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Abstract : The main aim of this paper is to study the existence of solutions of the following
recursive functional equation

x(n) = f(n, x(n), x(n − 1))

in the space l2, under general assumptions. The main tools of our existence theorem are
the characterization of the relatively compact sets in the space l2 and Schauder Fixed point
theorem. Moreover, our functional equation has as particular cases some integral equations
of Urysohn type. Finally, we present some examples where our theorem can be applied.
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1. Introduction

In this paper we study the existence of solutions of the following recursive
functional equation

x(n) = f(n, x(n), x(n− 1)), x(0) = a. (1)

We will prove that under some conditions the problem (1) has solution in the
sequence Banach space l2.

Using a characterization of the relatively compact sets of the space l2 in
conjunction with Schauder’s fixed point theorem, we will be able to prove
our existence result under rather general assumptions being convenient in
applications.

We finally illustrate our result with some examples.
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2. Notation and auxiliary facts

Assume E is a real Banach space with norm ‖ · ‖ and zero element Θ.
Denote by B(x, r) the closed ball centered at x and with radius r and by Br

the ball B(Θ, r). If X is a nonempty subset of E we denote by X, ConvX the
closure and the closed convex closure of X, respectively. The symbols λX and
X+Y denote the usual algebraic operations on sets. Finally, let us denote by
ME the family of nonempty bounded subsets of E and by NE its subfamily
consisting of all relatively compact sets.

We will accept the following definition of the concept of measure of non-
compactness [2].

Definition 1. A mapping µ : ME −→ [0,∞) is said to be a measure of
noncompactness in E if the following conditions are satisfied:

1. The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂
NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(ConvX) = µ(X).

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5. If {Xn}n is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for
n = 1, 2, . . . and if limn→∞ µ(Xn) = 0 then the set X∞ =

⋂∞
n=1Xn is

nonempty.

The family kerµ described above is called the kernel of the measure of non-
compactness µ.

Further facts concerning measures of noncompactness and their properties
may be found in [2].

In the sequel we will work in the Banach sequence space l2 consisting of
real sequences (xn) which satisfy

∑∞
n=1 |xn|2 < ∞. The space l2 is furnished

with the standard norm

‖(xn)‖ =

( ∞∑
n=1

|xn|2
) 1

2

.

Now we recollect the properties of the measure of noncompactness which will
be used further on. We consider the operators Rm defined in l2 by

Rm : l2 −→ l2
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x = (xn) 7−→ Rm(x) = (yk), where

{
yk = 0, for k ≤ m− 1
yk = xk, for k ≥ m.

Moreover, for X ∈ Ml2 let us put

‖RmX‖ = sup{‖Rmx‖ : x ∈ X}.

Then, we consider the function µ defined on the family Ml2 by

µ(X) = lim
m→∞

‖RmX‖.

It is proved in [2, p. 22], that the function µ is a measure of noncompactness
in the space l2. Particularly, we have the following characterization of the
relatively compact subset of l2: Let X ∈ Ml2 , then X ∈ Nl2 if and only if
µ(X) = 0.

3. Main Result

In this section, we will study the following infinite system of nonlinear
numerical equations

x(n) = f(n, x(n), x(n− 1)), (2)

for n ∈ N and with the initial condition x(0) = a.

System (2) will be investigated under the following hypotheses:

(i) The function f : N×R×R −→ R is such that there exist two sequences
(c(n)) and (d(n)) ∈ l2 and there exists a function ψ : R+ × R+ −→ R+

such that
|f(n, x, y)| ≤ c(n) + d(n)ψ(|x|, |y|),

where ψ satisfies the following property : (i−a) Let r, r′, s, s′ ∈ R+ such
that r ≤ r′ and s ≤ s′, then ψ(r, s) ≤ ψ(r′, s′).

(ii) For n fixed, f(n,−,−) : R× R → R is a continuous function.

(iii) The inequality
‖(c(n))‖2 + ‖(d(n))‖2ψ(r, r) ≤ r,

has a positive solution r0.

Now we present our main result.

Theorem 1. Under assumptions (i) − (iii), the system (2) has at least
one solution x = (x(n)) in the space l2.
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Proof. Let S be the set of all sequences on R and consider the operator A,
defined by

A : l2 −→ S, ((Ax)(n)) = (f(n, x(n), x(n− 1))).

Firstly, we will prove that if (x(n)) ∈ l2, then A(x(n)) ∈ l2. By using assump-
tion (i) and the Cauchy-Schwarz’s inequality, we can obtain that

‖A(x(n))‖2
2 =

∞∑
n=1

|f(n, x(n), x(n− 1))|2

≤
∞∑

n=1

(c(n) + d(n)ψ(|x(n)|, |x(n− 1)|))2

≤
∞∑

n=1

(c(n) + d(n)ψ(‖(x(n))‖2, ‖(x(n))‖2))2

=
∞∑

n=1

(c(n)2 + 2c(n)d(n)ψ(‖(x(n))‖2, ‖(x(n))‖2)

+ d(n)2ψ(‖(x(n))‖2, ‖(x(n))‖2))2

≤
∞∑

n=1

c(n)2 + 2

( ∞∑
n=1

(c(n)2)

) 1
2

×

( ∞∑
n=1

(d(n)2)

) 1
2

ψ(‖(x(n))‖2, ‖(x(n))‖2)

+ ψ(‖(x(n))‖2, ‖(x(n))‖2)2
∞∑

n=1

d(n)2.

As (c(n)), (d(n)) ∈ l2 and ψ(‖x(n)‖2, ‖x(n)‖2) is a constant, this gives us that
the operator A transforms the space l2 into itself.

On the other hand, if (x(n)) ∈ l2, the above estimate allows us to infer
that

‖(Ax(n))‖2
2 ≤ ‖(c(n))‖2

2 + 2ψ(‖(x(n))‖2, ‖(x(n))‖2 · ‖(c(n))‖2‖(d(n))‖2

+ ψ(‖(x(n))‖2, ‖(x(n))‖2)2 · ‖(d(n))‖2
2

= (‖(c(n))‖2 + ψ(‖(x(n))‖2, ‖(x(n))‖2) · ‖(d(n))‖2)
2 .

This inequality in conjunction with the assumption (iii) ensures that there
exists a positive number r0 for which, if ‖(x(n))‖2 ≤ r0 then ‖(Ax(n))‖2 ≤ r0,
i.e. the operator A transforms the ball Br0 into itself.
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In what follows let us take a nonempty subset X of the ball Br0 . We will
prove that A(X) is a relatively compact set of Br0 . To do that we use the
characterization of the relatively compact sets in l2 that we have studied in
the previous section. Let us fix p0 ∈ N, then using assumption (i) and the
Cauchy-Schwartz’s inequality, we get

‖Rp0(Ax(n))‖2
2 = ‖(0, · · · , 0, f(p0, x(p0), x(p0 − 1), · · · )‖2

2

=
∑
n≥p0

|f(n, x(n), x(n− 1))|2

≤
∑
n≥p0

c(n)2 + 2ψ(r0, r0)

∑
n≥p0

c(n)2

 1
2

·

∑
n≥p0

d(n)2

 1
2

+ ψ(r0, r0)2
∑
n≥p0

d(n)2.

Hence, taking limit when p0 →∞,we get

lim
p0→∞

sup
x∈X

‖Rp0(Ax)‖ = 0.

Consequently, AX is a relatively compact set of Br0 .
Now, we consider the sequence of sets (Bn

r0
), where B1

r0
= Conv (A(Br0)),

B2
r0

= Conv (A(B1
r0

)) and so on. Observe that all sets of this sequence are
nonempty, bounded, closed and convex. Moreover Bn+1

r0
⊂ Bn

r0
for n = 1, 2, . . .

As, in our case, µ(Bn
r0

) = 0 for every n, we have that lim
n→∞

µ(Bn
r0

) = 0 and

thus from the axiom (5) of Definition 1, we infer that the set C =
⋂∞

n=1B
n
r0

is nonempty, bounded, closed and convex and moreover µ(C) = 0. It is easily
proved that the operator A maps the set C into itself.

Now we show that A is continuous on the set C. To do this we will
consider the sequence Xn = (xj

n) in C and the element X = (xj) in C such
that limn→∞Xn = X. As C is relatively compact subset in l2 and taking
into account the characterization of such sets given in the previous section,
fix ε > 0 there exists p0 ∈ N such that for p ≥ p0, we have

‖Rp(AXn)‖2 <

√
ε

8
, ‖Rp(AX)‖2 <

√
ε

8

(Note that AXn and AX are elements of C).
On the other hand, in virtue of the uniform continuity of the function

f(p,−,−) : [−r0, r0] × [−r0, r0] −→ R for every p ≤ p0 we can obtain for the
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same fixed previously, ε > 0, the existence of δ > 0 such that for r, r′, s, s′ ∈

[−r0, r0] if ‖(r, s)− (r′, s′)‖ < δ then |f(p, r, s)− f(p, r′, s′)| <
√

ε

2p0
for every

p ≤ p0. Moreover, as limn→∞Xn = X, for every δ > 0 above mentioned there
exists n0 ∈ N such that for n ≥ n0 we have ‖Xn − X‖2

2 < δ. Finally, for
n ≥ n0 we get

‖AXn −AX‖2
2 =

∞∑
j=1

|f(j, xj
n, x

j−1
n )− f(j, xj , xj−1)|2

≤
p0−1∑
j=1

|f(j, xj
n, x

j−1
n )− f(j, xj , xj−1)|2 +

∞∑
j=p0

|f(j, xj
n, x

j−1
n )− f(j, xj , xj−1)|2

≤
p0−1∑
j=1

ε

2p0
+ ‖Rp0AXn‖2

2 + ‖Rp0AX‖2
2 + 2‖Rp0AXn‖2 · ‖Rp0AX‖2

≤ p0 ·
ε

2p0
+
ε

8
+
ε

8
+ 2 · ε

8
< ε.

So we deduce that the operator A is continuous on the set C.
Finally, applying the Schauder fixed point theorem we infer that A has at

least one fixed point in the set C. Obviously it is a solution of our equation
(2). Thus the proof is complete.

Remark 1. The condition x(0) = a is used in order to give sense to our
equation with n = 1 and it is not relevant in the proof of the theorem.

4. Examples

Firstly, in the first and second example, we will give some concrete exam-
ples of integral equations which illustrate the result contained in Theorem 1.
The example 3 will show us the relevance of some assumptions of Theorem 1.
And the example 4 will show us that our hypotheses are not necessary.

Example 1. Let us consider

f(n, x, y) = c(n) +
∫ 1

0
u(n, x, y, s)dµ(s),

under the following assumptions

(i) (c(n)) ∈ l2
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(ii) |u(n, x, y, s)| ≤ d(n) + ψ(|x|, |y|)ϕ(s, n), with (d(n)) ∈ l2, ϕ(−, n) ∈

L1[0, 1],
∞∑

n=1

‖ϕ(−, n)‖2
1 <∞ and the function ψ satisfying the assump-

tions of our main theorem.

Then
|f(n, x, y)| ≤ |c(n)|+ d(n) + ψ(|x|, |y|)‖ϕ(−, n)‖1.

Under this conditions our equation is the following one

x(n) = c(n) +
∫ 1

0
u(n, x(n), x(n− 1), s)dµ(s),

which is an Uryshon type equation.
We conclude that our functional equation has as particular cases some

integral equations of Urysohn type.

Example 2. For every s ∈ [0, 1], let us consider the function

f(n, x, y) =
1
n

+
∫ 1

0

s2

n2
+

1
2

cos2(n · s)
n

(x cos s+ y sin s)dµ(s).

In this case, our problem is

x(n) =
1
n

+
∫ 1

0

s2

n2
+

1
2

cos2(n · s)
n

(x(n) cos s+ x(n− 1) sin s)dµ(s)

x(0) = a.

(3)

We get that

|f(n, x, y)| ≤ 1
n

+
1
n2
µ([0, 1]) + (|x|+ |y|) · 1

2

∫ 1

0

| cos2(n · s)|
n

dµ(s).

The elements of our main theorem are

(c(n)) =
(

1
n

+
1
n2

)
, (d(n)) =

(
sin(2n)

8n2
+

1
4n

)
, ψ(|x|, |y|) = (|x|+ |y|).

These elements satisfy the hypothesis of our main result, so applying theorem 1
we get that the problem (3) has a solution in l2.
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Example 3. We consider the function f(n, x, y) = n+
1
n2

(x+ y).

In this case, our equation is the following one

x(n) = n+
1
n2

(x(n) + x(n− 1)).

Notice that
|f(n, x, y)| ≤ n+

1
n2

(|x|+ |y|),

so the elements of our theorem are

(c(n)) = (n), (d(n)) =
(

1
n2

)
, ψ(x, y) = x+ y.

Assumptions (i−a) and (ii) are satisfied, but hypotheses (i) and (iii) are not
satisfy because (c(n)) /∈ l2.

Our equation can be written in the following way(
1− 1

n2

)
x(n) = n+

1
n2
x(n− 1)). (4)

If our equation will have a solution (x(n)) ∈ l2, then lim
n→∞

x(n) = 0 and in

this case, taking limit in (4) when n → ∞ we will get 0 = ∞ which is not
possible.

Example 4. We consider the function f(n, x, y) =
1
n

(y − x).

In this case, our equation is the following one

x(n) =
1
n

(x(n− 1)− x(n)), (5)

Notice that
|f(n, x, y)| ≤ 1

n
(|x− y|) ≤ 1

n
(|x|+ |y|),

so the elements of our theorem are

(c(n)) = (0), (d(n)) =
(

1
n

)
, ψ(x, y) = x+ y.

Assumptions (i), (i − a) and (ii) are satisfied, but the inequality of the hy-
pothesis (iii) is

π2

6
· 2 · r ≤ r,
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and it has not a positive and real solution. But we can write our equation (5)
in the following way

x(n) =
x(n− 1)
n+ 1

,

and as x(0) = a, we get that

(x(n)) =
(

a

(n+ 1)!

)
,

which belongs to l2.
So, despite of not satisfying assumption (iii) our equation has a solution

in l2.
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