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Universidad de Granada, 18071 Granada, Spain,

aperalta@ugr.es

Received December 1, 2006

Abstract : In this note we revise and survey some recent results established in [8]. We shall
show that for each Banach space X, there exists a locally convex topology for X, termed
the “Right Topology”, such that a linear map T, from X into a Banach space Y, is weakly
compact, precisely when T is a continuous map from X, equipped with the “Right” topology,
into Y equipped with the norm topology. We provide here a new and shorter proof of this
result. We shall also survey the results concerning sequentially Right-to-norm continuous
operators.
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1. Introduction

This note is thought to be a complement of the talk presented at the
conference “Banach Space Theory, Cáceres 2006”. In the lecture given at
the conference, the results treated in [8] were presented only tangentially. In
this note we shall survey the topological characterization of weakly compact
operators obtained in [8]. On the other hand, in [8] we strived for maximal
clarity rather than maximal generality or maximal conciseness. Among the
novelties included in this note, we present an alternative and shorter proof for
this topological characterization of weakly compact operators.

In the last part of section §2, we shall review the connections between the
Right topology and some previous studies, on certain locally convex topologies
associated with operator ideals, due to I. Stephani [10],[11], H. Jarchow [6],
and N. Ch. Wong, and Y.-Ch. Wong [14].

Throughout this note, X1 will denote the closed unit ball of a Banach
space X. Whenever X and Y are Banach spaces, L(X, Y ) denotes the space
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of all bounded linear mappings from X to Y . The word operator will always
mean bounded linear map. If τ is a topology in X and A is a subset of X,
τ |A will stand for the restriction of τ to the set A.

2. The Right topology

In this section we deal with the definition of the Right topology of a Banach
space X, we will provide some characterizations of this topology.

Let X and Y be Banach spaces and let T : X → Y be a bounded linear
operator. The law

X −→ R+
0 , x 7→ ‖T (x)‖

defines a seminorm on X. This seminorm will be denoted by ‖|.|‖T .
For every dual Banach space Y (with a predual denoted by Y∗), we shall

denote by m(Y, Y∗) the Mackey topology on Y relative to the duality (Y, Y∗).
According to the terminology introduced in [8], given a Banach space X,
the relative topology induced on X by restricting the Mackey topology of its
bidual will be termed the Right topology of X. That is, the Right topology
of X is the topology of uniform convergence on sets K ⊂ X∗, where K is
absolutely convex and σ(X∗, X∗∗) compact.

The next result was proved in [7, Proposition 2, §4].

Proposition 2.1. Let Z be a dual Banach space with a predual denoted
by Z∗. Then the m(Z,Z∗)-topology coincides with the topology on Z gen-
erated by all the seminorms of the form ‖|.|‖T , where T is a weak*-weak*
continuous linear operator from Z into a reflexive Banach space.

The following proposition is taken from [8, Proposition 2.3]. This result is
the natural adaptation of the previous proposition when the Banach space Y
is not assumed to be a dual space.

Proposition 2.2. Let X be a Banach space. Then the Right topology of
X coincides with the topology on X generated by all the seminorms ‖|.|‖T ,
where T is a bounded linear operator from X into a reflexive Banach space.

Proof. Let T : X → R be a bounded linear operator from X into a reflexive
Banach space R. Clearly, T ∗∗ : X∗∗ → R is a weak*-weak* continuous linear
operator from X∗∗ into R. Conversely, when T : X∗∗ → R is a weak*-
weak* continuous linear operator from X∗∗ into a reflexive space R, then
there exists a bounded linear operator U : R∗ → X∗ satisfying that U∗ = T .
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The reflexivity of R assures that U also is weak*-weak* continuous and hence
U = V ∗ for a suitable bounded linear operator V : X → R.

The above arguments together with Proposition 2.1 give the statement.

Clearly, the Right topology of a Banach space X is a locally convex topol-
ogy which is compatible with the duality (X, X∗). In particular, a bounded
linear mapping T : X → Z is (norm-)continuous if and only if it is Right-to-
Right continuous.

The novelties in this note start with the next lemma. This result will allow
us to give a shorter proof of the results in [8].

Lemma 2.3. Let X and Y be Banach spaces and T : X → Y a linear
operator. Suppose that T |X1 : X1 → Y is Right|X1-to-norm continuous, then
there exists a bounded linear operator S from X into a reflexive Banach space
satisfying that

‖T (x)‖ ≤ ‖|x|‖S + ‖x‖,

for all x ∈ X.

Proof. We first note that, since the convergence in the norm-topology im-
plies convergence in the Right topology and the latter is compatible with the
duality (X, X∗), T is bounded (by uniform boundedness principle).

From our assumptions, we know that the set

O := {x ∈ X1 : ‖T (x)‖ ≤ 1}

is a Right|X1-neighborhood of 0 in X1. Thus, from Proposition 2.2, there exist
a positive constant δ, reflexive Banach spaces R1, . . . , Rk and bounded linear
operators Ti : Xi → Ri (1 ≤ i ≤ k), such that

O ⊇ O′
:= {x ∈ X1 : ‖|x|‖Ti ≤ δ, ∀ 1 ≤ i ≤ k}.

We denote

R :=
`2⊕

1≤i≤k

Ri

and S : X → R the bounded linear operator given by S(x) := (δ−1 Ti(x)).
Clearly, R is reflexive and since for each x ∈ X\{0}, 1

‖S(x)‖+‖x‖ x belongs

to O′ ⊆ O, we have ∥∥∥∥T

(
1

‖S(x)‖+ ‖x‖
x

)∥∥∥∥ ≤ 1,
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which implies that

‖T (x)‖ ≤ ‖S(x)‖+ ‖x‖ = ‖|x|‖S + ‖x‖.

When x = 0, the above inequality is trivial.

We can now obtain the promised topological characterization of weakly
compact operators proved in [8, Theorem 4 and Corolary 5]. Here, in order to
get a shorter proof, we shall make use of the previous lemma together with the
result on factorization of weakly compact operators through reflexive Banach
spaces due to W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski [3].

Theorem 2.4. Let X and Y be Banach spaces and T : X → Y a linear
operator. The following are equivalent:

a) T is weakly compact;

b) T is Right-to-norm continuous;

c) T |X1 : X1 → Y is Right|X1-to-norm continuous;

d) There exist a bounded linear operator S from X into a reflexive Banach
space and a mapping N : (0,+∞) → (0,+∞) satisfying that

‖T (x)‖ ≤ N(ε) ‖|x|‖S + ε ‖x‖,

for all x ∈ X, ε > 0.

Proof. a) ⇒ b) Suppose that T is weakly compact. From [3, Corollary 1],
there exist a reflexive Banach space R and bounded linear operators S1 : X →
R and S2 : R → Y such that T = S2 ◦ S1. In particular

‖T (x)‖ ≤ ‖S2‖ ‖S1(x)‖ = ‖S2‖ ‖|x|‖S2 ,

for all x ∈ X. The above inequality together Proposition 2.2 show that T is
Right-to-norm continuous.

The implication b) ⇒ c) is trivial.

c) ⇒ d) For each natural n, nT |X1 : X1 → Y is Right|X1-to-norm contin-
uous. Thus, by Lemma 2.3, there exist a reflexive Banach space Rn and a
bounded linear operator Sn : X → Rn satisfying that

‖nT (x)‖ ≤ ‖Sn(x)‖+ ‖x‖,
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for all x ∈ X. We may assume Sn 6= 0, for all n ∈ N. Let us define R :=⊕`2
n∈N Rn, S : X → R a bounded operator given by

S(x) :=
(

1
n ‖Sn‖

Sn(x)
)

,

and N : (0,+∞) → (0,+∞) by N(ε) := ‖Sn(ε)‖, where n(ε) = inf{n ∈ N :
1/n < ε}. Finally, given x ∈ X we have

‖n(ε)T (x)‖ ≤ ‖Sn(ε)(x)‖+ ‖x‖;

‖T (x)‖ ≤ 1
n(ε)

‖Sn(ε)(x)‖+
1

n(ε)
‖x‖

‖T (x)‖ ≤ ‖Sn(ε)‖ ‖S(x)‖+ ε ‖x‖ = N(ε) ‖|x|‖S + ε ‖x‖.

Finally, the implication d) ⇒ a) follows from [5, Theorem 20.7.3].

The previous result can be thought as a topological characterization of
weak compactness in terms of Right-to-norm continuity. The class of Right-
to-Right continuous linear operators is, in general, much bigger than the class
of weakly compact operators. As we have seen before, since the Right topology
of a Banach space X is compatible with the duality (X, X∗), the uniform
boundedness principle shows that a linear mapping between Banach spaces is
Right-to-Right continuous if and only if it is bounded (see also [8]).

It is well known that a Banach space X is reflexive if and only if the
identity mapping on X is weakly compact. Thus, it follows by Theorem 2.4,
that a Banach space X is reflexive if and only if the identity mapping on X
is Right-to-norm continuous. We therefore have the following consequence of
the above.

Corollary 2.5. [8] A Banach space X is reflexive if, and only if, the
Right topology for X coincides with the norm topology.

The above results are strongly related with certain locally convex topolo-
gies on Banach spaces associated with ideals of operators. Quite recently,
while this note was being written, we were told about the significative papers
[6], [12, 13, 14] and [10, 11], which are directly connected with the results we
obtained in [8]. In a personal communication, Professor N.-Ch. Wong told us
about the connections appearing among our note and the just quoted papers.
We are also in debt with the referee of the paper for pointing out the con-
nections with reference [6]. Although the approaches of Wong-Wong in [14],
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(respectively, Stephani in [10, 11] and Jarchow in [6]) and Peralta-Villanueva-
Wright-Ylinen in [8] differ considerably, they have some connections which are
worth enough to be reviewed and surveyed here.

Let L denote the class of al bounded linear operator between Banach
spaces. According to the notation in [14], an operator ideal on the class of
Banach spaces over K (R or C)) is a subclass U ⊂ L satisfying the following
properties:

(OI1) IdK ∈ U(K, K);

(OI2) For each couple of Banach spaces X, Y , U(X, Y ) is a subspace of
L(X, Y );

(OI3) STR ∈ U(Z,W ), whenever Z,X, Y,W are Banach spaces, R ∈ L(Z,X),
S ∈ L(Y, W ), and T ∈ U(X, Y );

where, for each couple of Banach spaces X and Y , U(X, Y ) = U ∩ L(X, Y ).
Given an operator ideal U , on the class of Banach spaces and a fixed

Banach space X, the symbol τ(U)(X) will denote the projective topology on
X generated by the family

{T ∈ U(X, Y ) : Y is a Banach space}.

More concretely, τ(U)(X) is the topology on X generated by all the semi-
norms of the form ‖|.|‖T , where T ∈ U(X, Y ) and Y runs in the set of all
Banach spaces. Let UI denote the operator ideal defined by UI(X, Y ) =
L(Xτ(U)(X), Y ), where L(Xτ(U)(X), Y ) stands for the space of all linear map-
pings from X to Y which are τ(U)-to-norm continuous. Then it is known that
UI coincides with the injective hull, U inj , of U (compare [10], [6]).

Let W denote the operator ideal of all weakly compact operators between
Banach spaces. A consequence of Proposition 2.2 establishes that for each
Banach space X, the Right topology of X and the τ(W)(X) topology coincide.

Let us recall that the operator ideal W is injective. Thus, when partic-
ularized to our setting, Lemmas 2.1 and 3.2 in [14] (see also [11]) give an
alternative proof of our main theorem.

Proposition 2.6. [14] Let T : X → Y be a linear mapping between two
Banach spaces. Then T is weakly compact if and only if T is Right-to-norm
continuous.

Similar considerations can be made to deduce Corollary 2.5, and the com-
ments preceding it, from [14, Example 5.2 (iv)] and [14, Theorem 3.9], respec-
tively.



characterization of weak compactness revisited 221

A consequence of [6, Proposition 4.1] is the following: for a Banach space
X, the Right topology, τ(W)(X), of X is complete if and only if X is reflexive.
This can be also proved applying Corollary 2.5 and the following direct argu-
ment: If X is not reflexive then we can find a norm-one element z ∈ X∗∗\X.
By Goldstine’s theorem X1 is σ(X∗∗, X∗)-dense in X∗∗

1 . Since the Mackey
topology of X∗∗ si compatible with the duality (X∗∗, X∗) it follows that X1 is
m(X∗∗, X∗)-dense in X∗∗

1 , hence there exists a net (xλ) ⊂ X1 converging to z
in the m(X∗∗, X∗)-topology. Finally, since the Right topology of X coincides
with the restriction to X of the Mackey topology of its bidual, we deduce that
(xλ) is Right-Cauchy in X1. However, (xλ) cannot be Right-convergent in X
because z has been taken in X∗∗\X and the Mackey topology is Hausdorff.

It should be also noted here that the topics surveyed in this note have
been also revisited by Professor Wright in [15]. In the just quoted note, the
results concerning the Right topology are surveyed from an independent point
of view. Among the novelties introduced by Professor Wright we can find an
interesting generalization of a classical result due to Nikodym.

3. Sequentially Right-to-norm continuity

Our motivation to study sequentially Right-to-norm continuous operators
was the Eberlein-Šmulian Theorem. The latter affirms that weak compact-
ness is, in some sense, property determined by sequences instead of nets. The
first question that one can ask clearly is whether a sequentially Right-to-norm
continuous operator between Banach spaces is Right-to-norm continuous. The
answer was shown to be negative, in general. For example, the identity on
`1 is not Right-to-norm continuous. However, thanks to the Schur property
on `1, one can easily check that every Right-null sequence in `1 is automati-
cally weakly-null and hence norm-null. This shows that the identity on `1 is
sequentially Right-to-norm continuous.

In [8], we define pseudo weakly compact operators between Banach spaces
as those linear mapping which are sequentially Right-to-norm continuous. A
Banach space X is said to be Sequentially Right if every pseudo weakly com-
pact operator T : X → Y is weakly compact.

We have already seen that `1 is not sequentially Right. In order to have
a wide class of Banach spaces which are sequentially Right, we refer to a
previous paper by Wright and Ylinen [16]. In the just quoted paper, the author
showed that every C*-algebra is sequentially Right (see [16, Proposition 2.2]).
We shall see now how sequentially Right spaces are related to those Banach
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spaces satisfying property (V ) of Pelczynski.
First we recall that a series

∑
n xn in a Banach space X is called weakly

unconditionally Cauchy (w.u.C.) if there exists C > 0 such that for any finite
subset F ⊂ N and εn = ±1, we have ‖

∑
n∈F εnxn‖ ≤ C. A linear mapping

between Banach spaces, T : X → Y is unconditionally converging if, for every
w.u.C. series

∑
n xn in X, the series

∑
n T (xn) is unconditionally convergent.

Finally, a Banach space X is said to have Pelczynski’s property (V) if, for
every Banach space Y , every unconditionally converging operator is weakly
compact.

For every w.u.C. series
∑

xn in a Banach space X, there is a bounded
linear operator U : c0 → X satisfying that U(en) = xn, where (en) is the
canonical basis of c0. It is well known that en converges to zero in the Strong*
topology of the commutative C*-algebra c0. Since in every C*-algebra, the
Strong*-topology and the Right topology coincide on bounded sets (compare
[1, Theorem II.7]), it follows that (en) is Right-null. Since a linear mapping
between Banach spaces is bounded if and only if it is Right-to-Right continu-
ous, we deduce that T (en) = xn is Right-null in X. This result was established
in [8, Lemma 13]. Since, by [4, Exercise 8, page 54], an operator between Ba-
nach spaces fails to be unconditionally converging if and only if it fixes a copy
of c0, we clearly have:

Proposition 3.1. [8] Every pseudo weakly compact operator between
two Banach spaces is unconditionally converging.

Corollary 3.2. [8] Every Banach space satisfying property (V ) is se-
quentially Right.

Since every JB*-triple also satisfies property (V ) (compare [2]), it follows
that every JB*-triple is sequentially Right.

The questions posed at the end of [8] remain open at this moment. It
still being an open question if every sequentially Right Banach space satisfies
property (V ).
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nachräume und ihre topologische Erzeugung, Studia Math. 38 (1970), 105 –
124.

[11] Stephani, I.,Generating topologies and quotients of injective operator ideals
in “Banach space theory and its applications” (Bucharest, 1981), Lecture
Notes in Math. 991, Springer, 1983, 239 – 258.

[12] Wong, N.-Ch.,Topologies and bornologies determined by operator ideals. II,
Studia Math. 111 no. 2 (1994), 153 – 162.

[13] Wong, N.Ch.,The triangle of operators, topologies, bornologies, to appear in
the Proceedings of International Congress of Chinese Mathematicians 2004,
Hong Kong, by AMS-IP.

[14] Wong, N.Ch., Wong, Y.-Ch.,Topologies and bornologies de-
termined by operator ideals, Math. Ann. 282 no. 4 (1988),
587 – 614.

[15] Wright, J.D.M.,Right topology for Banach spaces and weak compactness,
preprint 2006.

[16] Wright, J.D.M., Ylinen, K.,Multilinear maps on products of operator
algebras, J. Math. Anal. Appl. 292 no. 2 (2004), 558 – 570.


