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Abstract : We recall several instances of the so called Central Limit Theorem for convex
bodies under different metrics. We prove a Central Limit type theorem which holds for
random k-dimensional subspace E ⊂ Rn and for a certain class of isotropic bodies.
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1. Introduction and notation

Dvoretzky’s theorem [5] in its infinitely dimensional setting says that `2

is finitely representable in any infinite dimensional normed space X. More
precisely, in Milman’s approach [6], given ε > 0 and any n-dimensional normed
space (X, ‖ · ‖), for every 1 ≤ k ≤ Cε2 log n, there exists a k-dimensional
subspace E ⊆ X such that

BX ∩ E ⊂ T (Bk
2 ) ⊂ (1 + ε)BX ∩ E (1)

where C > 0 is an absolute constant and T some isomorphism T : `k
2 → E

(BX = {x ∈ X : ‖x‖ ≤ 1}).
How many k-dimensional subspaces E verify (1)? In order to answer this

question we introduce some euclidean structure. Assume (X, ‖·‖) = (Rn, ‖·‖K)
so that the Euclidean ball is the ellipsoid of maximal volume contained K,
then, there exists r > 0 such that for every 0 < ε < 1

rBn
2 ∩ E ⊂ K ∩ E ⊂ (1 + ε)rBn

2 ∩ E (2)

and
νn,k {E ∈ Gn,k : E verifies (2)} ≥ 1− exp(−ck)
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116 j. bastero, j. bernués

for some absolute constant c > 0 (νn,k denotes the Haar measure in the
grasmannian of the k dimensional subspaces in Rn).

Let K be a centrally symmetric convex body in Rn (K is compact convex
with the origen in its interior and K = −K). We can state the theorem in a
more geometrical way as follows:

Theorem 1.1. Every centrally symmetric convex body in Rn has a posi-
tion TK so that given any ε > 0, random k-dimensional central sections of K
are almost a multiple of the Euclidean ball, whenever 1 ≤ k ≤ Cε2 log n. The
same is true for random orthogonal projections of K.

Recall that in the finite dimensional context, the dual of a subspace is
a quotient space or equivalently an orthogonal projection. One of the main
tools in the proof of Dvoretzky’s theorem is the concentration of measure
phenomenon, which can be expressed in the following way:

Theorem 1.2. There exist absolute constants c1, c2 > 0 such that for any
continuous function f : Sn−1 → R we have

µn

{
θ :

∣∣∣∣f(θ)−
∫

Sn−1

f dµn

∣∣∣∣ > ωf (a)
}
≤ c1 exp

(
−c2na2

)
,

where
ωf (a) = sup

d(θ1,θ2)≤a
|f(θ1)− f(θ2)|

is the modulus of continuity of f and µn is the normalized measure on Sn−1.
The same phenomenon happens in the Grasmaniann Gn,k equipped with

the measure νn,k and the Haussdorf distance between the unit spheres of k-
dimensional subspaces.

Next let us consider a probabilistic framework. For K a convex body
of volume 1, the restriction of the Lebesgue measure on K is a probability,
P = | · |, on Rn. Project this probability onto a k dimensional subspace E to
produce the marginal probability PE defined by

PE(B) = P(B + E⊥) = |{x ∈ Rn : PE(x) ∈ B}|

for every B ⊂ E (PE is the orthogonal projection onto E). According to
Dvoretzky’s theorem the support of PE is almost a multiple of an Euclidean
ball for random k-dimensional subspaces E (and 1 ≤ k ≤ Cε2 log n), whenever
K is in John’s position.
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The question now is, how is PE distributed? This question actually comes
from Sudakov [15] in the seventies. Is PE also like a probability on a k-
dimensional euclidean ball?, i.e., is it gaussian? This is the content of the so
called Central Limit Problem for convex bodies.

Let us recall the classical Central Limit Theorem in a particular case:

Theorem 1.3. Let X be a random variable uniformly distributed on the
real interval [−1/2, 1/2], and let {Xi}n

1 be a sequence of n i.i.d. copies of X,
then

X1 + · · ·+ Xn√
n

−→
n→∞

N

(
0,

1√
12

)
in the sense that in the total variation metric∥∥∥∥µn −N

(
0,

1√
12

)∥∥∥∥
TV

=
∫ ∞

−∞

∣∣∣∣∣fn(t)−
√

6
π

exp
(
−t2

24

)∣∣∣∣∣ dt −→
n→∞

0

fn is the density of the probability µn given by the r.v. X1 + · · ·+ Xn/
√

n.

The geometric interpretation of this theorem says that given

θ =
(

1√
n

, . . . ,
1√
n

)
∈ Sn−1 ,

the 1-dimensional marginal probability Pθ of the uniform distribution on the
cube [−1/2, 1/2]n is close to a normal distribution, when the dimension is
large. The same thing happens for random θ ∈ Sn−1. It was conjectured
among the specialists that a version of the central limit theorem should be
true for a general class of convex bodies, those which are in isotropic position.

In this note we want to survey several recent results on the central limit
problem. In order to answer it, first we need to put the convex body in
a special position in which all the 1-dimensional marginals have the same
variance. This is the isotropic position.

A convex body K (no necessarilly centrally symmetric) of volume one is
in isotropic position if

• the mean is 0: ∫
K

x dx = 0 ,

• the variance of all the 1-dimensional marginals is constant:∫
K
〈θ, x〉2 dx = C for all θ ∈ Sn−1;
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or equivalently
∫
K xixjdx = Cδi,j . The constant C = L2

K is the isotropy
constant. Every convex body of volume one has a unique, up to orthogonal
transformations, isotropic position.

A key ingredient in the solution of the problem is the concentration of the
euclidean norm on K. This fact is already considered in works by [4], [16].

We consider the following theorem by Antilla, Ball and Perisinaki [2]:

Theorem 1.4. There exists an absolute constant c > 0 such that, given
0 < ε < 1/2 and any isotropic symmetric convex body K in Rn verifying the
ε-concentration hypothesis∣∣{x ∈ K :

∣∣ |x| − √
nLK

∣∣ ≥ ε
√

nLK

}∣∣ ≤ ε ,

then

ν
{

θ ∈ Sn−1 : ‖Fθ(t)− Γθ(t)‖∞ < ε +
c

n

}
≥ 1− n exp

(
−cnε2

)
,

where Fθ(t) = |{x ∈ K : 〈x, θ〉 ≤ t}| and

Γθ(t) =
1√

2πLK

∫ t

−∞
exp

(
−|x|2/2L2

K

)
dx .

That is, under the extra ε-concentration hypothesis, the authors proved
that the 1-dimensional marginals of convex bodies are close to gaussian for
random directions.

The main references for the solution of the problem are those by Klartag
[8], [9] where the author proves that every isotropic convex body (symmet-
ric or not) verifies a concentration hypothesis even stronger than the ε-
concentration. Moreover, he solves the central limit problem for k-dimensional
marginals when k increases up to 1 ≤ k ≤ cnκ. His result is also stronger than
the conclusion one would expected according to Dvoretzky’s theorem, where
we can only get 1 ≤ k ≤ c log n, although it is worth to mention here that it
is not kwnon whether or not John’s and isotropic positions coincides. Also it
is not known if the bound given by Klartag is sharp.

Theorem 1.5. (B. Klartag, 2006-07) There exist universal constants
C, c > 0, κ > 0 for which the following holds: Let 0 < ε < 1 and 1 ≤ k ≤ cnκ

an integer. If K is an isotropic convex body in Rn there is a k-dimensional
subspace E such that

‖PE − ΓE‖TV < ε , (3)
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where ΓE is the standard gaussian measure on E with variance LK . Moreover
the measure of the set E of k-dimensional subspaces E verifying (3) is

νn,k(E) ≥ 1− exp
(
−Cn0.99

)
.

Three are the main ingredients in Klartag’s proof:

(i) the use of the methods of Dvoretzky’s theorem and the concentration of
measure phenomenon on Sn−1 and directly on Gn,k ;

(ii) establish a new concentration inequality for the euclidean norm in all
the isotropic convex bodies∣∣∣∣{x ∈ K :

∣∣∣∣ |x|√
nLK

− 1
∣∣∣∣ > t

}∣∣∣∣ ≤ A exp
(
−Bn0.33t2

)
for all 0 ≤ t ≤ 1 and for some universal constants A,B > 0 ;

(iii) compare the uniform distribution on K with some other measure in-
variant under the action of the orthogonal group and having a better
concentration inequality.

It is worth to mention here that (ii) together with a recent result by Paouris
[13] ∣∣∣∣{x ∈ K :

|x|√
nLK

> Ct

}∣∣∣∣ ≤ exp
(
−t
√

n
)

for all t > 1

show that every isotropic convex body has the mass concentrated in a thin
shell with radius LK

√
n.

Klartag’s result nicely extends to a larger class of isotropic probabilities
on Rn, the log-concave (a) isotropic (b) probabilities, that is, those for which:
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(a) P(λA + (1 − λ)B) ≥ P(A)λP(B)1−λ for all λ ∈ [0, 1] and A,B ⊂ Rn

borelian subsets, and
(b) all 1-dimensional marginals have mean 0 and the same variance σ2.

A full account on the history around this problem can be found in [8]. But
we want to point out one recent result due to Naor and Romik [12] concerning
the central limit problem which uses a weaker metric but the closeness to a
gaussian distribution remains valid for other classes of probabilities on Rn

(not necessarily log-concave).

Theorem 1.6. Let P be a non-atomic, compactly supported, isotropic
Borel probability on Rn such that∫

Rn

x2
i x

2
j dP(x) ≤

∫
Rn

x2
i dP(x)

∫
Rn

x2
j dP(x) , 1 ≤ i, j ≤ n .

Set B4 :=
∫

Rn

∑n
i=1 x4

i dP(x). Then for every 0 < ε < 1 and 1 ≤ k ≤ cε4n2

B4 we
have

νn,k {E ∈ Gn,k : T (PE ,ΓE) ≤ ε} ≥ 1− c1

ε
exp

(
− c2ε

4n2

B4

)
,

where

T (PE ,ΓE) = sup {|PE(H)− ΓE(H)| : H affine half-space}

is the Tsirelson distance.

For instance, normalized unit balls of `n
p spaces, 0 < p, verify their

hypothesis.

2. The results

For E ∈ Gn,k define the distribution function

PE(tBn
2 ) = P{x ∈ Rn : |PE(x)| ≤ t} , t ≥ 0

(that is, the marginal measure of P on E of a t-dilate of the euclidean ball on
Rn). Klartag’s result implies that for isotropic log-concave probabilities with
variance σ we have

sup
t
|PE(tBn

2 )− ΓE(tBn
2 )| ≤ ε ,
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where Bn
2 is the standard euclidean ball on Rn and

ΓE(tBn
2 ) =

1
(
√

2πσ)k

∫
{x∈E:|x|≤t}

exp
(
− |x|2

2σ2

)
dx :=

∫
{|x|≤t}

γk(x) dx .

We are interested in the behavior of

sup
t≥0

∣∣∣∣PE(tBn
2 )

ΓE(tBn
2 )

− 1
∣∣∣∣ .

This was done in the 1-dimensional case by A. Sodin [14] (1-dimensional
marginal), by introducing a strong concentration hypothesis. Our purpose in
this work is to extend his result to other dimensions. We will see that some
of the results involved actually hold for a quite large class of probabilities.

Let us introduce some notation. Let P be a Borel probability on Rn,

M2
2 (P) = M2

2 :=
1
n

∫
Rn

|x|2dP(x)

which also is the average of the variances of all 1-dimensional marginal,

MP := sup
t>0

P{tDn}
|tDn|

the Hardy-Littlewood maximal function of the probability P in the origin.

Concentration hypothesis. A probability P on Rn verifies (CH) if:

P
{

x ∈ Rn :
∣∣∣∣ |x|√

nM2
− 1

∣∣∣∣ > t

}
≤ A exp

(
−Bnαtβ

)
for all 0 ≤ t ≤ 1 and for some constants α, β, A,B > 0.

For instance, normalized `n
p , p > 0, balls verify (CH) for 2α = β =

min{p, 2}. Also uniformly convex balls contained in small Euclidean balls
verify (CH) (see [14]). After Klartag’s result [8] every isotropic convex body
satisfies (CH) with α = 0.33 and β = 2.

The result we obtain for isotropic convex bodies K (i.e. P is the uniform
measure on K and σ = LK) is the following:

Theorem 2.1. ([3]) Let M be the class of isotropic convex bodies in Rn

that satisfy LK ≤ c1. Given K ∈M, 0 < ε < 1, we have

sup
t≥0

∣∣∣∣PE(tBn
2 )

ΓE(tBn
2 )

− 1
∣∣∣∣ ≤ ε (*)
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for random k-dimensional subspace E, whenever

1 ≤ k ≤ Cε log n

(log log n)2
,

where “E random subspace ” means that

νn,k {E ∈ Gn,k : (*) occurs} ≥ 1− exp
(
−cn0.9

)
,

where C, c only depend on c1.

In the proof below we will point out the steps that hold with more gener-
ality and those that need extra hypothesis.

Sketch of the proof. The proof will be done in three steps. We compare
the individual distributions with the average and the average with 1 via the
triangle inequality∣∣∣∣PE(tBn

2 )
ΓE(tBn

2 )
− 1

∣∣∣∣ ≤
∣∣∣∣∣PE(tBn

2 )
ΓE(tBn

2 )
−

∫
Gn,k

PE(tBn
2 )

ΓE(tBn
2 )

dνn,k

∣∣∣∣∣
+

∣∣∣∣∣
∫

Gn,k

PE(tBn
2 )

ΓE(tBn
2 )

dνn,k − 1

∣∣∣∣∣ .

Step 1. We first study the average distribution

F (t)
Γ(t)

:=
∫

Gn,k

PE(tBn
2 )

ΓE(tBn
2 )

dνn,k ,

where

F (t) =
∫

Gn,k

PE(tBn
2 ) dνn,k ,

ΓE(tBn
2 ) = Γ(t) =

∫
{x∈Rk:|x|≤t}

γk(x) dx .

The following result expresses the average distribution in a suitable way.
A more general formula is actually valid for any probability P (see [3]).

Theorem 2.2. ([3]) Let P be a Borel probability on Rn such that P{0} =
0. Then, for all 1 ≤ k < n and t ≥ 0 we have

F (t) =
∫
{|s|≤t}

ϕk(s) ds ,
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where

ϕk(s) =
|Sn−k−1|
|Sn−1|

∫
{|x|≥|s|}

(
1− |s|2

|x|2

)n−k−2
2 dP(x)

|x|k
.

Step 2. We compute the distance between the average distribution and 1.
For any probability satisfying hypothesis (CH) we have a result that measures
proximity of the density of the average distribution ϕk(s) and the gaussian
density γk(s), this estimate passes to the distribution functions for log-concave
probabilities. The theorem in Step 1 is crucial in order to go on with compu-
tations.

Theorem 2.3. ([3]) Let P be a probability on Rn satisfying (CH) and
let

γ = min
{

α

max{2, 2β}
,
1
4

}
.

If log(M1/n
P M2) < c1n

γ and k < c2n
γ (for suitable c1, c2 depending only on

the constants in (CH)), then∣∣∣∣ϕk(s)
γk(s)

− 1
∣∣∣∣ ≤ c

nγ
whenever |s| ≤ cM2n

γ/2

for some constant c = c(α, A, β,B) > 0.
Moreover, if P is log-concave then

sup
t>0

∣∣∣∣F (t)
Γ(t)

− 1
∣∣∣∣ ≤ c

nγ
.

In particular, when K ⊂ Rn is an isotropic convex body then Klartag’s
result says it satisfies (CH) with α = 0.33 and β = 2. Also M

1/n
P M2 = LK

and log(M1/n
P M2) < c1n

γ holds (since LK ≤ c1n
1/4, [7]) and so for k ≤ c2n

γ

we have

sup
|s|∈[0,cnγ/2]

∣∣∣∣ϕk(s)
γk(s)

− 1
∣∣∣∣ ≤ c

nγ

and

sup
t>0

∣∣∣∣F (t)
Γ(t)

− 1
∣∣∣∣ ≤ c

nγ
.

Step 3. We estimate the distance between an individual PE(tBn
2 )

Γ(t) , E ∈
Gn,k, and the average F (t)/Γ(t).
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For that matter we take into account the concentration of measure phe-
nomenon on Gn,k stated in the introduction. In this final step we must restrict
ourselves to probabilities given by isotropic convex bodies. Recall:

Theorem 2.4. (Concentration of measure [11]) Let f : Gn,k → R
continuous. There exist absolute constants c1, c2 > 0 such that for every
a > 0 we have

νn,k

{
E :

∣∣∣∣∣f(E)−
∫

Gn,k

f dνn,k

∣∣∣∣∣ > ωf (a)

}
≤ c1 exp

(
−c2na2

)
,

where

ωf (a) = sup
d(E1,E2)≤a

|f(E1)− f(E2)|

is the modulus of continuity of f .

We want to apply it to the function f(E) = PE(tBn
2 ) and so first compute

the modulus of continuity ωf .

Lemma 2.5. ([3]) Let 0 < ε < 1, t > 0 and K ⊂ Rn isotropic. Then for
every E1, E2 ∈ Gn,k we have

|f(E1)− f(E2)| ≤ ε

provided that d(E1, E2) ≤ a, where

a =


ckε2t2

Lk
k

, if t ≤ c
√

k ,

cε2

√
ktk−1

, otherwise ;

c is an absolute constant and Lk = sup{LM : M ⊂ Rk isotropic}.

Therefore, by Lemma 2.5 and Step 2 we have

ν

{
E ∈ Gn,k :

∣∣∣∣PE(tBn
2 )

Γ(t)
− 1

∣∣∣∣ > ε +
1
nγ

}
≤ c1 exp

(
−c2 a2n

)
with a as before.
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The previous inequality holds for each t > 0 and K ∈M (a also depending
on t). A somewhat technical but standard approximation argument yields the
desired inequality for all t ≥ ε

νn,k

{
E ∈ Gn,k : sup

t≥ε

∣∣∣∣PE(tBn
2 )

Γ(t)
− 1

∣∣∣∣ ≤ ε

}
≥ 1− exp

(
−Cn0.9

)
.

The remaining estimate for supt≤ε relies on different arguments concerning
the behavior at t = 0. For that matter it is necessary to use concentration
of measure phenomena for the function E → |K ∩ E⊥| and to compute its
lipschitz constant. Details will appear in a forthcoming paper [1].
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