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Abstract : Let ` be a linear functional on a subspace Y of a real linear space X provided
with a sublinear functional p with ` ≤ p on Y . If G is an abelian semigroup of linear
transformations T : X → X such that T (Y ) ⊆ Y , p(Tx) ≤ p(x) and `(Ty) = `(y) for all
T ∈ G, x ∈ X and y ∈ Y respectively, then a generalization of the classical Hahn-Banach

theorem asserts that there exists an extension ˜̀ of `, ˜̀≤ p on X and ˜̀ remains invariant
under G. The present paper investigates various equivalent conditions for the uniqueness
of such extensions and these are related to nested sequences of p-balls, a concept that has
proved useful in recent years in dealing with such extensions. The results are illustrated by
a variety of examples and applications.
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1. Introduction

Let p be a sublinear functional defined on a linear space X over R and Y
a subspace with a linear functional ` such that `(y) ≤ p(y) for all y ∈ Y . Let
G be an abelian semigroup of linear transformations T : X → X such that
T (Y ) ⊆ Y and p(Tx) ≤ p(x) for all T ∈ G and all x ∈ X. We may assume
without loss of generality that G contains the identity operator I. Suppose
furthermore that

`(Ty) = `(y)

for all y ∈ Y and all T ∈ G. If G consists only of I, we are reduced to
the setting of the classical Hahn-Banach (H-B for short) theorem. Under
the above circumstances, the authors in [1] prove that there exists a linear
extension ˜̀ : X → X of `, which we shall henceforth call an invariant H-B
extension, with ˜̀(Tx) = ˜̀(x), ˜̀(x) ≤ p(x)

for all x ∈ X and T ∈ G. This generalization of the H-B theorem is, according
to [8], “both beautiful and useful”. The usefulness of the result stems from
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the fact that it has been employed to discuss the existence of Banach limits
[4, 6], the existence of finitely additive measures defined on the σ-algebra of
all subsets of the unit circle invariant under rotations [8], the possibility of
invariant norm-preserving extensions of continuous linear functionals defined
on subspaces of Banach spaces [11] and etc.

The main concern of the present paper is to investigate conditions for
uniqueness of such invariant extensions analogous to what was done in [3] in
the setting of the standard H-B theorem. Some relevant references for this
invariant extension are [7, 12, 13] where, however, the uniqueness question is
not addressed.

An important concept, first defined in [9] and extensively used here, is that
of a nested sequence of p-balls:

Definition 1.1. For x0 ∈ X and r > 0, define the open p-ball of radius
r around x0 by Bp(x0, r) = {x ∈ X : p(x0 − x) < r}.

A nested sequence of p-balls is a sequence {Bn = Bp(xn, rn)} of open
p-balls in X such that for all n ≥ 1, Bn ⊆ Bn+1 and rn ↑ ∞.

This was employed in [9] to characterize U -subspaces (for the definition, see
[3] where various generalizations of the result in [9] are given). The necessary
and sufficient conditions we give for the uniqueness of invariant extensions
largely involve nested sequences of p-balls and as such, the present paper
may be regarded as a continuation of [3] to which the reader is referred for
unexplained notations, terminologies and results used here.

Section 2 contains a discussion of some preliminary results culminating in
the main theorems. Section 3 contains a fairly liberal sprinkling of illustrative
examples and applications.

2. General results

Let us sketch briefly the proof of the invariant H-B extension mentioned
in the Introduction.

If G is the given semigroup of transformations with I ∈ G, let

C =: conv(G) =

{
n∑

i=0

aiTi : n ≥ 1, Ti ∈ G, ai ≥ 0,

n∑
i=0

ai = 1

}
.

Note that S ◦ T = T ◦ S ∈ C for S, T ∈ C and that T (Y ) ⊆ Y for T ∈ C.
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Moreover,

p(Sx) = p
( n∑

i=0

aiTix
)
≤

n∑
i=0

aip(Tix) ≤
n∑

i=0

aip(x) = p(x)

for all S ∈ C and x ∈ X. Following [4] (or [8]), a new sublinear functional p̂
is defined on X by

p̂(x) = inf{p(Tx) : T ∈ C} (1)

and it is clear that p̂ ≤ p on X. Proof of subadditivity of p̂ uses the fact that
G is abelian. Since `(y) = `(Ty) ≤ p(Ty) for all T ∈ C, one immediately has
`(y) ≤ p̂(y) for all y ∈ Y . Extend ` to ˜̀ on X by the ordinary H-B theorem
so that ˜̀≤ p̂. The great advantage of the definition (1) is that it gives

p̂(x− Tx) ≤ 0 for all T ∈ C

from which one deduces that ˜̀(x − Tx) ≤ 0 and hence ˜̀(x) = ˜̀(Tx) for all
x ∈ X and T ∈ G, thus proving the invariance of ˜̀. A fortiori, we have˜̀(x) = ˜̀(Tx) for all T ∈ C. We emphasise again that ˜̀≤ p̂ ≤ p on X.

Conversely, if ˜̀is an invariant extension ˜̀≤ p, then ˜̀(Tx) = ˜̀(x) ≤ p(Tx),
from which it follows that ˜̀≤ p̂ on X.

We thus see that the uniqueness of the invariant extension is equivalent
to the uniqueness of the extension dominated by the newly-defined sublinear
functional p̂.

Let Z = ker(`) ⊆ Y and y0 ∈ Y be such that `(y0) = 1. It follows that
any y ∈ Y can be written as y = αy0 + z for some α ∈ R and z ∈ Z and
`(y) = α. Recall from [3, p 30-31] that a sublinear functional p̃ is defined on
the quotient space X/Z by

p̃(x + Z) = inf{p(x + z) : z ∈ Z}˜̂p can be defined similarly. By [3, Lemma 2.6], ` has a unique extension from
Y to X dominated by p if and only if ` has a unique extension from Y/Z to
X/Z dominated by p̃ ; and by the above observation, ` has a unique invariant
extension from Y to X dominated by p if and only if ` has a unique extension
from Y/Z to X/Z dominated by ˜̂p .

Since Z is also C-invariant, for T ∈ C, the map T̃ (x + Z) = Tx + Z is
well-defined on X/Z. And C̃ = {T̃ : T ∈ C} is an abelian semigroup of linear
transformations on X/Z. This gives rise to another sublinear functional ̂̃p on
X/Z, given by ̂̃p(x + Z) = inf{p̃ ◦ T̃ (x + Z) : T ∈ C}.



96 p. bandyopadhyay, a. k. roy

We now explore the relation between these sublinear functionals on X/Z.

Lemma 2.1. (a) ˜̂p(x + Z) = inf{p̃ ◦ T (x + Z) : T ∈ C}.

(b) p̃(x + Z) ≥ p̃ ◦ T (x + Z) ≥ p̃ ◦ T̃ (x + Z) for all T ∈ C.

(c) ˜̂p(x + Z) ≥ ̂̃p(x + Z).

(d) inf{˜̂p ◦ T̃ (x + Z) : T ∈ C} = ̂̃p(x + Z).

Proof. (a) Now,

˜̂p(x + Z) = inf
z∈Z

p̂(x + z) = inf
z∈Z

inf
T∈C

[p ◦ T (x + z)]

= inf
T∈C

inf
z∈Z

[p ◦ T (x + z)] = inf
T∈C

[p̃ ◦ T (x + Z)].

(b) Since p ◦ T ≤ p, we have p̃ ◦ T ≤ p̃. And, since TZ ⊆ Z,

p̃ ◦ T (x + Z) = inf
z∈Z

[p ◦ T (x + z)] = inf
z∈Z

[p(Tx + Tz)]

≥ inf
z∈Z

[p(Tx + z)] = p̃(Tx + Z) = p̃ ◦ T̃ (x + Z).

(c) By (a) and (b), ˜̂p(x+Z) = inf
T∈C

[p̃ ◦ T (x+Z)] ≥ inf
T∈C

p̃◦T̃ (x+Z) = ̂̃p(x+Z).

(d) Combining (a) and (b), we see that inf
T∈C

[˜̂p(Tx + Z)] ≥ inf
T∈C

p̃ ◦ T̃ (x + Z).

On the other hand, from (a),

˜̂p(Tx + Z) = inf
T∈C

[p̃ ◦ T (Tx + Z)]

and hence,

inf
T∈C

[˜̂p(Tx + Z)] = inf
T∈C

inf
T∈C

[p̃ ◦ T (Tx + Z)] ≤ inf
T∈C

[p̃(Tx + Z)]

on taking T = I, and we have the result.

Remark 2.2. Note that if TZ = Z for all T ∈ C, equality will hold in (b)
and hence, by (a), we will get ˜̂p = ̂̃p.

The following simple observation will be needed in the sequel.
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Lemma 2.3. If p1, p2 are sublinear functionals on X, and for f ∈ Y #, if
f ≤ p1 ≤ p2 on Y , then for all x ∈ X \ Y ,

sup{f(y)− p2(y − x) : y ∈ Y } ≤ sup{f(y)− p1(y − x) : y ∈ Y }

≤ inf{f(y) + p1(x− y) : y ∈ Y } ≤ inf{f(y) + p2(x− y) : y ∈ Y }

We can now state the following lemma which is the analogue, in the present
context, of [3, Lemma 2.6].

Lemma 2.4. Let X, Y , C, p be as above. Let ` ∈ Y # be invariant and
` ≤ p on Y . Let Z = ker(`) ⊆ Y and y0 ∈ Y be such that `(y0) = 1. The
following are equivalent:

(a) ` has a unique C-invariant extension ˜̀dominated by p.

(b) sup{`(y) − p̂(y − x) : y ∈ Y } = inf{`(y) + p̂(x − y) : y ∈ Y } for all
x ∈ X \ Y .

(c) For any x ∈ X \ Y and ε > 0, there exists T = T (x, ε) ∈ C such that

inf{`(y) + p ◦ T (x− y) : y ∈ Y } ≤ sup{`(y)− p ◦ T (y − x) : y ∈ Y }+ ε.

(d) ` has a unique extension from Y/Z to X/Z dominated by ˜̂p.

(e) For any x ∈ X \ Y ,

sup{α− ˜̂p(αy0 − x + Z) : α ∈ R} = inf{α + ˜̂p(x− αy0 + Z) : α ∈ R}.

(f) For any x ∈ X \ Y and ε > 0, there exists T = T (x, ε) ∈ C such that

inf{α+p̃ ◦ T (x−αy0+Z) : α ∈ R}≤ sup{α−p̃ ◦ T (αy0−x+Z) : α ∈ R}+ε

(g) ` has a unique C̃-invariant extension ˜̀from Y/Z to X/Z dominated by p̃.

(h) For any x ∈ X \ Y ,

sup{α− ̂̃p(αy0 − x + Z) : α ∈ R} = inf{α + ̂̃p(x− αy0 + Z) : α ∈ R}.

(i) For any x ∈ X \ Y and ε > 0, there exists T = T (x, ε) ∈ C such that

inf{α+p̃◦T̃ (x−αy0+Z) : α ∈ R} ≤ sup{α−p̃◦T̃ (αy0−x+Z) : α ∈ R}+ε.
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Proof. From our earlier discussion, it follows that (a) is equivalent to

(a′) ` has a unique extension ˜̀dominated by p̂.

From [3, Lemma 2.6], we get (a′) ⇔ (b) ⇔ (d) ⇔ (e) and also (g) ⇔ (h).

(b) ⇒ (c) Let x ∈ X \ Y and ε > 0. By (b), there exist y1, y2 ∈ Y such that

`(y1)− p̂(y1 − x) > sup{`(y)− p̂(y − x) : y ∈ Y } − ε/2

and

`(y2) + p̂(x− y2) < inf{`(y) + p̂(x− y) : y ∈ Y }+ ε/2
= sup{`(y)− p̂(y − x) : y ∈ Y }+ ε/2
< `(y1)− p̂(y1 − x) + ε

and hence
p̂(y1 − x) + p̂(x− y2) < `(y1 − y2) + ε.

Now choose T1, T2 ∈ C such that

p(T1(y1 − x)) + p(T2(x− y2)) < p̂(y1 − x) + p̂(x− y2) + 2ε.

Taking T = T1T2 ∈ C, we see that

p(T (y1 − x)) + p(T (x− y2)) < `(y1 − y2) + 3ε.

This implies

`(y2) + p(T (x− y2)) ≤ `(y1)− p(T (y1 − x)) + 3ε,

and hence, (c) follows.

(c) ⇒ (b) Since p̂ ≤ p ◦ T for any T ∈ C, by Lemma 2.3, we have

sup{`(y)− p ◦ T (y − x) : y ∈ Y } ≤ sup{`(y)− p̂(y − x) : y ∈ Y }
≤ inf{`(y) + p̂(x− y) : y ∈ Y } ≤ inf{`(y) + p ◦ T (x− y) : y ∈ Y }.

Thus (c) ⇒ (b).

From Lemma 2.1 (a), we see that in (e), ˜̂p could be replaced by inf{p̃ ◦ T :
T ∈ C}. Now, (e) ⇔ (f) and (h) ⇔ (i) follow from similar arguments.

(d) ⇒ (g) Follows from Lemma 2.1 (c) and Lemma 2.3.
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(g) ⇒ (a) Suppose λ1 and λ2 are two distinct C-invariant extensions of `
dominated by p. Then λi ≤ p̂. Define Λi on X/Z by Λi(x + Z) = λi(x).
Notice that if x1 +Z = x2 +Z, then x1−x2 ∈ Z and therefore, λi(x1−x2) =
`(x1 − x2) = 0, showing that Λi’s are well-defined. It is also clear that Λi ≤ ˜̂p
and Λi’s are C̃-invariant. By (g), Λ1 = Λ2, and hence, λ1 = λ2.

Remark 2.5. Can one replace (c) above by the following: For any x ∈
X \ Y , there exists T ∈ C such that

sup{`(y)− p ◦ T (y − x) : y ∈ Y } = inf{`(y) + p ◦ T (x− y) : y ∈ Y }?

As Example 3.4 shows, this equality can hold sometimes.

We will now tie up the above results with nested sequences of balls and
present the main theorems of this paper. We adhere to the notations intro-
duced so far.

Theorem 2.6. Let X, Y , C, p be as above. Let ` ∈ Y # be invariant and
` ≤ p on Y . Let Z = ker(`) ⊆ Y . The following are equivalent:

(a) ` ∈ Y # has a unique C-invariant extension ˜̀dominated by p.

(b) If x ∈ X and {Bp̃(yn +Z, rn)} is a nested sequence of balls in X/Z with
{yn} ⊆ Y , 0 ∈ Bp̃(y1 + Z, r1), p̃(x + Z) ≤ 1, then there exists T ∈ C
such that

inf
n

dT,n

rn
< 2,

where

dT,n = inf{p̃ ◦ T (yn−x− y +Z)+ p̃ ◦ T (yn +x+ y +Z) : y +Z ∈ Y/Z}.

(c) If x ∈ X and {Bp̃(yn +Z, rn)} is a nested sequence of balls in X/Z with
{yn} ⊆ Y , 0 ∈ Bp̃(y1 + Z, r1), p̃(x + Z) ≤ 1, then there exist T ∈ C,
y ∈ Y and n0 ≥ 1 such that

p̃ ◦ T (yn0 ± (x− y) + Z) < rn0 .

(d) If x ∈ X and {Bp(yn, rn)} is a nested sequence of balls in X with
{yn} ⊆ Y , 0 ∈ Bp(y1, r1), p(x) ≤ 1 then there exist T ∈ C, n0 ≥ 1 and
y ∈ Y such that

p̃ ◦ T (yn0 ± (x− y) + Z) < rn0 .
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Proof. (a) ⇒ (b) As before, (a) is equivalent to

(a′) ` has a unique extension ˜̀dominated by p̂.

Let {Bp̃(yn +Z, rn)} be a nested sequence of balls in X/Z with {yn} ⊆ Y ,
0 ∈ Bp̃(y1 + Z, r1), p̃(x + Z) ≤ 1. Since ˜̂p ≤ p̃,

˜̂p(yn+1 − yn + Z) ≤ p̃(yn+1 − yn + Z) ≤ rn+1 − rn,

consequently, {B˜̂p(yn+Z, rn)} is also a nested sequence of ˜̂p-balls in X/Z with

{yn} ⊆ Y , 0 ∈ B˜̂p(y1 + Z, r1) and ˜̂p(x + Z) ≤ 1. By [3, Theorem 2.12], (a′)
implies

inf
n

1
rn

Dn < 2,

where

Dn = inf{˜̂p(yn − x− y + z) + ˜̂p(yn + x + y + Z) : y + Z ∈ Y/Z}.

This implies, there exists n0 ∈ N such that

1
rn0

Dn0 < 2 or, Dn0 < 2rn0

Therefore, we can find y′ + Z ∈ Y/Z such that

˜̂p(yn0 − x− y′ + Z) + ˜̂p(yn0 + x + y′ + Z) < 2rn0 .

So there are z1, z2 ∈ Z such that

p̂(yn0 − x− y′ + z1) + p̂(yn0 + x + y′ + z2) < 2rn0 .

Again by the definition of p̂, there exist T1, T2 ∈ C such that

p ◦ T1(yn0 − x− y′ + z1) + p ◦ T2(yn0 + x + y′ + z2) < 2rn0 .

Taking T = T1T2 ∈ C, we see that

p ◦ T (yn0 − x− y′ + z1) + p ◦ T (yn0 + x + y′ + z2) < 2rn0 ,

whence it follows that

p̃ ◦ T (yn0 − x− y′ + Z) + p̃ ◦ T (yn0 + x + y′ + Z) < 2rn0 .
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Hence
dT,n0 < 2rn0 , or,

1
rn0

dT,n0 < 2.

This proves (b).

(b) ⇒ (c) If (c) does not hold, then there exist x ∈ X and a nested sequence
of balls {Bp̃(yn+Z, rn)} in X/Z with {yn} ⊆ Y , 0 ∈ Bp̃(y1+Z, r1), p̃(x+Z) ≤
1, such that for all T ∈ C, y ∈ Y and n ≥ 1,

max{p̃ ◦ T (yn + x− y + Z), p̃ ◦ T (yn − x + y + Z)} ≥ rn.

Thus,

inf
n

inf{max{p̃ ◦ T (yn + x− y + Z), p̃ ◦ T (yn − x + y + Z)} : y + Z ∈ Y/Z}
rn

≥ 1.

As before, {B
p̃◦T (yn + Z, rn)} is also a nested sequence of p̃ ◦ T -balls in

X/Z with {yn} ⊆ Y , 0 ∈ B
p̃◦T (y1 + Z, r1) and p̃ ◦ T (x + Z) ≤ 1. Now use [3,

Lemma 2.10] to conclude that

inf
n

dT,n

rn
≥ 2,

contradicting (b).

(c) ⇒ (d) is clear.

(d) ⇒ (a) We show that (d) ⇒ Lemma 2.4 (f).
As in Lemma 2.4, let y0 ∈ Y be such that `(y0) = 1. Let x ∈ X \ Y . We

may assume that p(x) ≤ 1. Let ε > 0.
Let αn = n+ε/(n+2)−ε/2 for n ≥ 1. And as in the proof of [3, Theorem

2.12] (d) ⇒ (a), inductively construct a sequence {yn} such that yn ∈ αny0+Z
and 0 < p(y1) < 1 and 0 < p(yn+1 − yn) < 1 for all n ≥ 1. Then {Bp(yn, n)}
is a nested sequence of p-balls such that the centers {yn} ⊆ Y . Hence, by (d),
there exist T ∈ C, n0 ≥ 1 and y ∈ Y such that

p̃ ◦ T (yn0 ± (x− y) + Z) < n0.

Let α0 be such that y ∈ α0y0 + Z. Now arguing as in the proof of [3,
Theorem 2.12] (d) ⇒ (a), we get,

[(α0 − αn0) + p̃ ◦ T (x− (α0 − αn0)y0 + Z)]

− [(α0 + αn0)− p̃ ◦ T ((α0 + αn0)y0 − x + Z)] < ε.
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Hence,

inf{α+ p̃ ◦ T (x−αy0 +Z) : α ∈ R} ≤ sup{α− p̃ ◦ T (αy0−x+Z) : α ∈ R}+ε,

as was to be shown.

So far we have confined ourselves to the (local) problem of finding condi-
tions for invariant extensions of single linear functionals. Let us now turn our
attention to the global problem and for that it would be convenient to make
the following:

Definition 2.7. Let Y be a subspace of X and C be an abelian semigroup
of linear transformations on X under which Y remains invariant. We say that
Y is a C-invariant p-U -subspace if every C-invariant ` ∈ Y # with ` ≤ p has a
unique C-invariant extension ˜̀with ˜̀≤ p.

Such subspaces are characterized by

Theorem 2.8. Let Y be a subspace of X and C be an abelian semigroup
of linear transformations on X under which Y remains invariant. Then the
following statements are equivalent:

(a) Y is a C-invariant p-U -subspace.

(b) If x ∈ X and {Bp(yn, rn)} is a nested sequence of p-balls in X with
centres in Y , 0 ∈ Bp(y1, r1) and p(x) ≤ 1, then there exists T ∈ C such
that

inf
n

1
rn

[inf{p ◦ T (yn − x− y) + p ◦ T (yn + x + y) : y ∈ Y }] < 2.

(c) If x ∈ X and {Bp(yn,rn)} is a nested sequence of p-balls in X with
centres in Y , 0 ∈ Bp(y1, r1), p(x) ≤ 1, then there exist T ∈ C, y ∈ Y
and n0 ≥ 1 such that

p ◦ T (yn0 ± (x− y)) < rn0 .

Proof. (a) ⇒ (b) It follows from our earlier discussion that ` ∈ Y # is
C-invariant with ` ≤ p if and only if ` ≤ p̂. Thus, by [3, Theorem 2.14], (a)
implies:
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If x ∈ X and {Bp̂(yn, rn)} is a nested sequence of p̂-balls in X with centres
in Y , 0 ∈ Bp̂(y1, r1) and p̂(x) ≤ 1, then

inf
n

1
rn

[inf{p̂(yn − x− y) + p̂(yn + x + y) : y ∈ Y }] < 2.

Now arguing as in the proof of (a) ⇒ (b) of Theorem 2.6, we get (b).

(b) ⇒ (c) follows from the proof of (b)⇒ (c) of Theorem 2.6, putting Z = {0}.
(c) ⇒ (a) is easy.

Let us now specialize to the case when X is a normed linear space. Thus,
p(x) = ‖x‖. Let Y be a subspace of X and C be an abelian semigroup of
linear transformations on X under which Y remains invariant. Then since
p(Tx) = ‖Tx‖ ≤ p(x) = ‖x‖, we have ‖T‖ ≤ 1 for all T ∈ C. Let ` ∈ Y ∗

with ‖`‖ = 1 be C-invariant. Then, |`(Ty)| = |`(y)| ≤ ‖`‖‖Ty‖ = ‖Ty‖ for
any y ∈ Y . Hence 1 = ‖`‖ ≤ ‖T |Y ‖ ≤ ‖T‖ and we see that ‖T‖ = 1 for all
T ∈ C. Since an extension ˜̀ dominated by p̂ always exists, we have proved
[11, Theorem 5.24], which was proved as an application of Kakutani’s fixed
point theorem:

Theorem 2.9. Suppose Y is a subspace of a normed linear space X and
` ∈ Y ∗ with T (Y ) ⊆ Y , ‖T‖ = 1 and `(Ty) = `(y) for all y ∈ Y , where T ∈ C,
an abelian semigroup of linear transformations on X, then there always exists
a norm-preserving extension ˜̀ of ` which is also C-invariant.

The uniqueness of such an extension is given by:

Theorem 2.10. Let Y be a subspace of a normed linear space X and C be
an abelian semigroup of linear transformations on X under which Y remains
invariant. Then the following statements are equivalent:

(a) Y is a C-invariant U -subspace of X.

(b) If x ∈ X and {B(yn, rn)} is a nested sequence of balls in X with centres
in Y , 0 ∈ B(y1, r1) and ‖x‖ ≤ 1, then there exists T ∈ C such that

inf
n

1
rn

[inf{‖T (yn − x− y)‖+ ‖T (yn + x + y)‖ : y ∈ Y }] < 2.

(c) If x ∈ X and {B(ynrn)} is a nested sequence of balls in X with {yn} ⊆ Y ,
0 ∈ B(y1, r1) and ‖x‖ ≤ 1, then there exist T ∈ C, y ∈ Y and n0 ≥ 1
such that

‖T (yn0 ± (x− y))‖ < rn0 .
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Remark 2.11. If p is a norm, clearly p̂ is a seminorm. It is generally not
necessarily a norm. However, since any invariant functional on Y and its
invariant extensions vanish on W = {x ∈ X : p̂(x) = 0}, for the uniqueness
question, it suffices to work on the quotient space X/W , where p̂ is a norm.

3. Examples and applications

We will now consider some examples pertaining to Theorems 2.6 -2.10 and
give a few applications of these results.

Example 3.1. We first present an example of a subspace Y that is not
an invariant U -subspace.

Let X = B[0, 1], the space of bounded Borel functions on [0, 1] with the
sup-norm and Y = {f ∈ X :

∫ 1
0 f(x)dx = 0}. If T : X → X is defined by

Tg(x) = g(1 − x), then it is immediate that T (Y ) ⊆ Y . Also since T 2 = I,
C = {a0I + a1T : a0, a1 ≥ 0, a0 + a1 = 1}. Let

φ = χ[0, 1/4] − χ[1/4, 3/4] + χ[3/4, 1],

where χA denotes the indicator function of the Borel set A, and let

`(f) =
∫ 1

0
f(x)φ(x)dx, f ∈ Y.

Note that φ(x) = φ(1− x) for all x ∈ [0, 1]. Hence,

`(Tf) =
∫ 1

0
f(1−x)φ(x)dx =

∫ 1

0
f(1−x)φ(1−x)dx =

∫ 1

0
f(x)φ(x)dx = `(f),

so ` is C-invariant. It is easy to check that

‖`‖ = sup
{∣∣∣∣∫ 1

0
f(x)φ(x)dx

∣∣∣∣ : f ∈ Y, ‖f‖∞ ≤ 1
}

= 1.

For α ∈ R, define ˜̀ on X by

˜̀(g) =
∫ 1

0
g(x)(φ(x) + α)dx, g ∈ X.

Then for any f ∈ Y ,

˜̀(f) =
∫ 1

0
f(x)(φ(x) + α)dx =

∫ 1

0
f(x)φ(x)dx = `(f),
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and for any g ∈ X,

˜̀(Tg) =
∫ 1

0
g(1− x)[α + φ(x)]dx =

∫ 1

0
g(1− x)[α + φ(1− x)]dx = ˜̀(g),

thus ˜̀ is a C-invariant extension of `. Moreover,

‖˜̀‖ =
∫ 1

0
|α + φ(x)|dx.

One checks easily that for |α| ≥ 1,∫ 1

0
|α + φ(x)|dx =

∣∣∣∣∫ 1

0
[α + φ(x)]dx

∣∣∣∣ = |α| ≥ 1.

For 0 ≤ α ≤ 1,∫ 1

0
|α + φ(x)|dx =

∫ 1/4

0
(α + 1)dx +

∫ 3/4

1/4
(1− α)dx +

∫ 1

3/4
(α + 1)dx

=
1
2
(1 + α) +

1
2
(1− α) = 1,

and similarly, for −1 ≤ α ≤ 0,∫ 1

0
|α + φ(x)|dx =

1
2
(1 + α) +

1
2
(1− α) = 1.

Hence all choices of α in [−1, 1] give invariant norm-preserving extensions.
We will interpret this result in terms of Lemma 2.4 and Theorem 2.10.

Note that here p(g) = ‖g‖∞. We will show, for the constant function 1 ∈ X,
that

−1 = sup{`(f)− p(f − 1) : f ∈ Y } = sup{`(f)− p̂(f − 1) : f ∈ Y }

< 1 = inf{`(f) + p(1− f) : f ∈ Y } = inf{`(f) + p̂(1− f) : f ∈ Y },

thus proving non-uniqueness of ˜̀by Lemma 2.4 ((a) ⇔ (b)). Since both sup
and inf are attained at f = 0 ∈ Y , it suffices to show for all f ∈ Y ,

`(f) + 1 ≤ p̂(f + 1) ≤ p(f + 1) and `(f) + 1 ≤ p̂(f − 1) ≤ p(f − 1).
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Now, writing A = [0, 1/4] ∪ [3/4, 1] for convenience,

`(f) + 1 =
∫ 1

0
f(x)φ(x)dx + 1 =

∫ 1

0
[f(x)φ(x) + 1]dx

=
∫

A
(f(x) + 1)dx +

∫ 3/4

1/4
(1− f(x))dx

=
∫

A
(f(x) + 1)dx +

1
2
−

∫ 3/4

1/4
f(x)dx

=
∫

A
(f(x) + 1)dx +

1
2

+
∫

A
f(x)dx (as

∫ 1

0
f(x)dx = 0)

= 2
∫

A
(f(x) + 1)dx ≤ ‖f + 1‖∞.

Similarly,

`(f)+1 =
∫

A
(f(x)+1)dx+

∫ 3/4

1/4
(1−f(x))dx = 2

∫ 3/4

1/4
(1−f(x))dx ≤ ‖f−1‖∞.

Thus we have proved that for all f ∈ Y ,

`(f) + 1 ≤ p(f + 1) and `(f) + 1 ≤ p(f − 1). (2)

Since Y , ` and the constant function 1 are C-invariant, we have by (2),

`(f) + 1 = `(Sf) + 1 ≤ p(Sf + 1) ≤ p(S(f + 1))

and similarly, `(f)+1 ≤ p(S(f −1)). Since this is true for all S ∈ C, it follows
that

`(f) + 1 ≤ p̂(f + 1) and `(f) + 1 ≤ p̂(f − 1),

as claimed. Now, let f(x) = x− 1/2 on [0, 1]. Then f ∈ Y and

p̂(f − 1) = inf
{∥∥a0

(
x− 3

2
)

+ a1

(
− x− 1

2
)∥∥
∞ : a0, a1 ≥ 0, a0 + a1 = 1

}
= inf

{∥∥(a0 − a1)x−
(3
2
a0 +

1
2
a1

)∥∥
∞ : a0, a1 ≥ 0, a0 + a1 = 1

}
= inf

{∥∥(1− 2a1)x−
(3
2
− a1

)∥∥
∞ : a1 ∈ [0, 1]

}
= inf

{
max

{3
2
− a1, a1 +

1
2
}

: a1 ∈ [0, 1]
}

= inf
{
1 +

∣∣a1 −
1
2

∣∣ : a1 ∈ [0, 1]
}

= 1,
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but p(f − 1) = ‖x − 3/2‖∞ = 3/2. Hence p̂ 6= p in general, as it should be,
despite the various equalities proved above.

To link the above with nested sequences of balls, let Z = `−1(0) ⊆ Y . It
is trivial to check that Z = {f ∈ Y :

∫ 3/4
1/4 f(x)dx = 0}, and that if f0 ∈ Y ,

`(f0) = 1 if and only if ∫ 3/4

1/4
f0(x)dx = −1/2.

In particular, φ ∈ Y and `(φ) = 1. Also, notice that p̃(1 + Z) ≤ 1.
Define {fn} ⊆ Y by fn = αnφ, where αn ≥ 0, α1 < 1 and αn ↑ ∞. Let

rn = αn+1 for n ≥ 1. Then one checks easily that {Bp̃(fn+Z, rn)} is a nested
sequence of p̃-balls. For S = a0I + a1T ∈ C, we wish to compute infn dS,n/n
(See Theorem 2.6).

If f = αφ + h for some α ∈ R and h ∈ Z, by (2), we have for any h ∈ Z,

p(S(fn − 1− f + h)) = p(S(fn − f + h)− 1) ≥ `(fn − f + h) + 1 = αn −α + 1

Thus,
p̃ ◦ S(fn − 1− f + Z) ≥ αn − α + 1.

Similarly,
p̃ ◦ S(fn + 1 + f + Z) ≥ αn + α + 1.

Consequently,

p̃ ◦ S(fn − 1− f + Z) + p̃ ◦ S(fn + 1 + f + Z)
≥ (αn − α + 1) + (αn + α + 1) = 2(αn + 1) = 2rn

and we conclude that
inf
n

1
rn

dS,n ≥ 2,

once again showing non-uniqueness of ˜̀. Moreover,

p̃(fn − 1− f + Z) = p̃((αn − α)φ− 1 + Z) ≥ αn − α + 1 > rn if α < 0,

and
p̃(fn + 1 + f + Z) ≥ αn + α + 1 ≥ rn if α ≥ 0.

We see therefore that there are no y ∈ Y and n0 ∈ N such that

p̃(fn0 ± (1 + f + Z)) < rn0 = αn0 + 1

showing once again non-uniqueness in view of Theorem 2.6 (c).
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Remark 3.2. The simple construction above of a nested sequence of balls
in B[0, 1] which fails to meet the conditions of Theorem 2.6 does not seem to
be available in C[0, 1].

Example 3.3. Clearly, a U -subspace is necessarily an invariant U -sub-
space. The following is a very simple example of an invariant U -subspace
which is not a U -subspace. Let X = C[0, 1] and

Y = {f ∈ C[0, 1] : f(0) = −f(1)} = ker(δ0 + δ1),

where δx is the Dirac measure at x ∈ [0, 1]. For x ∈ [0, 1], let φx denote the
restriction of δx to Y . Since the functional φ0 has two distinct norm-preserving
extensions, namely, δ0 and −δ1, Y is not an U -subspace.

Define T : X → X by Tg(x) = −g(1−x). It is immediate that T (Y ) ⊆ Y .
Let ` ∈ Y ∗, ‖`‖ = 1 and `(Tf) = `(f) for all f ∈ Y . Suppose ` has

two invariant norm-preserving extensions represented by µ and ν respectively.
Then µ− ν = α(δ0 + δ1) for some α ∈ R.

Let Φ(x) = 1− x, x ∈ [0, 1]. By the T -invariance of µ and ν,

µ + µ ◦ Φ−1 = ν + ν ◦ Φ−1 = 0.

It follows that

α(δ0 + δ1) = µ− ν = −(µ− ν) ◦ Φ−1 = −α(δ0 + δ1) ◦ Φ−1 = −α(δ0 + δ1).

Therefore, α = 0 and hence, µ = ν.

We will now give a few applications of our results.

Example 3.4. Banach Limits. Recall briefly what a Banach limit is.
If x = (xn) ∈ `∞, let (Tx)n = xn+1. Let C = {

∑n
k=0 akT

k : n ≥ 1, ai ≥
0,

∑n
i=0 ai = 1}, p(x) = lim sup

n→∞
xn, a sublinear functional on `∞.

Note that p(Tx) = p(x) for all x ∈ `∞. If y = (yn) ∈ c, i.e. limn yn exists
(in R) and `(y) = p({yn}) = limn yn, then a Banach limit on `∞ is a linear
functional ˜̀ on `∞ that extends ` and

˜̀(x) ≤ p(x), ˜̀(Tx) = ˜̀(x) for all x ∈ `∞.

In other words, ˜̀ is an invariant H-B extension. We showed in [3] the
non-uniqueness of ˜̀by checking that p is not linear on `∞ (as required by [3,
Proposition 4.4]). Here we treat the problem by the methods of this paper,
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viz. by showing that ˜̀does not satisfy the conditions of Lemma 2.4 nor does
it satisfy those of Theorems 2.6-2.10. The proofs will be somewhat sketchy
since the arguments are reminiscent of those used in Example 3.1.

We first show that the invariant extension is unique from c to x0 =
(1, 0, 1, 0, 1, 0, . . .) ∈ `∞. If

T1 =
1
2n

2n−1∑
k=0

T k ∈ C,

then, for y = (yn) ∈ c,

(
T1(y − x0)

)
m

=
1
2n

( 2n−1∑
k=0

ym+k − n
)

=
1
2n

2n−1∑
k=0

ym+k −
1
2
.

Putting limn yn = α, we see that

p
(
T1(y − x0)

)
= α− 1

2
and p

(
T1(x0 − y)

)
=

1
2
− α

and it follows that

sup{`(y)− p ◦ T1(y − x0) : y ∈ Y } = inf{`(y)− p ◦ T1(x0 − y) : y ∈ Y } =
1
2
.

Hence by Lemma 2.4 ((d) ⇔ (a) ⇔ (b)), we have uniqueness and

sup{`(y)− p̂(y − x0) : y ∈ Y } = inf{`(y)− p̂(y − x0) : y ∈ Y } =
1
2
.

The various equalities above will not allow us to conclude that p̂(y−x0) = α− 1
2

but, curiously enough, this is the case as the following computation shows.
Let

S =
2n−1∑
k=0

akT
k ∈ C,

then(
S(y − x0)

)
m

=
( 2n−1∑

k=0

akT
k(y − x0)

)
m

=
2n−1∑
k=0

akym+k −



n−1∑
k=0

a2k if m is odd

n−1∑
k=0

a2k+1 = 1−
n−1∑
k=0

a2k if m is even
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Hence,

p
(
S(y − x0)

)
=


α−

n−1∑
k=0

a2k if
n−1∑
k=0

a2k ≤
1
2

α− 1 +
n−1∑
k=0

a2k if
n−1∑
k=0

a2k ≥
1
2

Similarly, if S1 = a0I + a1T + · · ·+ a2nT 2n ∈ C,

p
(
S1(y − x0)

)
=


α−

n∑
k=0

a2k if
n∑

k=0

a2k ≤
1
2

α− 1 +
n∑

k=0

a2k if
n∑

k=0

a2k ≥
1
2
.

This shows that
p̂(y − x0) = α− 1

2
.

We will now show that for

x0 = (1,−1,−1, 1, . . . , 1︸ ︷︷ ︸
22 terms

,−1, . . . ,−1︸ ︷︷ ︸
23 terms

, . . . , (−1)k, . . . , (−1)k︸ ︷︷ ︸
2k terms

, . . .) ∈ `∞,

uniqueness fails. Taking S = a0I + a1T + · · · + anTn ∈ C, and writing y =
(yn) ∈ c and x0 = (xn), we see as above that

(
S(y − x0)

)
m

=
n∑

i=0

aiym+i −
n∑

i=0

aixm+i,

where the second term is some positive and negative combination of a0, a1,
. . . , an. In particular, for 22k−1 ≤ n ≤ 22k+1, the 22k−1-th term of S(y − x0)
is

n∑
i=0

aiy22k−1+i +
n∑

i=0

ai =
n∑

i=0

aiy22k−1+i + 1,

and the 22k-th term looks like

n∑
i=0

aiy22k+i −
n∑

i=0

ai =
n∑

i=0

aiy22k+i − 1.
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These are repeated an infinite number of times as k gets larger and conse-
quently, putting limn yn = α, we see that

p
(
S(y − x0)

)
= lim sup

n

( n∑
k=0

akym+k −
n∑

k=0

akxm+k

)
= α + 1.

This implies p̂(y−x0) = α+1. Similarly, p
(
S(x0−y)

)
= 1−α and p̂(x0−y) =

1− α. Thus,

−1 = sup
{
`(y)−p

(
S(y−x0)

)
: y ∈ c

}
< inf

{
`(y)+p

(
S(x0−y)

)
: y ∈ c

}
= 1,

showing non-uniqueness of Banach limit.
To see the connection with nested sequences of balls, note that, Z =

`−1(0) = c0 ⊆ c = Y ⊆ `∞ = X. Let x0 ∈ `∞ as in the previous paragraph and
let zn ∈ c0 and define yn = αn(1, 1, . . . , 1, . . .)+zn ∈ c, y = α(1, 1, . . . , 1, . . .)+
z ∈ c, where αn ≥ 0, α1 < 1 and αn ↑ ∞. Let rn = αn + 1 for n ≥ 1.
Then {Bp̃(yn + Z, rn)} is a nested sequence of p̃-balls in Y/Z. We check for
S = a0I + a1T + · · ·+ anTn ∈ C (vide Theorem 2.6 (b)) that

inf
n

dS,n

rn
≥ 2.

Recall that p̃ ◦ S ≥ p̃ ◦ S̃ (Lemma 2.1 (b)). Explicitly writing down the
expressions for S(yn−x0−y+z) and S(yn +x0 +y+z) and arguing as before,
we see that (with z′ ∈ Z),

p
(
S(yn − x0 − y + z) + z′

)
= αn − α + 1,

and
p
(
S(yn + x0 + y + z) + z′

)
= αn + α + 1.

Hence,

dS,n ≥ 2αn + 2 = 2rn ⇒ inf
n

dS,n

rn
≥ 2.

Similarly,

p̃(yn − x0 − y + c0) = αn − α + 1 = rn − α ≥ rn if α ≤ 0,

p̃(yn + x0 + y + c0) = αn + α + 1 = rn + α ≥ rn if α ≥ 0.

So, there are no y ∈ c and n0 ∈ N such that

p̃(yn0 ± (x0 + y) + c0) < rn0 ,

thus Theorem 2.6 (b) and (c) both fail for the Banach limit.



112 p. bandyopadhyay, a. k. roy

Example 3.5. Let X be Banach space and Y ⊆ X be a closed subspace
such that there is a norm 1 projection on X with range Y . Let G = {I, P} and
p(x) = ‖x‖. Let ` ∈ Y ∗ with ‖`‖ = 1. Clearly, Y and ` are G-invariant. Thus,
there exists a norm-preserving invariant extension ˜̀ : X → X of `. Note that
by invariance, for any x ∈ X,

˜̀(x) = ˜̀(Px) = `(Px),

and hence, ˜̀= ` ◦ P , showing uniqueness of the invariant extension.

Remark 3.6. We thus see that uniqueness of invariant extension implies
uniqueness of norm one projection from X onto Y . Indeed, if P1 and P2 are
two distinct norm 1 projections from X onto Y , then there exists x ∈ X
and ` ∈ Y ∗ such that `(P1x) 6= `(P2x) and by the above, the P1-invariant
extension of ` differs from the P2-invariant extension of `.

Example 3.7. Invariant extensions of positive functionals. We
recall the setting of [3, Example 4.6] : Let Y ⊆ X be a subspace of an ordered
linear space (X,≥). Assume that Y is cofinal in X, that is, given any x ∈ X,
there exists y ∈ Y such that x ≤ y. Then we know that any f ∈ Y #, f ≥ 0
has an extension f̂ ∈ X#, f̂ ≥ 0 if and only if f̂ ≤ q on X where

q(x) = inf{f(y) : x ≤ y, y ∈ Y }.

and f̂ is unique if and only if q is linear on X. Let a semigroup G (with I ∈ G)
act on X in such a way that T (Y ) ⊆ Y , Tx ≥ 0 if x ≥ 0 and f(Ty) = f(y)
for all y ∈ Y , i.e. f is invariant under G on Y . Note that

x ≤ y ⇒ Tx ≤ Ty ∈ Y ⇒ q(Tx) ≤ f(Ty) = f(y) for all y ∈ Y

Therefore, q(Tx) ≤ q(x) for all x ∈ X. We also know that f ≤ q has an G-
invariant extension f̂ ≤ q̂ on X. Consequently, f̂ is also a positive extension
by the remarks made above. We reiterate that the necessary and sufficient
condition for f to have a unique positive extension (i.e. an extension which is
unique with respect to positivity) is that q is linear on X.

Example 3.8. We conclude this paper with another application. In [8,
Theorem 4, page 33], it is proved that there exists a non-negative finitely
additive set function m(P ) defined on all subsets P of the unit circle T in
C that is invariant under rotations. This is obtained as follows. Let B be
the space of all bounded real valued functions on T and Y the space of all
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bounded Lebesgue measurable function on T. Let `(f) =
∫

T f(θ)dθ, (f ∈ Y ,
dθ normalized Haar measure on T). Y obviously has an order unit 1 and
therefore the function

q(g) = inf{`(f) : g ≤ f, f ∈ Y }

is well-defined (as we have seen earlier).
If Aρ(f)(θ) = f(θ + ρ), ρ being a rotation of the circle, one verifies easily

that q is rotation invariant: q(Aρg) = q(g) for all g ∈ B. Rotations of the
circle commute and hence ` can be extended to all of B such that ˜̀ is linear,˜̀(Aρg) = ˜̀(g) for all g ∈ B, i.e. ˜̀ is invariant under rotations and ˜̀≤ q.

We investigate whether the positive extension is unique. For this, the
necessary and sufficient condition, as observed above, is that q is linear. We
will show that q is non-linear. If g = χP is the indicator function of P , where
P is chosen to be non-measurable, then

q(χP ) = inf{`(f) : χP ≤ f, f ∈ Y }.

f can be approximately uniformly by simple functions and therefore it suffices
to take a simple function in the definition of q(χP ), from which it will be clear
that f must be of the form χE , E a Lebesgue measurable set in T with P ⊆ E
and hence q(χP ) = inf{m(E) : P ⊆ E, E Lebesgue measurable} = m∗(P ),
m∗ being the outer measure which provides the extension of Lebesgue measure
on T. From [2, Theorem 1.3.5, page 17], we must have

m∗(P ) + m∗(P c) > 1

as P is non-measurable. But if q is linear, then

q(χP ) + q(χP c) = q(χP ) + q(1− χP ) = 1,

i.e. m∗(P ) + m∗(P c) = 1, a contradiction.
Thus, the extension is non-unique. The question whether there is a unique

invariant extension, i.e. whether q̂ is linear on X, appears more difficult and we
leave it as an open question for that elusive creature known as the interested
reader.
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