A NOTEON A CERTAIN SEQUENCE

By

B. K. Lahiri \& P. L. Ganguli

Let $\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\ldots+\mathrm{Un}+\ldots$ be an infinite series of real terms. Let, as usual,

$$
\mathrm{S}_{n} \equiv \mathrm{U}_{1}+\mathrm{U}_{2}+\ldots+\mathrm{U}_{n}
$$

denote the n-th partial sum of the series $\Sigma \mathrm{U} n$. The series $\Sigma \mathrm{U}$ n converges or diverges according as the sequence $\{\mathrm{S} n\}$ is convergent or divergent.

Let us consider all possible sums like

$$
\mathrm{U} r_{1}+\mathrm{U} r_{2}+\ldots+\mathrm{U} r_{n}
$$

where $r_{1}, r_{2}, \ldots r_{n}$ are any n distinct positive integers ($n=1,2,3, \ldots$). Two such sums, even though they may have the same value, will be treated as different if there is at least one U_{k} in one sum which does not appear in the other. All such sums can obviously be arranged in the form of a sequence $\{P n\}$. It is easy to see that several elements of $\{\mathrm{P} n\}$ may have the same value and that all the elements of the sequence $\{\mathrm{Sn}\}$ of partial sums as well as all the terms of the series Σ Un appear in the sequence $\{P n\}$.

The object of the present note is to study the convergence of the sequence $\{\mathrm{P} n\}$, examine its limit points and to discuss incidentally how far the convergence of the series $\Sigma \mathrm{U} n$ can be characterised by the sequence $\{\mathrm{P} n\}$.

Let us suppose that the sequence $\{\mathrm{P} n\}$ is convergent. Then the sequence $\{S n\}$ is also convergent, which implies that the series $\Sigma \mathrm{Un}$ is convergent. Hence Un $\rightarrow 0$ as $n \rightarrow \infty$. But the sequence $\{P n\}$ contains each Un. Hence in this case the sequence $\{\mathrm{P} n\}$ must converge to zero. Thus, if the sequence $\{P n\}$ at all converges, it must converge to zero. Also the convergence of the sequence $\{\mathrm{P} n\}$ implies the convergence of the series $\Sigma \mathrm{Un}$ and it further implies that the series Σ Un has the sum zero. It at once follows that if the series $\Sigma U n$ be convergent with a non-zero sum or if it be divergent then the sequence $\{\mathrm{P} n\}$ must be divergent. Thus the convergence of Σ Un does not necessarily imply the convergence of the sequence $\{\mathrm{P} n\}$.

Let the sequence $\{\mathrm{P} n\}$ be convergent. Then, as we have seen, the series $\Sigma U n$ is also convergent. We shall show that the series $\Sigma U n$ must converge absolutely in such a case.

If possible, let $\Sigma \mathrm{U} n$ be not absolutely convergent. Then $\Sigma \mathrm{U} n$ is conditionally convergent. Hence we can rearrange its terms to obtain a new series $\Sigma U^{\prime} n$ which will have a non-zero sum [4]. If the sequence $\left\{\mathrm{P}^{\prime} n\right\}$, associated with the series $\Sigma \mathrm{U}^{\prime} n$, corresponds to the sequence $\{P n\}$, then it is clear that $\left\{P^{\prime} n\right\}$ is obtained by merely rearranging the elements of $\{\mathrm{P} n\}$. Considering the series $\Sigma \mathrm{U}^{\prime} n$, we conclude that the sequence $\{P n\}$ is divergent. Thus, if the sequence $\{P n\}$ be convergent, the series Σ Un must be absolutely convergent.

If G denote the set of all series for which $\{\mathrm{P} n\}$ is convergent, A the set of all absolutely convergent series and C the set of all convergent series, then it follows that.

$$
G \quad \mathrm{CACC}
$$

the inclusion being proper. It will, in fact, be shown that the set G has just one element.

Upper and lower limits of $\{\mathrm{P} n\}$

Let the series $\Sigma \mathrm{U} n$ be convergent with a non-zero sum S . Then the sequence $\{\mathrm{P} n\}$ is divergent. If all $\mathrm{U} n>0$, then clearly the sequence $\{\mathrm{P} n\}$ is bounded and as such $\{\mathrm{P} n\}$ must oscillate between finite limits. In this case $\overline{\mathrm{Lim}} \mathrm{P} n=\mathrm{S}$ and $\lim \mathrm{P} n=0$.

Next, let Σ Un be conditionally convergent. Then the sequence $\{P n\}$ is divergent. Also the series of positive terms of $\Sigma U n$ and the series of absolute values of negative terms of $\Sigma \mathrm{Un}$ both diverge to $+\infty$. Hence in such a case $\overline{\lim } \mathrm{P} n=+\infty, \lim \mathrm{P} n=-\infty$.

If, however, the series Σ Un be absolutely convergent with a nonzero sum, then $\{P n\}$ must oscillate between finite limits.

Next we examine the behaviour of the sequence \{Pn\} in the case when Σ Un converges to zero. Several cases may arise.

If $\Sigma \mathrm{U} n=0$, but the series is not absolutely convergent, then as seen above, $\{\mathrm{P} n\}$ must oscillate between $+\infty$ and - $-\infty$.

If the series $\Sigma U n$ be absolutely convergent to zero, then the sequence $\{P n\}$ may or may not converge. Let us considerer the series

$$
\frac{1}{2^{2}}-\frac{1}{2^{2}}+\frac{1}{2^{3}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{4}}+\cdots
$$

which converges to zero absolutely. If α denotes the sum

$$
\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots
$$

then clearly

$$
\overline{\lim } P n=\dot{\alpha}, \underline{\lim } P n=-\alpha
$$

$$
-14-
$$

It follows that if $\Sigma \mathrm{U} n$ consists of an infinity of positive and an infinity of negative terms and if Σ Un converges to zero absolutely, then $\{P n\}$ is divergent and oscillates between finite limits.

If Σ Un, consisting only of a finite number of positive (or negative) terms, converges to zero, then also $\{\mathrm{P} n\}$ is divergent and oscillates between finite limits.

If all but a finite number of Un be zero, then also the sequence $\{\mathrm{Pn}\}$ cannot be convergent.

The following results can now be stated.

Theorem 1

The sequence $\{\mathrm{P} n\}$ is convergent if and only if each $\mathrm{U} n=0$.
This incidentally shows that it is not possible to characterise the convergence of a series $\Sigma \mathrm{U} n$ by the convergence of the corresponding' sequence $\{P n\}$ except in the trivial case when each $U n$ is zero.

Also it follows that the set G has just one element.

Theorem 2

For any series Σ Un with $U n \rightarrow 0$,

$$
\underline{\lim } \mathrm{P} n \leqslant \mathrm{O} \leqslant \overline{\lim } \mathrm{P} n
$$

Theorem 3

A necessary and sufficient condition that a series $\Sigma \mathrm{U} n$ may be absolutely convergent is that $\overline{\mathrm{lim}} \mathrm{Pn}$ and lim $\mathrm{P} n$ are both finite.

Theorem 4

For any absolutely convergent series Σ Un having a sum S , we have

$$
\mathrm{S}=\varlimsup_{\mathrm{lim}} \mathrm{P} n+\underline{\lim } \mathrm{P} n .
$$

Limit points of $\{\mathrm{P} n\}$.
Let $\Sigma \mathrm{U} n$ be a convergent series of positive terms with a sum S . Then the sequence $\{P n\}$ is divergent and $\overline{\lim } \mathrm{P} n=\mathrm{S}$ and $\lim \mathrm{P} n=0$. Let us further assume in this case that

$$
\mathrm{U} n \leqslant \mathrm{R} n=\mathrm{U}_{n+1}+\mathrm{U}_{n+2}+\ldots \text { to } \infty
$$

and

$$
\begin{gathered}
U_{n}>U_{n}+1 \\
\text { for } n=1,2,3, \ldots
\end{gathered}
$$

Then Kakeya [3] has proved that the set 6 of all numbers of the form

$$
\alpha=\sum_{1}^{\infty} U^{\prime}{ }_{n}
$$

where

$$
U^{\prime} n=O \text { or } U n, n=1,2,3, \ldots
$$

consists of the whole interval $O \leqslant x \leqslant S$. It follows that, under the above conditions, every point of the stretch $\mathrm{O} \leqslant x \leqslant \mathrm{~S}$ is a limit point of the sequence $\{\mathrm{P} n\}$.

If the series Σ Un, consisting of an infinity of positive as well as negative terms, be convergent with sum S, then S is certainly a limit point of $\{P n\}$ but S cannot coincide with lim Pn or lim Pn.

Let us suppose that the series $\Sigma \mathrm{U} n$ is conditionally convergent. Then it has been seen that.

$$
\text { ¡im } P n=+\infty \text { and } \underline{\lim } P n=-\infty
$$

Now, it is known that the terms of a conditionally convergent series can be rearranged to make the resulting series converge to any preassigned sum. It, therefore, follows that in such a case every real number is a limit point of $\{P n\}$.

It has been shown by the authors [2] that an oscillatory series (whose n-th term tends to zero) can, by a suitable rearrangement of its terms, be converted into a conditionally convergent series. It therefore, follows that the above results, in respect of a conditionally convergent series hold equally well for such oscillatory series also. As a matter of fact the above results hold for any series Σ Un having the following properties (1) Un $\rightarrow \mathrm{O}$ as $n \rightarrow \infty(2)$ the sum of positive terms of $\Sigma \mathrm{Un}$ is $+\infty(3)$ the sum of negative terms of $\Sigma \mathrm{U} n$ is $-\infty$.

If $\Sigma \mathrm{U}$ n be an unrestricted convergent series, then it is not a fact that every point in the interval ($\lim \mathrm{P} n, \overline{\lim } \mathrm{P} n$) is a limit point of the sequence $\{\mathrm{P} n\}$. This can be seen $\overline{\mathrm{by}}$ considering series like.

$$
10+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots \text { to } \infty
$$

and

$$
10-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\ldots \text { to } \infty
$$

If $\Sigma U n$ is a divergent series of positive terms where $U m \rightarrow 0$ then it is known [1] that, given any positive number s, there exists a subseries of $\Sigma \mathrm{Un}$ which converges to s , It follows that, in such a case, every positive number is a limit point of $\{P n\}$.

Lastly we prove the following result.

Theorem 5.
Let Σ Un be any series (convergent or divergent) where Un $\rightarrow 0$ as $n \rightarrow \infty$. Then the corresponding sequence $\{P n\}$ is dense-in-itself (in the sense that every element of the sequence $\{P n\}$ is a limit point of $\{P n\}$).

For, let $\alpha \equiv \mathrm{U} r_{1}+\mathrm{U} r_{2}+\ldots+\mathrm{U} r_{n}$ be any element of $\{\mathrm{P} n\}$. Then there exists a positive integer m such that no $\mathrm{U} n$ with $n \geqslant m$ appears in α. Now the numbers.

$$
\alpha, \alpha+\mathrm{U} m, \alpha+\mathrm{U} m+1, \ldots, \alpha+\mathrm{U} n, \ldots
$$

all belong to $\{\mathrm{P} n\}$ and they converge to α. Hence α is a limit point of the sequence $\{P n\}$.

Department of Pure Mathematics Calcutta University.

REFERENCES

1. Banerjee, C. R. \& Lahiri, B. K., "Some theorems on subseries of divergent seriesn, Ind. Jour. of Mech. and Math., Vol. II. No. 2, 1964, P. 24.
2. Ganguli, P. L., \& Lahiri, B. K., A Note on Oscillatory series, to appear.
3. Kakeya, S., "On the partial sums of an infinite series». Science reports of the Tohoku Imperial University (1), 3 (1914), P. 159.
4. Knopp, K., «Theory and application of infinite series», 1947, P. 318.
