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Abstract : Every continuous k-linear operator from a product C(K1) × · · · × C(Kk) into a
Banach space X (Ki being compact Hausdorff spaces) admits a Riesz type integral repre-
sentation

T (f1, . . . , fk) :=

∫
(f1, . . . , fk) dγ,

where γ is the representing polymeasure of T , i.e., a set function defined on the product of
the Borel σ-algebras Bo(Ki) with values in X∗∗ which is separately finitely additive. As in
the linear case, the interplay between T and its representing polymeasure plays an important
role. The aim of this paper is to survey some features of this relationship.
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1. Introduction

F. Riesz’s representation theorem establishes that any continuous linear
form T on C(K) can be represented as an integral with respect to a (unique)
Radon measure µT on K:

T (f) =
∫

K
f µT , ∀f ∈ C(K).

Since its publication in 1909 ([33]; in case K = [0, 1]), this theorem has been a
fundamental tool in the study of C(K) spaces and the development of abstract
measure theory.

The representing measure µT of a continuous linear form T ∈ C(K)∗ can
be obtained in a constructive way (see for instance [34, Theorem 2.14]). But
from a functional analytic point of view, the solution is quite easy: The space
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B(K) of bounded Borel measurable functions (i.e., uniform limits of Borel
simple functions) is a closed subspace of the bidual C(K)∗∗, which contains
C(K) isometrically. Hence T̃ := T ∗∗|B(K) is a continuous linear extension of
T . If A is a Borel subset of K, then µT (A) = T̃ (χA). Moreover, for every
g ∈ B(K),

∫
g dµT = T̃ (g). The same trick works for representing the general

operators (i.e., continuous linear maps) T from C(K) to an arbitrary Banach
space X: The restriction of the bitranspose T ∗∗ : C(K)∗∗ → X∗∗ to the
closed subspace B(K) is an extension T̃ : B(K) → X∗∗ of T . The set function
mT (A) := T̃ (χA) for every Borel set A ⊂ K is a finitely additive measure with
finite semivariation (the representing measure of T ) such that

T (f) =
∫

f dmT , ∀f ∈ C(K).

(in fact, mT is also the representing measure of T̃ , in an obvious sense). This
representation plays an important role in the fundamental work of
Grothendieck on the space C(K) ([21]) and since then the study of the rela-
tionship between T and mT is a central topic in the theory.

A similar approach can be used to obtain suitable representation theorems
for operators on spaces of vector valued continuous functions.

Soon after Riesz’s paper, M. Fréchet obtained ([18]) an integral character-
ization of the continuous bilinear forms

B : C([a, b])× C([a, b]) → R,

but the studies on “bilinear integration” (i.e., continuous bilinear forms on
C(K1) × C(K2)) had to wait till the work of Clarkson and Adams ([12]) in
the mid 1930s and Morse and Transue in a series of papers appeared between
the late 1940s and the mid 1950s (see, for instance, the references included
in [4]), where the name bimeasure was coined to denote such bilinear forms.
Ylinen defined in [38] bimeasures as (scalar or vector-valued) set functions on
the cartesian product of two σ-algebras “... motivated by a desire to find an
analogue of the Riesz representation theorem and its vector generalization...”
([38, Introduction]). Its natural generalization, polymeasures, were introduced
by Dobrakov in [16]; in a series of papers (see [17] and the bibliography there
mentioned) he developed a very general theory of integration for them, but,
as we shall see, this general theory is not needed to obtain a Riesz type rep-
resentation theorem for multilinear operators on the product of C(K) spaces.
We must mention here that, for several results, the bilinear case is essentially
simpler than the k-linear case for k > 2.
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The notation and terminology used along the paper will be the standard
used in Banach space theory, as for instance in [14]. In any case, we will now fix
some notation. Throughout the paper E,X will be Banach spaces and B(E)
will stand for the unit ball of E. K will denote a compact Hausdorff space
and C(K) (resp. B(K)) the Banach space of all continuous (resp. bounded
Borel measurable) scalar functions defined on it, with the usual sup norm.
We will write L(E; X) to indicate the linear operators from E into X, and
Lk(E1, . . . , Ek; X) will denote the space of continuous multilinear operators
from E1× · · ·×Ek into X. If X = K, the scalar field, we will not write it. As
usual, E1⊗̂ · · · ⊗̂Ek (resp., E1⊗̌ · · · ⊗̌Ek) will stand for the complete projective
(resp., injective) tensor product of E1, . . . , Ek.

When T ∈ Lk(E1, . . . , Ek; X) we shall denote by T̂ : E1 ⊗ · · · ⊗ Ek → X
its linearization. We consider to be well known that Lk(E1, . . . , Ek; X) is
naturally isometric to L(E1⊗̂ · · · ⊗̂Ek; X).

2. Polymeasures and representation theorems.

As in the linear case, the key to obtain a Riesz type representation the-
orem for multilinear operators on C(K) spaces is an extension theorem for
multilinear operators from C(K1) × · · · × C(Kk) to a larger space contain-
ing B(K1) × · · · × B(Kk). A first result in this direction was a theorem of
Pe lczyński ([27, Theorem 2]) establishing that under suitable hypothesis, the
continuous multilinear map T : C(K1)×· · ·×C(Kk) → X extends to a contin-
uous multilinear map T̃ : BΩ(K1)×· · ·×BΩ(Kk) → X, where BΩ(K) denotes
the Banach space of all the bounded Baire functions on K. The limitation to
the Baire functions is basic in the proof of the theorem, which uses transfinite
induction to arrive from C(Ki) to BΩ(Ki). This result was used by Dobrakov
in [17] to obtain a representation theorem for multilinear operators on C(K)
spaces (there is a gap in the statement of [17, Theorem 4]). The following
extension theorem was proved in [8]:

Theorem 2.1. [8, Theorem 2.3] Let K1, . . . Kk be compact Hausdorff
spaces, let X be a Banach space and let T ∈ Lk(C(K1), . . . , C(Kk); X). Then
there is a unique

T̃ ∈ Lk(B(K1), . . . ,B(Kk); X∗∗)

which extends T and is ω∗−ω∗ separately continuous (the ω∗-topology that we
consider in B(Ki) is the one induced by the ω∗-topology of C(Ki)∗∗). Besides,
we have
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1.- ‖T̃‖ = ‖T‖.
2.- If ḡd = (g1, . . . , gd−1, gd+1, . . . gk) with gi ∈ B(Ki), then there is a unique

X∗∗-valued bounded ω∗-Radon measure mḡd
on Kd (i.e., an X∗∗-valued finitely

additive bounded vector measure on the Borel subsets of Kd, such that for
every y∗ ∈ X∗, (y∗ ◦mḡd

) is a Radon measure on Kd), verifying∫
gd mḡd

= T̃ (g1, . . . , gd−1, g, gd+1, . . . gk), ∀g ∈ B(Kd).

3.- T̃ is ω∗ − ω∗ jointly sequentially continuous (i.e., if (gn
i )n∈N ⊂ B(Ki),

∀i = 1, . . . , k, and gn
i

ω∗→ gi, then

lim
n→∞

T̃ (gn
1 , . . . , gn

k ) = T̃ (g1, . . . , gk)

in the σ(X∗∗, X∗) topology).

The map T̃ is just the restriction to B(K1)× · · · × B(Kk) of the so called
Aron-Berner extension T ∗∗ : C(Ki)∗∗×· · ·×C(Kk)∗∗ −→ X∗∗ ([2]) (although
in the cited paper the existence of T ∗∗ is proved directly.) Part 3 is a measure-
theoretic result: Suppose it is true for k− 1 and let (f1, . . . , fk−1) ∈ C(K1)×
. . .× C(Kk−1), g ∈ B(Kk). Define

Tg(f1, . . . , fk−1) := T̃ (f1, . . . , fk−1, g).

By uniqueness it is clear that T̃g = (T̃ )g, i.e.

T̃g(g1, . . . , gd−1) = T̃ (g1, . . . , gk−1, g), ∀gi ∈ B(Ki).

Suppose now (gn
i )w∗
→gi in B(Ki) (1 ≤ i ≤ k) and define

νn := mgn
1 ,...,gn

k−1
, ν := mg1,...,gk−1

.

By the induction hypothesis we have in particular

w∗ − lim νn(A) = ν(A), for every Borel subset A ⊂ Kk.

Then the Vitali-Hahn-Saks and Egoroff’s theorems applied to the countably
additive measures (y∗ ◦ νn) (y∗ ∈ X∗) give

lim
n→∞

〈
∫

gn
k νn, y∗〉 = 〈

∫
gkd ν, y∗〉.



multilinear operators on c(k) 131

(see [27, Proposition 1(c)].)
The well known Orlicz-Pettis theorem yields that the ω∗-countably addi-

tive measures (νn) are norm countably additive if they take values in X. If
we repeat the above argument in this case we obtain now that

‖ · ‖ − lim
n→∞

∫
gn
k νn =

∫
gkd ν.

So we have

Corollary 2.2. With the notations of Theorem 2.1, if T̃ takes its values
in X, it is ω∗-norm sequentially continuous.

It is known that the Aron-Berner extension of a multilinear map T : E1 ×
· · · × Ek −→ X takes values in X when every operator from each Ei into
X is weakly compact (see [8, Corollary 2.2] for a direct proof). Then, with
the notations of Theorem 2.1, we can assure that T̃ takes values in X in the
following cases:

• X contains no copy of c0.

• Each Ki is Stonean and X contains no copy of `∞.

• Each C(Ki) is a Grothendieck space and X is separable.

Theorem 2.1 is the main ingredient to obtain our representation theorem
for multilinear operators on C(K) spaces. To this aim, let us begin with the
following

Definition 2.3. ([16, Definition 1]) Let Σi (1 ≤ i ≤ k) be σ-algebras of
subsets on some non void sets Ωi. A function γ : Σ1 × · · · × Σk −→ X or
γ : Σ1 × · · · × Σk −→ [0, +∞] is a (countably additive) k-polymeasure if it is
separately (countably) additive.

The trivial example of a polymeasure is given by the restriction to Σ1 ×
· · · ×Σk of a measure defined on the σ-algebra σ(Σ1× · · · ×Σk) generated by
Σ1× · · · ×Σk. But there are true polymeasures which are not of this type, as
we shall see in a later section.

We define the semivariation (called Fréchet variation in [4]) of a polymea-
sure γ as the set function

‖γ‖ : Σ1 × · · · × Σk −→ [0, +∞]
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given by the formula

‖γ‖(A1, . . . , Ak) = sup


∥∥∥∥∥∥

n1∑
j1=1

· · ·
nk∑

jk=1

aj1
1 . . . ajk

k γ(Aj1
1 , . . . , Ajk

k )

∥∥∥∥∥∥


where the supremum is taken over all the finite Σi-partitions (Aji
i )ni

ji=1 of Ai

(1 ≤ i ≤ k), and all the collections (aji
i )ni

ji=1 contained in the unit ball of the
scalar field.

As in the case k = 1, it can be proved that any countably additive vector
valued polymeasure has finite semivariation (see [16, Theorems 2 and 3]).

Let S(Σi) be the normed space of the Σi-simple functions with the supre-
mum norm. If si =

∑ni
ji=1 ai,jiχAi,ji

∈ S(Σi), for every X-valued polymeasure
γ the formula

Tγ(s1, . . . , sk) =
n1∑

j1=1

· · ·
nk∑

jk=1

a1,j1 , . . . ak,jk
γ(A1,j1 , . . . , Ak,jk

)

defines a multilinear map Tγ : S(Σ1)× . . .× S(Σk) → X such that

‖Tγ‖ = ‖γ‖(Ω1, . . . , Ωk)‖ (def= ‖γ‖) ≤ ∞.

So, if ‖γ‖ < ∞, i.e., γ has finite semivariation, Tγ can be uniquely ex-
tended (with the same norm) to B(Σ1)× . . .B(Σk), where B(Σ) stands for the
completion of S(Σ). We will still denote this extension by Tγ and we shall
write also

Tγ(g1, . . . , gk) =
∫

(g1, . . . , gk)dγ.

The correspondence γ 7→ Tγ is an isometric isomorphism between the space
bpm(Σ1, . . . , Σk; X) of all X-valued polymeasures of finite semivariation (with
the semi-variation norm), and Lk(B(Σ1) . . .B(Σk); X).

This cheap k-linear integral is enough to obtain a Riesz type representation
theorem for multilinear operators on C(K) spaces:

Theorem 2.4. [8, Theorem 2.9] Let K1, . . . Kk be compact Hausdorff
spaces, X a Banach space and T ∈ Lk(C(K1), . . . , C(Kk); X).

I.- If, with the notations of Theorem 2.1, we define Γ : Bo(K1) × . . . ×
Bo(Kk) → X∗∗ (where Bo(K) stands for the Borel σ algebra of K) by

Γ(A1, . . . , Ak) = T̃ (χA1 , . . . χAk
),

then Γ is a polymeasure of bounded semivariation that verifies:
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1. ‖T‖ = ‖Γ‖.
2. T (f1, . . . , fk) =

∫
(f1, . . . , fk)d Γ (fi ∈ C(Ki))

3. For every z∗ ∈ X∗, z∗ ◦ Γ ∈ ((C(K1)⊗̂ . . . ⊗̂C(Kk))∗ and the map
z∗ 7→ z∗ ◦ Γ is continuous for the topologies σ(X∗, X) and
σ((C(K1)⊗̂ . . . ⊗̂C(Kk))∗, C(K1)⊗̂ . . . ⊗̂C(Kk))

II.- Conversely, if Γ : Bo(K1) × · · · × Bo(Kk) → X∗∗ is a polymeasure
which verifies (I.3), then it has finite semivariation and formula (I.2) defines
a k-linear continuous operator from C(K1) × · · · ,×C(Kk) into X for which
(I.1) holds.

In particular, Lk(K1, . . . ,Kk) =
(
C(K1)⊗̂ · · · ⊗̂C(Kk)

)∗ can be identified
with the space M(K1, . . . ,Kk) of all the countably additive polymeasures
defined on the product of the Borel σ-algebras of the Ki’s which are separately
Radon measures, endowed with the norm of the semivariation.

Remark 2.5. A first version of theorem 2.4 (with only Baire polymeasures
and weak∗ sequentially continuous extensions considered) appeared in [17,
Theorem 5]. Unfortunately, the technical condition I.3 is not included in this
version. However, this condition cannot be omitted, even in the case k = 1,
as it is well known. For instance, the `∞-valued ω∗-Radon measure defined
on the subsets of N be the formula m(A) := χA is the representing measure
of no operator T : `∞ → c0.

3. Some classes of multilinear operators.

In his fundamental paper [21], Grothendieck gave a deep insight in the
study of Banach space properties of C(K) spaces. The paper emphasizes the
“functorial” point of view of Grothendieck, by studying the structure of a Ba-
nach space E in terms of the behavior of certain classes of operators from and
into E. In this way, Grothendieck axiomatizes some of the properties stud-
ied in the space C(K) and introduces the now well known Dunford-Pettis,
reciprocal Dunford Pettis, Dieudonné and Grothendieck properties. The sem-
inal ideas contained in this paper were not well appreciated by Banach space
researchers for more than 10 years. But then they became tremendously in-
fluential in the development of the theory. (For more on Grothendieck’s work
on Functional Analysis, we refer the interested reader to [5].)

Of course, one of the main tools in Grothendieck’s paper was the integral
representation theorem of operators on C(K) spaces in terms of their repre-
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senting measures. The relationships between properties of the operator and
properties of its representing vector measure were widely used there and in
later work on this subject, being very fruitful for both theories: linear oper-
ators on C(K) spaces (and also on vector valued function spaces C(K, E))
and vector measures. For instance, we have the following result (recall that a
series

∑
n∈N xn in a Banach space E is called weakly unconditionally Cauchy

or w.u.C. in short when
∑∞

n1 |x∗(xn)| < ∞ ∀x∗ ∈ E∗):

Theorem 3.1. ([21], [26]) For a linear operator T : C(K) −→ X the
following assertions are equivalent:

1) T̃ : B(K) → X∗∗ takes values in X.

2) The representing measure of T takes values in X.

3) The representing measure of T is σ-additive.

4) The representing measure of T is regular.

5) T is weakly compact.

6) T sends weakly Cauchy sequences into norm convergent ones (i.e., T is
completely continuous).

7) T sends w.u.C. series into unconditionally convergent series (i.e., T is
unconditionally converging).

Theorem 2.4 in the previous section allows us to extend immediately the
equivalences (1)-(4) of the above theorem to the multilinear setting under
some of the conditions stated just before Definition 2.3.

In order to see what happens with the rest of equivalences in Theorem
3.1, we have to introduce the corresponding classes of multilinear operators.
But in general this is not a trivial question. In fact, several properties that
are equivalent in the linear case and characterize a class of operators, are
not equivalent in the multilinear case. For instance, a multilinear operator
T : E1 × · · · × Ek → X is weakly compact if T (B(E1) × · · · × B(Ek)) is a
weakly relatively compact subset of X. It is well known that a linear operator
is weakly compact if and only if its second adjoint takes values in X. But let
us consider the following

Example 3.2. Let E = C([0, 1]) and let (ϕn)∞n=1 be a bounded sequence
in E which is also an orthonormal system in the sense of the usual inner
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product in E (for example, ϕn(t) :=
√

2 sin 2πnt). Let T : E × E → `1 be
defined by

T (f, g) :=
(∫ 1

0
ϕn(t)f(t) dt ·

∫ 1

0
ϕn(t)g(t) dt

)∞
n=1

(∈ `1).

Since `1 contains no copy of c0, it follows that the Aron-Berner extension T ∗∗

takes its values in `1. However T is not weakly compact, because T (ϕn, ϕn) =
en has no weakly convergent subsequence.

Moreover, for the other classes of operators appearing in Theorem 3.1 there
are not a universally accepted definition in the multilinear setting (a situation
that we shall again encounter in the next Section.) Hence, we shall start with
the suitable definitions:

Definition 3.3. A multilinear operator T : E1 × · · · × Ek → X is

• completely continuous if whenever (xn
i )∞n=1 ⊂ Ei (1 ≤ i ≤ k) are weakly

Cauchy sequences,
(T (xn

1 , . . . , xn
k))∞n=1 ⊂ X

is norm-convergent.

• unconditionally convergent if given w.u.C. series
∑

n∈N xn
1 , . . . ,

∑
n∈N xn

k ,
the sequence

(T (sm
i , . . . , sm

k ))∞m=1

is norm-convergent, where sm
i :=

∑m
n=1 xn

i .

There are other (non equivalent) definitions of completely continuous and
unconditionally convergent multilinear operators in the literature (see [19]),
but the above ones have shown to be the more convenient to extend most of
the results of the linear theory (see, for instance, [6] where the above defined
unconditionally converging multilinear operators are introduced and studied,
comparing it with other definitions appeared in the literature.)

Coming back again to the C(K) spaces, we have

Theorem 3.4. ([8], [35], [36]) Let T ∈ Lk(C(K1), . . . , C(Kk); X),
T ∗∗ ∈ Lk(C(K1)∗∗, . . . , C(Kk)∗∗; X∗∗) its Aron-Berner extension, T̃ =
T ∗∗|B(K1)×...×B(Kk) and Γ its representing polymeasure. Then, the following
statements are equivalent:

1) T̃ takes values in X.
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2) Γ takes values in X.

3) Γ is countably additive.

4) Γ is regular.

5) T ∗∗ takes values in X.

6) T is completely continuous.

7) T̃ is completely continuous.

8) T ∗∗ is completely continuous.

9) T is unconditionally converging.

10) T̃ is unconditionally converging.

11) T ∗∗ is unconditionally converging.

If we compare the above theorem with its linear analogous Theorem 3.1
we see that the main difference is that in the multilinear case does not appear
among the equivalent assertions the condition of T being weakly compact.
And Example 3.2 shows that, indeed, this condition is not equivalent to the
others (although, of course, it implies all of them). It seems that the weak
compactness of an operator in the multilinear setting is a too restrictive con-
dition, and its place is taken by the property “some Aron-Berner extension of
T takes its values in X”. See [20] for more related results that support this
fact.

4. When a polymeasure can be extended to a measure?

It is easy to see that every polymeasure can be extended to a finitely addi-
tive measure γm on the algebra a(Σ1× · · ·×Σk) generated by the measurable
rectangles but, in general, this set function can not be extended to a measure
on the generated σ-algebra σ(Σ1× · · · ×Σk). However, if there is a countably
additive measure µ of bounded variation on σ(Σ1×· · ·×Σk) that extends γm,
then we have

v(γm)(A1 × · · · ×Ak) = v1(γ)(A1, . . . , Ak) = v(µ)(A1 × · · · ×Ak) (∗)

(Ai ∈ Σi), where the p-variation (1 ≤ p < ∞) of γ is the set function

vp(γ) : Σ1 × · · · × Σn −→ [0, +∞]

given by
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vp(γ)(A1, . . . , An) = sup


 n1∑

j1=1

· · ·
nk∑

jk=1

∥∥∥γ(Aj1
1 , . . . Ajk

k )
∥∥∥p

 1
p


where the supremum is taken over all the finite Σi-partitions (Aji

i )ni
ji=1 of Ai

(1 ≤ i ≤ k). We write simply v(γ) instead of v1(γ).
Suppose now that T ∈ Lk(C(K1), . . . , C(Kk)) with representing regular

polymeasure γ on Bo(K1) × · · · × Bo(Kk). If there exists a regular finite
measure µ on the Borel σ-algebra of K1 × · · · ×Kk (hence of finite variation)
that extends γm, then, by the Riesz representation theorem, µ is the repre-
senting measure of some continuous linear form T̂ on C(K1 × · · · × Kk) ≈
C(K1)⊗̌ · · · ⊗̌C(Kk) and clearly

T̂ (f1 ⊗ · · · ⊗ fk) =
∫

K1×···×Kk

f1 · · · fkdµ =

=(T (f1, . . . , fk) =)
∫

K1×···×Kk

(f1, . . . , fk)dγ. (†)

Note also that ‖T̂‖ = v(µ) = v(γ).
Conversely, if T is such that its linearization T̂ on C(K1) ⊗ · · · ⊗ C(Kk)

is continuous for the ε-topology (we shall call a map of this type integral),
again the Riesz representation theorem yields a regular finite measure µ on
Bo(K1×· · ·×Kk) such that (†) holds. By the uniqueness of the representation
theorem for k-linear maps, we have

µ(A1 × · · · ×Ak) = γ(A1, . . . , Ak) (for every Ai ∈ B(Ki)

and so µ extends γ. This is the trivial part of the following

Theorem 4.1. [10, Theorem 3.3, Corollary 3.4] Let T ∈ Lk(C(K1), . . . ,
C(Kk)) with representing polymeasure γ. Then the following are equivalent:

a) v(γ) < ∞.
b) T is integral.
c) γ can be extended to a finite regular measure µ on Bo(K1 × · · · ×Kk).
d) γ can be extended to a countably additive (not necessarily regular)

measure µ2 on σ(Bo(K1)× · · · ×Bo(Kk)).
e) γ can be decomposed in the way γ = γ+−γ−, where γ+, γ− are positive

polymeasures.
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Hence, the representing polymeasures of multilinear forms on C(K) spaces
that cannot be extended to a countably additive measure are precisely those
with infinite variation.

The first example of a bimeasure (in fact, a representing bimeasure of a
bilinear form on c0) with finite semivariation but with infinite variation was
given by Littlewood in the seminal paper [24]. An easier one (essentially [37,
Example 1.4]) is the following:

Example 4.2. Let T : c0 × C([0, 1]) −→ R be defined by the formula

T ((an), f) :=
∞∑

n=1

an

n

∫ 1

0
frn dλ,

where (rn) are the Rademacher functions and λ denotes the Lebesgue measure.
T is continuous, with representing bimeasure

γ(A,B) =
∑
n∈A

1
n

∫
B

rn dλ, A ∈ P(N), B ∈ Bo([0, 1]).

If we choose {{1}, {2}, . . . , {m}} as a partition of Am := {1, 2, . . . ,m} and,
calling Bj := [ j−1

2m , j
2m ), 1 ≤ j < 2m; B2m = [1 − 2−m, 1], we choose (Bj)2

m

j=1

as a partition of [0, 1], we have

v(γ) ≥ v(γ)(Am, [0, 1]) ≥
m∑

i=1

2m∑
j=1

|γ({i}, Bj)| =
m∑

i=1

2m∑
j=1

1
i

1
2m

=
m∑

i=1

1
i
.

Remark 4.3. The equivalence (a) ⇔ (d) in the above theorem was proved
for bimeasures in [23, Corollary 9], with techniques which do not seem to
extend easily to the case k ≥ 3.

There is a similar characterization of extendible vector-valued representing
polymeasures, although in this case they do not need to have finite variation,
but a milder condition suffices (see [10, Theorem 4.1]).

5. Vector polymeasures with finite variation

Even when k = 1 not all the representing measures of operators T :
C(K) → X (even if they are countably additive) have finite variation. In
fact, this happens if and only if the operator is absolutely summing ([15,
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Chapter VI ]). The study of the corresponding result for multilinear operators
requires some new concepts:

Recall that an operator S ∈ L(E; X) is called G-integral (the “G” comes
from “Grothendieck”) if the associated bilinear form

BS : E ×X∗ −→ K
(x, y) 7→ y(S(x))

is integral in the sense previously defined.
Next is a multilinear version of the well known notion of (p, q)-summing

operator between Banach spaces. We refer the reader to [14] for non explained
notation and any result concerning this subject.

Definition 5.1. ([11, Definition 2.1]; see also [25]) Let 1 ≤ q1, . . . , qk ≤
p < +∞. A multilinear operator T : E1 × · · · × Ek −→ X is multiple
(p; q1, . . . , qk)-summing if there exists a constant K > 0 such that, for ev-
ery choice of positive integers mj (1 ≤ j ≤ k) and for every choice of elements
xj

ij
∈ Ej (1 ≤ ij ≤ mj), the following relation holds

m1,...,mk∑
i1,...,ik=1

‖T (x1
i1 , . . . , x

k
ik

)‖p

 1
p

≤ K
k∏

j=1

‖(xj
ij

)mj

ij=1‖
ω
qj

, (1)

where for any finite sequence (xi)m
i=1 in a Banach space E we write

‖(xi)m
i=1‖ω

p := sup


(

m∑
i=1

|x∗(xi)|p
) 1

p

: x∗ ∈ B(E∗)

 .

In that case, we define the multiple (p; q1, . . . , qk)-summing norm of T by

π(p;q1,...,qk)(T ) = min{K : K verifies (1)}.

A multiple (p; q, . . . , q)-summing operator will be called multiple (p, q)-
summing and we write π(p,q) for the associated norm. Moreover, a multiple
(p, p)-summing operator will be called multiple p-summing and we write πp

for the associated norm. We have that the class Πk
(p;q1,...,qk)(E1, . . . , Ek; X) of

multiple (p; q1, . . . , qk)-summing k-linear operators is a Banach space with its
associated norm π(p;q1...,qk).
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This definition is more restrictive than the usual notion of multilinear
(p; q1, . . . , qk) summing operator, introduced by Pietsch in [32], in which only
the “diagonal” sum (

m∑
i=1

‖T (x1
i , . . . , x

k
i )‖p

) 1
p

has to be dominated by the right hand side of (1). This class is endowed
again with a natural Banach norm. When 1

p = 1
q1

+ · · · 1
qk

the (p; q1, . . . , qk)
-summing operators are called dominated operators, and they are denoted by
Dn

(q1,...,qk). In the case q1 = · · · = qk = q they will be called simply q-dominated
operators, and denoted by Dk

q .
The dominated operators share many properties of the p-summing linear

operators. For instance, they are exactly those multilinear operators for which
a domination theorem and a factorization theorem of Pietsch type hold (see
[32] for the case of multilinear forms. A general proof appears in [28].) From
the domination theorem for dominated operators follows immediately that
when 1 ≤ r ≤ p < ∞,

Dk
r (E1, . . . , Ek; X) ⊂ Πk

p(E1, . . . , Ek; X),

also with norm-one inclusion (see [31, Theorem 3.10] for a more precise result.)
And, of course, the inclusions are in general strict.

Through the domination theorem a large part of the theory and applica-
tions of linear p-summing operators can be extended to the multilinear setting.
However, no multilinear version of Grothendieck’s famous theorems concern-
ing operators on C(K) or L1(µ) spaces were known (except for some very
special cases, as in [3].)

The class of multiple summing operators allows to obtain such a multilinear
version of p-summing formulations of Grothendieck’s theorems:

Theorem 5.2. ([11, Theorem 3.1]) Let Ej be a L∞,λj
-space for 1 ≤ j ≤ k

and let X be a space with cotype 2. Then, every multilinear operator T :
E1 × · · · × Ek −→ X is multiple 2-summing and

π2(T ) ≤ Kk

k∏
j=1

λj‖T‖,

where Kk = (3
1
4 C2(Y ))2k, with C2(Y ) the cotype 2 constant of Y .
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Theorem 5.3. ([11, Theorem 5.2]) Let Ej be a L1,λj
-space (1 ≤ j ≤ k)

and let H be a Hilbert space. Then, every multilinear operator T : E1× · · ·×
Ek −→ H is multiple 1-summing and

π1(T ) ≤ Ck
k∏

j=1

λj‖T‖,

where C is an absolute constant.

As in the linear case, Theorem 5.3 gives rise (and, in fact, it is equivalent)
to a matrix inequality, which can be considered as a multilinear generalization
of Grothendieck’s inequality:

Theorem 5.4. Let k ≥ 2 and for every l ∈ {1, . . . , k}, let (ail,jl
)pl,ql
il,jl=1 ⊂ K

be a matrix such that

sup


∣∣∣∣∣∣

pl,ql∑
il,jl=1

ail,jl
siltjl

∣∣∣∣∣∣ : |sil | ≤ 1, |tjl
| ≤ 1

 ≤ 1. (†)

Let H be a Hilbert space and consider elements xi1,...,ik , yj1,...,jk
(1 ≤ il ≤

pl, 1 ≤ jl ≤ ql, l = 1, . . . , k) in the unit ball of H. Then∣∣∣∣∣∣
p1,...,pn,q1...,qk∑

i1,...,ik,j1,...,jk=1

ai1,j1 · · · aik,jk
〈xi1,...,ik , yj1,...,jk

〉

∣∣∣∣∣∣ ≤ Ck. (‡)

(Here C is the absolute constant that appears in Theorem 5.3.)

Proof. Consider the multilinear map

T : `p1
1 × · · · × `pk

1 → H

defined by T (ei1 , . . . , eik) := xi1,...,ik . It is easy to see that T is continuous and
‖T‖ ≤ 1. Hence, by Theorem 5.3, T is multiple 1-summing and π1(T ) ≤ Ck.

Now, for each 1 ≤ l ≤ k consider the map ul : `ql∞ → `pl
1 given by ul(ejl

) =∑pl
il=1 ail,jl

eil . Then ‖ul‖ is just the left hand side of (†) and hence

‖(ul(ejl
))ql

jl=1‖
w
1 = ‖ul‖ ≤ 1 (1 ≤ l ≤ k)

Consequently,
q1,...,qk∑

j1,...,jk=1

‖T (u1(ej1), . . . , uk(ejk
))‖ ≤ π1(T ) ≤ Ck
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The inequality (‡) follows, taking into account that for every choice of
j1, . . . , jk,∣∣∣∣∣∣

p1,...,pk∑
i1,...,ik=1

ai1,j1 · · · aik,jk
〈xi1,...,ik , yj1,...,jnk〉

∣∣∣∣∣∣ ≤ ‖T (u1(ej1), . . . , uk(ejk
))‖.

In general, the class of multiple summing operators behaves better in
many ways than other previously defined. Besides the mentioned multilin-
ear versions of Grothendieck’s theorems, also several relations with nuclear
and Hilbert-Schmidt multilinear operators that extend and generalize classi-
cal linear results, are true for this class ([29], [30], [31]). It is easy to see
that these results are not true for the general class of Pietsch’s multilinear
summing operators.

The most basic example of a (p; q)-multiple summing operator is given by a
multilinear integral operator T : E1×· · ·×Ek −→ X such that its linearization
T̂ : E1⊗̌ · · · ⊗̌Ek −→ X is (p, q)-summing. Also, it should be mentioned that
not every continuous multilinear form is necessarily multiple summing.

With this definition at hand, we can obtain the announced characterization
of the vector representing polymeasures with finite variation:

Theorem 5.5. ([31, Proposition 3.1]) Let T ∈ Lk(C(K1), . . . , C(Kk); X)
with representing polymeasure γ. Then the following are equivalent:

a) T is 1-multiple summing.
b) T is integral and its linearization T̂ : C(K1)⊗̌ · · · ⊗̌C(Kk) −→ X is

G-integral.
c) v(γ) < ∞.

Proof. (b) and (c) are equivalent by Theorem 4.1. As we have commented
before, (b) always implies (a). Finally (a)⇒ (b) follows from the fact that the
Aron-Berner extension of a (p; q1, . . . , qk) multiple summing operator is also
(p; q1, . . . , qk)-summing ([31, Theorem 2.3] and the (easily checked) fact that
if (Ai)m

i=1 is a Borel partition of K, then ‖(χAi)
m
i=1‖ω

1 ≤ 1.

Remark 5.6. a) By a theorem of A. Defant and J.Voigt ([1, Theorem
3.10]), every continuous multilinear form is (1; 1, . . . , 1) summing (in Pietsch’s
sense). Hence, example 4.2 shows that condition (a) in the theorem above is
not implied by the condition of T being (1; 1, . . . , 1)-summing.

b) By using some of the results contained in [3] it can be proved that any
continuous multilinear form on the product of L∞ spaces is in fact (1; 2, . . . , 2)
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summing and, by [11, Theorem 3.1], also multiple 2-summing. Again, Ex-
ample 4.2 shows that neither of these two conditions imply condition (a) of
Theorem 5.5.

As in the linear case, the coincidence of multiple 1-summing operators with
those integral operators such that its linearization is G-integral characterizes,
in fact, the L∞-spaces ([31, Proposition 3.6]).

Next theorem, which extends the equivalence (a) ⇔ (c) in Theorem 5.5, is
one of the main results of [31]:

Theorem 5.7. ([31, Theorem 3.8]) Let (Ωj , Σj), (1 ≤ j ≤ k) be mea-
surable spaces, let 1 ≤ p < ∞ and let X be a Banach space. Let γ :
Σ1×· · ·×Σk −→ X be a polymeasure with bounded semivariation and let us
consider the associated multilinear operator T : B(Σ1) × · · · × B(Σk) −→ X.
Then vp(γ) < ∞ if and only if T is multiple (p; 1)-summing.

Moreover, in that case,

vp(γ) ≤ π(p;1)(T ) ≤ 2k
(
1− 1

p

)
vp(γ) (real case)

vp(γ) ≤ π(p;1)(T ) ≤ 2k
(
2− 1

p

)
vp(γ) (complex case)

Of course, a corresponding result for representing polymeasures of multi-
linear operators on C(K) spaces also holds.

If we take into account that every multilinear operator T with values in
a space X of cotype q is multiple (q; 1)-summing ([11, Theorem 3.2]), we
obtain the surprising result that every polymeasure of finite semivariation,
with values in a cotype q space, has finite q-variation. In particular, every
scalar bounded polymeasure has finite 2-variation (although, as we know, it
might have infinite variation).

This last result connects with the already mentioned Littlewood’s paper
[24] where a bimeasure with bounded semivariation and infinite variation ap-
pears for the first time. But the most important part of the paper is the
assertion that every scalar bimeasure on P(N) of bounded semivariation, has
finite p-variation for p ≥ 4

3 , and the number 4
3 is sharp, in the sense that

for every 1 ≤ q < 4
3 there is a bimeasure with finite semivariation and infi-

nite q-variation. In fact, Littlewood proved ([24, Theorem 1(1)]) that for any
continuous bilinear form T : c0 × c0 −→ K, ∞∑

n,m=1

|T (en, em)|
4
3

 3
4

≤ C‖T‖,
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where (en) is the usual base of c0 and C > 0 is an absolute constant.
This inequality has had far reaching consequences in Harmonic analysis

(specifically, in the theory of Sidon sets; see [4, Chapter VII]) The k-linear
extension of Littlewood’s inequality was stated without proof by Davie ([13])
and independently by Johnson and Woodward in [22], where a proof was given
of the following fact: For any continuous k-linear form T : c0×· · ·× c0 −→ K, ∞∑

i1,...,ik=1

‖T (e1
i1 , . . . , e

k
ik

)‖
2k

k+1

 k+1
2k

≤ 2
k−1
2 ‖T‖.

With this result at hand and Theorem 5.7, it is easy to prove the following

Proposition 5.8. ([31, Corollary 3.21]) Every scalar k-measure γ of
bounded semivariation has finite 2k

k+1 -variation and

v 2k
k+1

(γ) ≤ 2
k−1
2 ‖γ‖.
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[31] Pérez-Garćıa, D., Villanueva, I., Multiple summing operators on C(K)
spaces, Ark.Math., 42 (2004), 153 – 171.

[32] Pietsch, A., Ideals of multilinear functionals (design of a theory), in “Pro-
ceedings of the 2nd. International Conference on Operator Algebras, Ideals
and their Applications in Theoretical Physics”, Leipzig, Teubner-Texte, 1983,
185 – 199.

[33] Riesz, F., Sur les opérations fonctionnelles linéaires, C. R. Acad. Sci. Paris,
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