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Abstract : We survey a brief account of topological open problems inside the area of renorm-
ings of Banach spaces. All of them are related with the Stone’s theorem on the paracom-
pactness of metric spaces since it is our scalpel to find out the rigidity condition for the
renorming process. All of them have been collected in our recent monograph [21] which
is the main source for the present survey article. We also present recent results showing
the connection between Stone‘s theorem and Deville‘s master lemma for locally uniformly
rotund renormings.
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of non compactness.

AMS Subject Class. (2000): 46B20, 46B50, 54D20.

1. Introduction

The paracompactness is a generalization of the concept of compactness
and it belongs to the class of concepts related with covering properties of
a topological spaces. On the other hand, the concept of full normality can
be regarded as belonging to another genealogy of concepts, the separation
axioms which include regularity, normality, etc. The Stone’s theorem says that
those two concepts, belonging to different categories, coincide for Hausdorff
topological spaces, see [22, Chapter V]. In particular, the fact that every
metrizable space is paracompact is going to be a fundamental one when we
are looking for convex renorming properties in a Banach space. Indeed the
use of Stone’s theorem has been extensively considered in order to build up
new techniques to construct equivalent locally uniformly rotund norms on a
given normed space X in [21]. The σ-discreteness of the basis for the metric
topologies gives the necessary rigidity condition that appears in all the known
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cases of existence of such a renorming property, [8, 19]. It is our aim here to
survey a brief account of some of my favourite topological open problems in the
area, and in particular the ones connected with my lecture in the Conference
of Banach Spaces held at Cáceres, Spain, from 4 to 8 of September 2006.
Some of them are related with classical questions asked by different people in
conferences, papers and books. Others have been presented as open problems
in schools, workshops, conferences and recent papers on the matter remaining
with this character up to our knowledge. All of them have been collected in our
recent monograph [21] which is the main source for the present survey article.
We apologize for any fault assigning authorship to a given question. The
intention here is to provide a general picture to deal with good questions in the
area rather than to formulate precise evaluation for the first time the problems
were proposed. I would like to thank Professor Jesús M.F. Castillo for his kind
invitation and nice hospitality during my very short visit to Cáceres for the
ICM 2006 Satellite Conference of Banach spaces.

2. Kadec renormings

Let us remember that a norm in a normed space is said to be a Kadec
norm if the weak and the norm topologies coincide on the unit sphere, and it
is said to be strictly convex when the unit sphere doest not contain any non
trivial segments. After the results presented in the monograph [21] it comes
up that the study of strictly convex or Kadec rotund norms, [8, 17] should be
of great interest in the near future. Precisely, we are proposing the following
general problem:

Question 1. The study of non linear maps Φ : X → Y transferring a
Kadec (resp. a strictly convex) norm from a normed space Y with Kadec
(resp. strictly convex) norm to X.

For the case of strict convexity we refer to the recent paper [20] where a
linear topological characterization of the property of strictly convex renorming
for normed spaces is presented. For dual norms in spaces C(K)∗, where K
is a scattered compact space, and in particular for the compactification of
trees, a recent result has been obtained by R. Smith [30, 31]. The problem
for Kadec renormings is completely open. The main reason is that there is no
example of a normed with a σ-isolated network for the weak topology without
admitting an equivalent Kadec norm, [21]. Indeed, transferring results for
normed spaces with a σ-isolated network for the weak topology are obtained
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in [21, Chapter 3]. Nevertheless, the convexification problem in the core of
the matter seems to be very difficult to deal with. Let us introduce here some
ideas for the study of the question.

If we have a Kadec norm ‖·‖ on the normed space X, then the identity map
from (SX , σ(X, X∗)) to (X, ‖ · ‖) is continuous. If we have a subset C of the
normed space X, a normed space (Y, ‖ · ‖) and a map φ : (C, σ(X, X∗)) → Y ,
then φ is called piecewise continuous if there is a countable cover C = ∪∞n=1Cn

such that every one of the restrictions φ|Cn
is weak to norm continuous. A

norm pointwise limit of a sequence of piecewise continuous maps is called a
σ-continuous map, [19]. Indeed, we have the following result:

Proposition 1. (See [19, Theorem 1]) A map φ from (C, σ(X, X∗))
into a normed space (Y, ‖ · ‖) is σ-continuous if, and only if, for every ε > 0
we have C =

⋃∞
n=1 Cn,ε in such a way that for every n ∈ N and every x ∈ Cn,ε

there is a weak neighbourhood U of x with

osc
(
φ|U∩Cn,ε

)
: sup

{
‖φ(x)− φ(y))‖ : x, y ∈ U ∩ Cn,ε

}
< ε .

In a normed space (X, ‖ · ‖) with a Kadec norm the identity map in X
from the weak to the norm topologies is σ-continuous, the norm topology
has a network N that can be written as a countable union of subfamilies,
N = ∪∞n=1Nn, where every one of the subfamilies Nn is a discrete family in its
union ∪{N : N ∈ Nn} endowed with the weak topology, i.e., it is an isolated
subfamily for the weak topology. No example is known of a Banach space with
this kind of network, which is called a descriptive Banach space, and without
equivalent Kadec norm, see [21, Chapter 3].

In the classical theory of Banach spaces, not only were normed spaces
considered, but also those spaces on which a metric is defined which is com-
patible with the vector space operations. The uniform structure of a metriz-
able topological vector spaces is described with the following notion (see
[14, p. 163]):

Definition 1. An F -norm in a vector space X is a function ||| · ||| : X →
R+ such that:

(1) x = 0 if |||x||| = 0,

(2) |||λx||| ≤ |||x||| if |λ| ≤ 1,

(3) |||x + y||| ≤ |||x|||+ |||y|||,
(4) limn |||λxn||| = 0 if limn |||xn||| = 0,
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(5) limn |||λnx||| = 0 if limn λn = 0.

We have been able to obtain the following theorem that gives a character-
ization of Kadec renormability by means of F -norms:

Theorem 1. (See [25]) Let (X, ‖ · ‖) be a normed space with a norming
subspace F in X∗. The following conditions are equivalent:

(i) There is an equivalent σ(X, F )-lower semicontinuous and σ(X, F )-Kadec
F -norm |||·|||, i.e., an F -norm such that the σ(X, F ) and norm topologies
coincide on the unit sphere

{x ∈ X : |||x||| = 1} .

(ii) The identity map from the unit sphere (SX , σ(X, F )) into the normed
space (X, ‖ · ‖) is σ-continuous.

(iii) The norm topology has a network N that can be written as a countable
union of subfamilies, N = ∪∞n=1Nn, where every one of the subfamilies
Nn is a discrete family in its union ∪{N : N ∈ Nn} endowed with the
σ(X, F ) topology.

Let us remember that a quasi-norm in a vector space X is a function
q : X → R+ such that:

(1) x = 0 if q(x) = 0,

(2) q(αx) = |α|q(x) for all α ∈ R and x ∈ X,

(3) q(x + y) ≤ k(q(x) + q(y)) for some k ≥ 1 and all x, y ∈ X.

Analyzing the F -norm constructed in the former theorem we arrive to the
following:

Corollary 1. (See [25]) Descriptive Banach spaces coincide with the
ones with an equivalent quasinorm q, such that the weak and the norm topol-
ogy coincide on the unit sphere {x ∈ X : q(x) = 1}.

Prior estimates for the quasinorm q above were firstly obtained by M. Raja
in [28] with a positively homogeneous function q : X → R+ only. The question
that remains is the following:
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Question 2. Let X be a normed space and F a norming subspace of X∗

such that the identity map Id : (X, σ(X, F )) → (X, ‖ · ‖) is σ-continuous. Is
it possible to convexify the construction above to get an equivalent σ(X, F )-
Kadec norm ||| · |||; i.e., the σ(X, F ) and norm topologies coincide on the unit
sphere

{x ∈ X : |||x||| = 1} ?

If the former question has a positive answer, then Question 1 for Kadec
renormings has a similar answer to the one given in [21] for LUR renormings.
Indeed, a σ-continuous map φ from the weak to the norm topologies which is
also co-σ-continuous for the norms will transfer the Kadec norm in Y to X,
see [21].

In relation with descriptive properties let us remind that for a descriptive
Banach space the family of weak Borel sets coincides with the norm Borel
sets, [7, 24]. Based on a sophisticated construction of S. Todorcevic [33],
R. Pol has kindly informed us that it is consistent the existence of a compact
scattered space K such that in the function space C(K) each norm open set
is an Fσ-set with respect to the weak topology but the identity map

Id :
(
C(K), σ(C(K), C(K)∗)

)
→ (C(K), ‖ · ‖∞)

is not σ-continuous, [15]. Descriptive Banach spaces are Souslin sets made up
with σ(X∗∗, X∗) open or closed subsets of the bidual. This class of spaces are
called weakly Cech analytic and coincide with the ones that can be represented
with a Souslin scheme of Borel subsets in their σ(X∗∗, X∗) biduals. The
fact that every weakly Cech analytic Banach space is σ-fragmented is the
main result in [11]. The reverse implications are open questions considered in
[12, 13], and we remind here the following:

Question 3. Is there any gap between the classes of descriptive Banach
spaces and that of σ-fragmented Banach spaces?

After the seminal paper of R. Hansell [7] we know that a covering prop-
erty on the weak topology of a Banach space, known as hereditarely weakly
θ-refinability, is a necessary and sufficient condition for the coincidence of
both classes. Indeed, all known examples of normed spaces which are not
weakly θ-refinable are not σ-fragmentable by the norm, [2, 3]. For spaces
of continuous functions on trees R. Haydon has proved that there is no gap
between σ-fragmented and the pointwise Kadec renormability property of the
space, [8]. We can consider a particular case of the former question as follows.
For this question R. Hansell conjectures a positive answer:



202 j. orihuela

Question 4. Let X be a weakly Cech analytic Banach space where every
norm open set is a countable union of sets which are differences of closed sets
for the weak topology. Doest it follow that the identity map

Id : (X, σ(X, X∗)) → (X, ‖ · ‖)

is σ-continuous?

In the particular case of a Banach space X with the Radon Nikodym
property it is still an open problem to decide if X has even an equivalent
rotund norm. In that case the LUR renormability reduces to the question of
Kadec renormability by our results in [18]. So we summarize here:

Question 5. If the Banach space X has the Radon Nikodym property
(i.e., every bounded closed convex subset of X has slices of arbitrarily small
diameter), does it follow that X has an equivalent Kadec norm? Does it have
an equivalent rotund norm?

Let us remark here that a result of D. Yost and A. Plicko [27] shows that
the Radon Nikodym property doest not imply the separable complementa-
tion property. Thus it is not possible any approach to the former question
based on the projectional resolution of the identity which works for the dual
case, [4].

3. Fréchet smooth norms and locally uniformly rotund
renormings

In a Hilbert space (H,< · >) the parallelogram law says that

2‖x‖2 + 2‖y‖2 = ‖x + y‖2 + ‖x− y‖2

for every x, y ∈ H. It is in the core of the basic results on the geometry
of Hilbert spaces such as the projection theorem, the Lax-Milgram theorem
or the variational approach for minimizing quadratic forms on H. A norm
‖ · ‖ in a real vector space X is said to be locally uniformly rotund (LUR) if,
asymptotically, it has a local behavior similar to the parallelogram law:

lim
n

(
2‖x‖2 + 2‖xn‖2 − ‖x + xn‖2

)
= 0 ⇒ lim

n
‖x− xn‖ = 0

for any sequence (xn) and x in X. In this case for every point of the unit
sphere x ∈ SX , if we select fx ∈ SX∗ such that fx(x) = 1, then we have that
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the slices

S(fx, 1− δ) := {y ∈ BX : fx(y) > 1− δ} , δ ∈ (0, 1) ,

form a neighbourhood basis at x for the norm topology induced on the unit
ball BX . Indeed,

lim
n

(
2‖x‖2 + 2‖xn‖2 − ‖x + xn‖2

)
= 0

whenever limn fx(xn) = 1 and xn ∈ BX for every n ∈ N, since

lim
n
‖x + xn‖2 ≥ lim

n
fx(x + xn)2 = 4 .

Thus, the identity map from (SX , σ(X, X∗)) to (X, ‖ · ‖) is continuous in
a very special way that we call slice continuity.

Let us see that we have a similar phenomena for a Fréchet smooth norm
if we allow countable splittings and sequence limits, i.e., if we consider the
class of mappings called σ-slicely continuous, togheter with a jump to the
dual space X∗ through the duality mapping.

For a given subset C of the normed space X, a norming subspace F ⊂ X∗,
and a normed space (Y, ‖ · ‖), a map φ : (C, σ(X, F )) → Y is called slicely
continuous if for every x ∈ C and every ε > 0 there is a σ(X, F )-open half
space H with x ∈ H and such that osc

(
φ|H∩C

)
< ε ; φ is called piecewise

slicely continuous if there is a countable cover C = ∪∞n=1Cn such that every
one of the retrictions φ|Cn

is slicely continuous. A norm pointwise limit of a
sequence of piecewise slicely continuous maps is called a σ-slicely continuous
map, [19]. Indeed, we have the following result:

Proposition 2. (See [19, Theorem 2]) Let C be a subset of the
normed space X and F ⊂ X∗ a norming subspace for X. A map φ from
(C, σ(X, F )) into a normed space (Y, ‖ · ‖) is σ- slicely continuous if, and only
if, for every ε > 0 we have C =

⋃∞
n=1 Cn,ε in such a way that for every n ∈ N

and every x ∈ Cn,ε there is a σ(X, F ) open half space H with x ∈ H and

osc
(
φ|H∩Cn,ε

)
: sup

{
‖φ(x)− φ(y))‖ : x, y ∈ H ∩ Cn,ε

}
< ε .

A main result here is the following characterization of normed spaces
admitting an equivalent LUR norm:
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Theorem 2. (See [21]) A normed space X with a norming subspace
F ⊂ X∗ admits an equivalent σ(X, F )-lower semicontinuous and LUR norm
if, and only if, the identity map from SX into X is σ-slicely continuous from
the σ(X, F ) to the norm topology.

Based on this result we build up in [21] the necessary tools for the study of
Question 1 above for the locally uniformly rotund renormnings. Among the
results presented there is a careful analysis of the class of σ-slicely continuous
map. It is proved, for instance, that this class is stable by sums and products
(when X is an algebra too) leading us to the following inversion theorem:

Theorem 3. (See [21, Theorem 5.11]) Let (X, ‖ · ‖) be a normed space
and F ⊂ X∗ a norming subspace for it. Let Φ : (X, σ(X, F )) → X be a
σ-slicely continuous map and let us consider the set

SΦ :=
{

x ∈ X : 0 ∈ {(Id− Φ)n(x) : n ∈ N}
σ(X,X∗)

}
.

Then the identity map

Id : (SΦ, σ(X, F )) → (X, ‖ · ‖)

is σ-slicely continuous and consequently the normed space X admits an equiv-
alent σ(X, F )-lower semicontinuous and locally uniformly rotund equivalent
norm on every point of SΦ.

In a Hilbert space (H,< · >) the norm is Fréchet differentiable at ev-
ery point other than the origin and the duality map is nothing else but the
Riesz isomorphism theorem which is slicely continuous on the unit sphere SH .
Indeed, ‖x − y‖2 = 1 − 2 < x, y > +1 for every x, y ∈ SH . Then if we
fix x ∈ SH we see that for every y ∈ {z ∈ SH :< z, x >≥ 1 − δ} we have
‖x − y‖ ≤

√
2δ. The duality map δ behaves in that way for a Fréchet differ-

entiable norm too. We follow the arguments showed in [21]:

Proposition 3. Let (X, ‖ · ‖) be a Banach space with a Fréchet dif-
ferentiable norm and δ : (SX , σ(X, X∗)) → X∗ be the duality map; i.e.,
δ(x)(x) = 1 = ‖x‖ for every x ∈ SX . Then δ is σ-slicely continuous.

Proof. The Smulyan test says that ‖ · ‖ is Fréchet differentiable at x ∈ SX

if, and only if, limn ‖fn−gn‖ = 0 whenever fn, gn ∈ SX∗ satisfy limn(fn(x)) =
limn(gn(x)) = 1. If we fix ε > 0 and x ∈ SX there is 1 > µε

x > 0 such that
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‖f − g‖ ≤ ε/2 whenever f, g ∈ SX∗ and f(x) > 1−µε
x and g(x) > 1−µε

x. Let
us define Sn,ε := {x ∈ SX : µε

x > 1/n}. It is clear that SX = ∪∞n=1Sn,ε and
that for any x ∈ Sn,ε we have

‖δ(y)− δ(z)‖ ≤ ‖δ(y)− δ(x)‖ + ‖δ(x)− δ(z)‖ ≤ ε

whenever

δ(x)(y) > 1− 1/n , δ(x)(z) > 1− 1/n and y, z ∈ Sn,ε ,

since µε
y > 1/n and µε

z > 1/n by the very definition of our sets Sn,ε. Thus for
the open half space H := {y ∈ X : δ(x)(y) > 1 − 1/n} we have that x ∈ H
and

osc
(
δ|H∩Sn,ε

)
: sup

{
‖δ(y)− φ(z))‖ : y, z ∈ H ∩ Sn,ε

}
≤ ε

so the proof is over.

We have seen in [21] that for a Banach space X with a Fréchet differentiable
norm which has Gâteaux differentiable dual norm the duality map δ provides
a σ-slicely continuous and co-σ-continuous map between the unit spheres of X
and the dual space X∗, and therefore X admits an equivalent locally uniformly
rotund norm. It seems to be possible that the requirement on the dual norm
could be relaxed by looking for σ-continuous maps from the dual space X∗

into X such that the composition with the duality map would provide enough
σ-slicely continuous maps from X into X to approximate the identity map,
and to finally get the LUR renormability of the space X itself. So we propose
to study the following:

Question 6. Let X be a Banach space with a Fréchet differentiable norm.
Is it possible to construct a sequence of σ-continuous maps for the norm
topologies φp : X∗ → X such that the sequence {φp ◦ δ : p ∈ N} will provide a
way to approximate the identity map on the unit sphere of X? For instance,
in such a way that:

0 ∈ {(Id− φp)n(x) : n, p ∈ N}
σ(X,X∗)

for every x ∈ SX (see Theorem 3).

A place to begin to look for the sequence (φn ◦δ) could be modifications of
the Toruncyck homeomorphism between the dual X∗ and X for every Asplund
space X since the density characters of X and X∗ coincide. If it is so, the
Banach space will be LUR renormable and we will have a positive answer to
the old question:
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Question 7. Let X be a Banach space with a Fréchet differentiable norm.
Does it follow that X admits an equivalent locally uniformly rotund norm?

Indeed, R. Haydon has recently showed that if the dual space X∗ has a dual
LUR norm then X admits an equivalent LUR norm and these spaces admit
C1-partitions of unity as the one considered by Asplund, [9]. The former
problem has been asked by R. Haydon in [8] and it appears in the book by
R. Deville, G. Godefroy and V. Zizler, [1, Chapter VIII, Theorem 3.2 and
Theorem 3.12] as well as in Zizler’s renorming paper [34].

The function s(x, y) := 2‖x‖2 + 2‖y‖2 − ‖x + y‖2 defines a symmetric on
a given normed space (X, ‖ · ‖). When we have X ⊂ l∞(Γ) we can consider
the pointwise topology TP induced from the product space RΓ. The norm of
X is said to be pointwise LUR if

lim
n

s(xn, x) = 0 ⇒ Tp − lim
n

xn = x

for any sequence (xn) and x in X. When we use the standard embedding of
a Banach space X into l∞(BX∗) we would have the notion of a weakly LUR
norm. In that case the Banach space admits an equivalent LUR norm too as
we proved in [16]. Nevertheless the notion of pointwise LUR norm is weaker
than that of weakly LUR. Indeed, the space l∞(N) admits the equivalent
pointwise LUR norm defined by:

|||x|||2 := ‖x‖2
∞ +

∞∑
n=1

1/2n|x(n)|2

for every (x(n)) ∈ l∞(N), but it does not have any equivalent Kadec
norm, [1].

We have been able to obtain the following characterization for this kind of
strictly convex norms:

Theorem 4. (See [6]) Let X be a subspace of the normed space l∞(Γ)
for some non empty set Γ. Then X admits an equivalent pointwise locally
uniformly rotund norm if, and only if, the pointwise topology Tp on X admits
a network

N = ∪∞n=1Nn

where every one of the families Nn is pointwise-slicely discrete in its union
∪{N : N ∈ Nn}, i.e., for every x ∈ ∪{N : N ∈ Nn} there is a pointwise
open half space H with x ∈ H such that H meets only one member of the
family Nn.



geometry of banach spaces 207

The method to prove the former theorem is based on the following lemma,
[26]. It connects Deville’s master lemma, see Lemma 1.1 in [1, Chapter VII],
with our approach as developed in [21] and it shows that the concept of slicely
discrete family in its union (or slicely isolated family) is a central one to deal
with symmetrics of the form

s(x, y) := 2|||x|||2 + 2|||y|||2 − |||x + y|||2.

Indeed, for every slicely isolated family B it is possible to construct, using
Deville’s lemma, an equivalent norm ||| · ||| such that from the fact that
limn s(xn, x) = 0 it follows that eventually xn and x belong to essentially
the same set of the family B.

Lemma 1. (See [26, Connection Lemma]) Let (X, ‖·‖) be a normed space
and F be a norming subspace in X∗. Let B := {Bi : i ∈ I} be an uniformly
bounded and slicely discrete in its union family of subsets of X for the σ(X, F )-
topology. Then there is an equivalent and σ(X, F )-lower semicontinuous norm
‖ · ‖B on X such that:

for every sequence {xn : n ∈ N} and x in X with x ∈ Bi0 for io ∈ I the
condition

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B

)
= 0

implies that

(i) there is n0 such that

xn, (xn + x)/2 /∈ co {Bi : i 6= i0, i ∈ I}
σ(X,F )

for all n ≥ n0 ;

(ii) for every positive δ there is nδ ∈ N such that

xn ∈ co(Bi0) + B(0, δ)
σ(X,F )

whenever n ≥ nδ .

The former lemma also applies to prove our basic result:

Corollary 2. In a normed space X with a norming subspace F in X∗

we have an equivalent σ(X, F )-lower semicontinuous and locally uniformly
rotund norm whenever there are families

{Bn : n = 1, 2, . . . }
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which are slicely discrete in their unions for the σ(X, F ) topology and such
that, for every x in X, and every ε > 0, there is some positive integer n with
the property that x ∈ B ∈ Bn and that ‖ · ‖ − diam(B) < ε ; i.e., whenever
the norm topology has a σ(X, F )-slicely isolated network

B := ∪{Bn : n = 1, 2, . . . } .

Proof. It is enough to consider the norms ‖ · ‖Bn constructed using the
connection lemma for every one of the families Bn and to define the new norm
by

|||x|||2 :=
∞∑

n=1

cn‖x‖2
Bn

,

for every x ∈ X, where the sequence (cn) is choosen accordingly for the
convergence of the series.

As an application of the connection lemma we have for instance the fol-
lowing result (see [26]):

Theorem 5. Let K be a separable compact space. Let {Bn : n = 1, 2, . . . }
be slicely isolated families for the pointwise topology in C(K) such that for
every x in C(K), and every ε > 0, there is some positive integer n, with the
property that

x ∈ B ∈ Bn and ‖ · ‖ − dist(y, KB)) < ε

for all y ∈ B and some pointwise compact subset KB in C(K). Then the
Banach space C(K) admits an equivalent and Tp-lower semicontinuous locally
uniformly rotund norm. When KB can be taken a norm compact subset in
C(K) the separability assumption on the compact space K can be dropped.

The former result fits in the study of compact spaces K ⊂ RΓ formed with
Baire one functions on a Polish space Γ, the so called Rosenthal compacta.
When K is separable and every element in K has at most countably many
discontinuities, then we have obtained in [10] that the Banach space C(K)
admits an equivalent Tp-lower semicontinuous locally uniformly rotund norm.

Question 8. If K is a separable Rosenthal compact then does it follow
that C(K) admits an equivalent locally uniformly rotund renorming?
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A positive answer is conjectured in [10] and it would yield as an immediate
corollary that X∗ is LUR renormable whenever X is a separable Banach space
with no subspace isomorphic to `1. Indeed, in this case, we may take Γ
to be the unit ball of the dual space X∗, which is compact and metrizable
(so certainly Polish) under the weak* topology σ(X∗, X) and K to be the
unit ball of X∗∗ under the weak* topology σ(X∗∗, X∗). By the results of
[23], the elements of K are then of the first Baire class when we look at
them as functions on Γ. Moreover, K is separable, since the unit ball of
X (which we are assuming to be separable) is dense in K by Goldstine’s
theorem. Todorcevic has recently observed that there is a scattered Rosenthal
compactification H of a tree space such that C(K) has no LUR renorming,
[33]. Since that example H is non-separable and there are elements with
uncountable many discontinuities we may also ask the following:

Question 9. Let K ⊂ RΓ be a compact subset of Baire one functions on
a Polish space Γ such that every function of K has at most countably many
discontinuities.

Do the Borel sets for the pointwise and the norm topologies coincide in
C(K)? Is the identity map Id : Cp(K) → (C(K), ‖ · ‖∞) σ-continuous? Does
the Banach space C(K) admit an equivalent LUR norm?

Let us remark here that in this case the space Cp(K) is σ-fragmented by
the norm, see [10].

4. Measures of non compactness

For a bounded set B in a metric space X, the Kuratowski index of non-
compactness of B is defined by

α(B) := inf
{
ε > 0 : B ⊆ ∪m

i=1Ai such that diam(Ai) ≤ ε and m ∈ N
}
.

The main results in the recent work [5] provide extensions of Theorem 2 when
the Kuratowski index of non-compactness is used instead of the diameter.
Indeed, the following result is proved there:

Theorem 6. (See [5]) Let X be a normed space and let F be a norm-
ing subspace of its dual. Then X admits an equivalent σ(X, F )-lower semi-
continuous LUR norm if, and only if, for every ε > 0 we can write

X =
∞⋃

n=1

Xn,ε
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in such a way that for every x ∈ Xn,ε, there exists a σ(X, F )-open half space
H containing x with α (H ∩Xn,ε) < ε.

From the topological point of view we arrive to the following corollary
turning a discrete condition into a locally finite one.

Corollary 3. (See [5]) A normed space X admits an equivalent σ(X, F )-
lower semi-continuous LUR norm if, and only if, the norm topology has a
network N = ∪∞n=1Nn such that for every n ∈ N and for every x ∈ ∪Nn there
is a σ(X, F )-open half space H with x ∈ H such that H meets only a finite
number of elements in Nn.

These results open the door to the study of the situation for different
measures of non compactness. Indeed, the index α measures the distance of a
set B to a norm compact subset of the normed space X. We can introduce the
index β, studied by S. Troyanski in [32], to measure the distance to a uniform
Ebelein compacta, i.e., we set for a normed space X and a bounded subset B
of it the index:

β(B) := inf{ε > 0 : B ⊆ K + εBX where K is a uniform Eberlein compact}.

Another one is the distance to a weakly compact subset of the normed space:

χ(B) := inf{ε > 0 : B ⊆ K + εBX where K is a weakly compact subset},

or the separability index measuring the distance to separable subsets:

λ(B) := inf{ε > 0 : B ⊆ ∪∞i=1Ai such that diam(Ai) ≤ ε}.

We can now formulate the following:

Question 10. Given a normed space X that verifies the conditions of
Theorem 6 with the index λ (resp. β, χ) instead of α.

Is it true that the Borel sets for the norm and the σ(X, X∗) topology
coincide? Is the identity map Id : (X(σ(X, X∗)) → (X, ‖ · ‖) σ-continuous?
Doest X admit an equivalent LUR norm? In case of positive answers to any
of the above questions what can be said for the network characterizations?

The main result in [32] ensures that for a normed space X with a unit
ball BX such that for every point x ∈ SX and every ε > 0 there is an open
half space H with x ∈ H and such that β(H ∩ BX) < ε it follows that
X admits an equivalent locally uniformly rotund norm. The proof involved
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martingales calculus, nevertheless M. Raja [29] has just provided a geometrical
proof of that result completing the answer to the former question for the β
index in full generality. Indeed, M. Raja applies the methods of [5] to deal
with general measures of non compactness and for the β measure provides
the LUR renorming. Thus, it seems to be the right time to study the above
question with the index χ at least. With the index λ the question seems more
difficult, nevertheless we know examples of compact spaces K such that the
space C(K) can be decomposed as in Theorem 6, with the index λ instead of
the index α and nothing is known on descriptiveness of the space C(K). For
instance, that happens for the not necessarily separable Rosenthal compacta
of Question 9 that has been studied in [10]. We certainly know that the space
X[σ(X, X∗)] is σ-fragmented by its norm, [11], when it satisfies the conditions
of Theorem 6 with the index λ instead of α. Thus a negative answer to that
question is related with the answer to Question 3 too.
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