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Abstract : Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear
operators of H and Bess(H) be the set of all Bessel sequences of H. Fixed an orthonormal
basis E = {ek}k∈N of H, a bijection αE : Bess(H) −→ L(H) can be defined. The aim of this
paper is to characterize α−1

E (A) for different classes of operators A ⊆ L(H). In particular,
we characterize the Bessel sequences associated to injective operators, compact operators
and Schatten p-classes.
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1. Introduction

Let H be a separable Hilbert space, and let L(H) be the algebra of all
bounded linear operators of H. A sequence {fk}k∈N in H is called a Bessel
sequence if there exists a positive constant B for which

∞∑

k=1

|〈x, fk〉|2 ≤ B‖x‖2

for all x ∈ H. The bound of a Bessel sequence is the smallest B that satisfies
the corresponding inequality. The set of all Bessel sequences of H will be
denoted by Bess(H). It is easy to check that Bess(H) is a vector space.
Moreover, ‖{fk}k∈N‖ =

√
B is a norm and (Bess(H), ‖ . ‖) is a Banach space.

Fixed an orthonormal basis E = {ek}k∈N of H, consider the mapping:

αE : Bess(H) −→ L(H)
F ={fk}k∈N −→ T
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where T is defined by T (
∑∞

k=1 αkek) =
∑∞

k=1 αkfk. In Section 2 we will show
that αE is well defined and that it is an invertible isometric bounded linear
transformation. Observe that when E is the canonical orthonormal basis of
l2, αE(F ) is known as the analysis operator of F and its adjoint, αE(F )∗, is
the synthesis operator of F . The aim of this note is to characterize several
classes of bounded linear operators onH in terms of their corresponding Bessel
sequences. More precisely, we characterize the subsets of Bess(H) which
correspond to injective operators, Fredholm operators, compact operators,
and Schatten p-classes. This work is a kind of continuation of [5], where there
is a geometric study of frames and epimorphisms. The paper [2] by P. Balasz
contains several results which are in the same spirit of this one.

2. Preliminaries

Let us prove that the mapping αE(F ) = T is well defined, i.e., that∑∞
k=1 αkfk is convergent in H and if T (

∑∞
k=1 αkek) =

∑∞
k=1 αkfk then T ∈

L(H).
If n > m, then

∥∥∥∥∥
n∑

k=1

αkfk −
m∑

k=1

αkfk

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=m+1

αkfk

∥∥∥∥∥ = sup
‖g‖=1

∣∣∣∣∣

〈
n∑

k=m+1

αkfk, g

〉∣∣∣∣∣

≤ sup
‖g‖=1

n∑

k=m+1

|αk 〈fk, g〉|

≤
(

n∑

k=m+1

|αk|2
)1/2

sup
‖g‖=1

(
n∑

k=m+1

|〈fk, g〉|2
)1/2

≤
√

B

(
n∑

k=m+1

|αk|2
)1/2

.

Consequently, {∑n
k=1 αkfk}n∈N is a Cauchy sequence in H, and therefore it is

convergent. Thus, T is well defined and clearly it is linear.
A similar calculation shows that T is bounded. It is straightforward, that

‖αE(F )‖2 is the optimal bound of the Bessel sequence F .
The mapping

L(H) −→ Bess(H)
T −→ {Tek}k∈N
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is also well defined, since for every x ∈ H
∞∑

k=1

|〈x, Tek〉|2 = ‖T ∗x‖2 ≤ ‖T ∗‖2 ‖x‖2,

i.e, {Tek}k∈N ∈ Bess(H). Moreover, this transformation is bounded and it is
obviously the inverse of αE .

Remark 2.1. The notion of Bessel sequence provides necessary and suffi-
cient conditions for an infinite matrix to be the representation (induced by a
fixed basis) of a bounded linear operator on H. In general, it is hard to deter-
mine whether an infinite matrix arises from a bounded linear operator on H
(see [9, p. 23]). However, according to what we have just proved, an infinite
matrix corresponds to a bounded linear operator if and only if the sequence
formed by its columns is a Bessel sequence in l2.

We highlight some of the terminology and notation we need in these notes.
Denote by GL(H) the group of invertible operators and by U(H) the group
of unitary operators. Given an operator T ∈ L(H), R(T ) denotes the range
of T , N(T ) the nullspace of T and T ∗ the adjoint of T.

Definition 2.2. A sequence of vectors {xk}k∈N of H is a Schauder basis
for H if, for each x ∈ H, there exist unique scalar coefficients {αk}k∈N such
that x =

∑∞
k=1 αkxk. If this property holds only for each x ∈ span {xk}k∈N

then the sequence {xk}k∈N is called a Schauder sequence.

Definition 2.3. A sequence of vectors {xk}k∈N belonging to H is a Riesz
sequence if there exist constants 0 < c < C such that for every scalar sequence
{an}n∈N ∈ l2 one has

c

( ∞∑

n=1

|an|2
)
≤

∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥
2

≤ C

( ∞∑

n=1

|an|2
)

.

A Riesz sequence {xk}k∈N is called a Riesz basis forH if span
{{xk}k∈N

}
= H.

It can be observed that {xk}k∈N is a Riesz sequence ofH if and only if {xk}k∈N
is a Riesz basis for span

{{xk}k∈N
}

.

Definition 2.4. A Bessel sequence {fk}k∈N is called a frame if there ex-
ists a constant A > 0 such that

A‖x‖2 ≤
∞∑

k=1

|〈x, fk〉|2
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for every x ∈ H. If this relation holds for every x ∈ span {fk}k∈N then {fk}k∈N
is called a frame sequence. If the bounds A and B coincide the frame is called
tight. Tight frames with bound equal to 1 are called Parserval frames.

For a general background on bases and frames the reader is referred to the
paper by Duffin and Schaeffer [6], and the books by R. C. Young [12] and O.
Christensen [3].

3. Relation between Bessel sequences and different
classes of linear bounded operators

In this section we will characterize Bessel sequences related, through the
map αE , to different classes of bounded linear operators. The map αE depends
on the previously fixed orthonormal basis E, but it would be desirable that
the characterization of the Bessel sequences be independent of E. The next
proposition shows that this independence only holds for subsets A of L(H)
which are invariant by unitary right multiplication.

Proposition 3.1. Let A ⊂ L(H). Then α−1
E (A)= α−1

Ẽ
(A) for every pair

of orthonormal bases of H, E = {ek}k∈N and Ẽ = {ẽk}k∈N, if and only if A
= AU(H).

Proof. Let T ∈ A, U ∈ U(H) and E = {ek}k∈N be an orthonormal basis
of H. Then Ẽ = U∗E = {ẽk}k∈N is also an orthonormal basis of H. Now,
by hypotheses, there exists T̃ ∈ A such that Tek = T̃ ẽk, i.e., T = T̃ U∗.
Therefore, TU = T̃ ∈A.

Conversely, let {fk}k∈N be a Bessel sequence in α−1
E (A). Then there exists

T ∈ A such that Tek = fk. Let Ẽ = {ẽk}k∈N be an orthonormal basis of H,
and let U ∈ U(H), such that Uẽk = ek. Then, fk = Tek = TUẽk, and as
TU ∈ A, we obtain that fk ∈ αẼ(A).

Even though the condition given in Proposition 3.1 is very restrictive,
there exist many classes of operators that verify it. For example, invertible
operators, injective operators and compact operators, as well as surjective
operators, closed range operators, partial isometries, contractions, and so on.

The next proposition summarizes some well known characterizations. We
include the proof of some items for the reader’s convenience.
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Proposition 3.2. (1) If A = U(H) then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is an orthonormal basis of H}.

(2) If A = GL(H) then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is a Riesz basis of H}.

(3) If A is the set of all epimorphisms in L(H) then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is a frame of H}.

(4) If A is the set of all closed range operators then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is a frame sequence of H}.

(5) If A is the set of all the partial isometries of H then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is a Parserval

frame sequence of H}.
(6) If A is the set of all the co-isometries of H then

α−1
E (A) = {F = {fk}k∈N ∈ Bess(H): F is a Parserval frame of H}.

Proof. (5) Let T be a partial isometry, and y ∈ R(T ). Hence, there exists
x ∈ N(T )⊥ such that y = Tx, and T ∗T = PN(T )⊥ . Then,

‖y‖2 = ‖ Tx‖2 = ‖x‖2 = ‖ T ∗Tx‖2 =
∞∑

k=1

|〈 T ∗ Tx, ek〉|2 =
∞∑

k=1

|〈y, Tek〉|2.

Therefore f = {Tek}k∈N is a Parseval frame sequence. Conversely, let x ∈ H

‖Tx‖2 =
∞∑

k=1

|〈Tx, Tek〉|2 = ‖T ∗Tx‖2 .

Then T ∗ is an isometry onto R(T ) = N(T ∗)⊥, i.e, T ∗ is a partial isometry,
and then T is a partial isometry.

(6) T ∈ L(H) is a co-isometry if and only if

‖x‖2 = ‖T ∗x‖2 =
∞∑

k=1

|〈T ∗x, ek〉|2 =
∞∑

k=1

|〈x, Tek〉|2

for every x ∈ H, i.e., if and only if α−1
E (f) is a Parseval frame.
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The class of Fredholm operators satisfies the condition of Proposition 3.1.
The following definition will be needed to characterize the Bessel sequences
related to them.

Definition 3.3. Let G = {gi}i∈N be a sequence in H.

(a) The deficit of G is

d(G) = inf{|J | : J ⊂ H and span(J ∪G) = H}.
(b) The excess of G is

e(G) = sup{|J | : J ⊂ G and span(G− J) = gen(G)}.

See [10] for the relation of these concepts with Besselian frames and near-
Riesz Bases.

The reader is referred to [1] for the proof of the next lemma.

Lemma 3.4. Let F = {fk}k∈N be a Bessel sequence of H. Then,

(a) d(F ) = dimN(αE (F )∗) = dimR(αE (F ))⊥,

(b) e(F ) ≥ dimN(αE (F )),

(c) If F is a frame then e(F ) = dimN(αE (F )).

Therefore, applying Proposition 3.2 and Lemma 3.4, Bessel sequences re-
lated to Fredholm operators can be characterized as follows.

Proposition 3.5. Let F = {fk}k∈N be a Bessel sequence of H. αE(F )
is a Fredholm operator if and only if F is a frame sequence with finite excess
and deficit.

Our next goal is to characterize the Bessel sequences related to injective
and injective and closed range operators.

Proposition 3.6. Let T ∈ L(H). T is an injective and closed range
operator if and only if α−1

E (T ) is a Riesz sequence.

Proof. Recall that T ∈ L(H) is injective and has closed range if and only
if there exists a constant c > 0 such that c ‖x‖2 ≤ ‖Tx‖2 for every x ∈ H.

Then, consider T ∈ L(H) an injective closed range operator and let c be a
positive constant as above. Now, for every {an}n∈N ∈ l2 let x =

∑∞
n=1 anen.

Then c
∑∞

n=1 |an|2 ≤ ‖∑∞
n=1 anTen‖2 .
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On the other hand, since T ∈ L(H) then there exists C such that ‖Tx‖2 ≤
C ‖x‖2 for every x ∈ H, or what is equivalent there exists C > 0 such that
‖∑∞

n=1 anTen‖2 ≤ C
∑∞

n=1 |an|2 for every {an}n∈N ∈ l2.

Summarizing, there exist c, C > 0 such that

c

( ∞∑

n=1

|an|2
)
≤

∥∥∥∥∥
∞∑

n=1

anTen

∥∥∥∥∥
2

≤ C

( ∞∑

n=1

|an|2
)

for every {an}n∈N ∈ l2, i.e., {Tek}k∈N = α−1
E (T ) is a Riesz sequence.

Conversely, let F = {fk}k∈N be a Riesz sequence in H. By the upper
bound condition, T = αE (F ) is well defined, i.e., T ∈ L(H). By the lower
bound condition there exists c > 0 such that c ‖x‖2 ≤ ‖Tx‖2 for every x ∈ H,
then T is an injective closed range operator.

Corollary 3.7. Let T ∈ L(H) and E = {ek}k∈N be an orthonormal
basis of H. Then {Tek}k∈N is a frame in H if and only if {T ∗ek}k∈N is a Riesz
sequence.

Proof. It follows easily from Propositions 3.2 and 3.6, and the fact that
an operator is surjective if and only if its adjoint is injective and has closed
range.

Remark 3.8. Considering the matrix representation (induced by a fixed
basis) of a bounded linear operator, the last corollary can be rephrased as
follows:

The sequence of columns of a matrix forms a Riesz sequence if and only if
the sequence of rows forms a frame.

Proposition 3.9. Let F = {fk}k∈N be a Bessel sequence in H. Then,
T = αE (F ) ∈ L(H) is an injective operator if and only if {fk}k∈N is a Schauder
sequence.

Proof. It suffices to observe that T ∈ L(H) is an injective operator if and
only if there exists unique scalars αk, k ∈ N, such that x =

∑∞
k=1 αkTek.

Remark 3.10. In the last proposition, the hypothesis that F is a Bessel
sequence is necessary. In fact, there exist Schauder bases that are not Bessel
sequences. For example, consider xk = 1√

k

∑k
n=1 en. It is easily seen that it

is a Schauder basis. Let us prove that it is not a Bessel sequence. In fact, if
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x =
∑∞

n=1 n−1en then 〈x, xk〉 = 1√
k

∑k
n=1

1
n and therefore

∑∞
k=1 |〈x, xk〉|2 >∑∞

k=1
1
k which proves that (xk)k∈N is not a Bessel sequence.

The other implication is also false, i.e, there exist Bessel sequences that are
not Schauder basis. For example, the sequence {e1, e1, e2, e2, . . .} is a Bessel
sequence (moreover, it is a frame) and it is not a Schauder basis.

Another right unitary invariant subset of L(H) is the set of compact op-
erators. Different characterizations of compact operators allow the following
results.

Proposition 3.11. Let T ∈ L(H). Then, T is compact if and only if
‖ Txn‖ −→

n→∞ 0 for every orthonormal sequence {xn}n∈N in H.

Proof. See [7, p. 263].

Corollary 3.12. Let F = {fk}k∈N be a Bessel sequence of H. If αE(F )
is a compact operator then F ∈ c0 (H) =

{
{fn}n∈N : ‖fn‖ −→

n→∞ 0
}

.

Remark 3.13. Observe that the converse of the last corollary is false in
general. Fixed an orthonormal basis {en}n∈N the sequence (fn)n∈N defined
by e1,

e2√
2
, e2√

2
, e3√

3
, e3√

3
, e3√

3
, . . . is a Parseval frame. Therefore, T = αE(f) is a

co-isometry, i.e., TT ∗ = id. Hence, T is not a compact operator, however,
‖ Ten‖ −→

n→∞ 0.

The next well known result will be needed in Proposition 3.15.

Proposition 3.14. T ∈ L(H) is a compact operator if and only if for
every orthonormal basis {en}n∈N of H holds that PnT −→

n→∞ T where Pn =
Pspan{e1,...,en}.

Proof. See [4, p. 43].

Proposition 3.15. Let F = {fk}k∈N be a Bessel sequence ofH and FN =
{fk}k>N . Then, αE(F ) is a compact operator if and only if

∥∥αE(FN )
∥∥ −→

N→∞
0.

Proof. Let T = αE(F ) be a compact operator, then T ∗ is also a compact
operator. Consider PN = Pspan{e1,...,eN}. Then ‖PNT ∗ − T ∗‖ −→

N→∞
0.

Let x ∈ H,

(PNT ∗ − T ∗) x = −
∞∑

k=N+1

〈T ∗x, ek〉 ek = −
∞∑

k=N+1

〈x, Tek〉 ek
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Then,

∞∑

k=N+1

|〈x, Tek〉|2 = ‖(PNT ∗ − T ∗) x‖2 ≤ ‖PNT ∗ − T ∗‖2 ‖x‖2

Thus, FN = {Tek}k>N ∈ Bess(H) and
∥∥αE(FN )

∥∥2 = ‖PNT ∗ − T ∗‖2 −→
N→∞

0.

Conversely, let F = {fk}k∈N be a Bessel sequence such that
∥∥αE(FN )

∥∥2 −→
N→∞

0. Let T = αE(F ), and let show that T ∗ is compact. Following the same idea
as before,

‖(PNT ∗ − T ∗) x‖2 =
∞∑

k=N+1

|〈x, Tek〉|2 ≤
∥∥αE(fN )

∥∥2 ‖x‖2

Then ‖PNT ∗ − T ∗‖2 ≤ ∥∥αE(FN )
∥∥2 −→

N→∞
0. So, T ∗ is compact and therefore

T is compact.

Finally, we want to study the Schatten p-classes of operators. First, we
recall some properties. (For more details see [11])

Definition 3.16. A compact operator T ∈ L(H,K) is said to be in the
Schatten p-class

∑
p (1 ≤ p < ∞) if (λn)n∈N ∈ lp where (λn)n∈N is the

sequence of positive eigenvalues of |T | = (T ∗T )1/2 arranged in decreasing
order and repeated according to multiplicity.

The
∑

1 and
∑

2 classes are usually called the trace class and the Hilbert-
Schmidt class, respectively.

If T ∈ ∑
p and S ∈ L(H) then ST ∈ ∑

p and TS ∈ ∑
p . Therefore,∑

p U =
∑

p.

The following proposition gives conditions on αE(f) ∈ ∑
p depending on

the value of p. The reader is referred to [8, p. 95] for the proof of the next
result.

Proposition 3.17. Let E = {ek}k∈N be an orthonormal basis of H and
F = {fn}n∈N ∈ Bess(H). Then:

(1) If p ≤ 2 and {‖fn‖}n∈N ∈ lp then αE(F ) ∈ ∑
p .

(2) If 2 ≤ p and αE(F ) ∈ ∑
p then {‖fn‖}n∈N ∈ lp.
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As a consequence of the last proposition, given a Bessel sequences F =
{fn}n∈N , αE(F ) ∈ ∑

2 if and only if {‖fn‖}n∈N ∈ l2.

The following result may be proved in much the same way as Proposi-
tion 3.15.

Proposition 3.18. If F = {fk}k∈N is a Bessel sequence such that
{‖αE(FN )‖2}N∈N ∈ lp, where FN = {fk}k>N , then αE(F ) ∈ ∑

p .

Proof. An easy computation shows that

λn+1 = inf{‖T −B‖ : B ∈ L(H,K) and dim(R(B)) ≤ n}.

Then, following the same idea as in Proposition 3.15 the result is obtained.

The converse of last proposition is not true. The next example illustrates it.

Example 3.19. Consider α ∈ R and e =
{

α
n

}
n∈N ∈ l2 such that ‖e‖ =

1. Let T ∈ L(l2) be defined by Tx = 〈x, e〉 e. Thus, T is the orthogonal
projection onto span {e} , and so T ∈ ∑

p for every p > 0. In particular,
T ∈ ∑

1 . Consider now E = {en}n∈N the canonical orthonormal basis of l2

and let PN be the orthogonal projection onto span {e1, . . . , eN}⊥ . Therefore,
if F = {fk}k∈N = α−1

E (T ) and FN = {fk}k>N then,
∥∥αE(FN )

∥∥2 = ‖TPN‖2 =
‖PNe‖2 =

∑∞
k=N

(
1
k

)2 ≈ 1
N and so

{‖αE(FN )‖2
}

N∈N /∈ l1.

This example is also useful to prove that the converse of Proposition 3.17(1)
is false in general. In fact, {‖fn‖}n∈N = {‖Ten‖}n∈N =

{
α
n

}
n∈N /∈ l1.

Proposition 3.20. Let F = {fn}n∈N ∈ Bess(H). αE(F ) ∈ ∑
p if and

only if there exist an orthonormal basis {βk}k∈N of span{fn}n∈N, an orthonor-
mal sequence {ψk}k∈N of H and {λk}k∈N ∈ lp with 0 < λk+1 ≤ λk such that

∞∑

n=1

〈ψj , en〉 〈fn, βk〉 = λkδj,k (3.1)

and ∞∑

n=1

〈ψ, en〉 〈fn, βk〉 = 0 if ψ ∈ span{ψk}⊥k∈N (3.2)

Proof. Recall that αE(F )(x) =
∑∞

n=1 〈x, en〉 fn. Let αE(F ) ∈ ∑
p . By

the spectral theorem (see [4]), αE(F )x =
∑∞

n=1 λn 〈x, ψn〉βn, where (ψk)k∈N
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is an orthonormal basis of N(αE(F ))⊥, (βk)k∈N is an orthonormal basis of
R(αE(F )) = span{fn}n∈N and (λn)n∈N ∈ lp, 0 < λk+1 ≤ λk. Then,

∞∑

n=1

〈ψj , en〉 〈fn, βk〉 = 〈αE(F )(ψj), βk〉 = 〈
∞∑

n=1

λn 〈ψj , ψn〉βn, βk〉 = λkδj,k,

thus equation (1) holds.
On the other hand, if ψ ∈ span{ψk}⊥ = N(αE(F )) then

∞∑

n=1

〈ψ, en〉 〈fn, βk〉 = 〈αE(F )(ψ), βk〉 = 0,

i.e., equation (2) holds.
Conversely, let F = {fn}n∈N ∈ Bess(H) such that equation (1) and (2) are

verified. Complete {ψk}k∈N to an orthonormal basis of H. Denote by {ψ̃k}k∈N
this completation. Observe that,

αE(F )ψ̃j =
∞∑

k=1

〈αE(F )ψ̃j , βk〉βk =
∞∑

k=1

∞∑

n=1

〈ψ̃j , en〉〈fn, βk〉βk.

Therefore, by equation (1) and (2), we get that if ψ̃j ∈ {ψk}k∈N then αE(F )ψ̃j =
λjβj , and if ψ̃j /∈ {ψk}k∈N then αE(F )ψ̃j = 0.

Now, consider x =
∑∞

n=1〈x, ψ̃n〉ψ̃n ∈ H. Then,

αE(F )x =
∞∑

n=1

〈x, ψ̃n〉αE(F )ψ̃n =
∞∑

n=1

λn〈x, ψn〉βn

where {λk}k∈N ∈ lp. Thus, αE(F ) ∈ ∑
p .
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