + Ur_n$ be any element of $\{Pn\}$. Then there exists a positive integer *m* such that no Un with $n \ge m$ appears in α . Now the numbers.

 $\alpha, \alpha + Um, \alpha + Um + 1, \ldots, \alpha + Un, \ldots$

all belong to $\{Pn\}$ and they converge to α . Hence α is a limit point of the sequence $\{Pn\}$.

Department of Pure Mathematics Calcutta University.

REFERENCES

- 1. BANERJEE, C. R. & LAHIRI, B. K., «Some theorems on subseries of divergent series», Ind. Jour. of Mech. and Math., Vol. II. No. 2, 1964, P. 24.
- 2. GANGULI, P. L., & LAHIRI, B. K., A Note on Oscillatory series, to appear.
- 3. KAREYA, S., «On the partial sums of an infinite series». Science reports of the Tohoku Imperial University (1), 3 (1914), P. 159.
- 4. KNOPP, K., «Theory and application of infinite series», 1947, P. 318.

- 16 -