Ball Proximinality of Closed * Subalgebras in C(Q)

V. Indumathi^{1,*}, S. Lalithambigai¹, Bor-Luh Lin^{2,**}

¹Department of Mathematics, Pondicherry University, Kalapet, Puducherry-605014, India, pdyindumath@gmail.com, s_lalithambigai@yahoo.co.in

²Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA, bllin@math.uiowa.edu

Presented by David T. Yost

Received July 12, 2006

Abstract: The notion of ball proximinality and the strong ball proximinality were recently introduced in [2]. We prove that a closed * subalgebra \mathcal{A} of C(Q) is strongly ball proximinal in C(Q) and the metric projection from C(Q), onto the closed unit ball of \mathcal{A} , is Hausdorff metric continuous and hence has continuous selection.

Key words: Proximinal, ball proximinal, strongly ball proximinal, metric projection, lower Hausdorff semi-continuity, upper Hausdorff semi-continuity, continuous selection.

AMS Subject Class. (2000): 46B20, 41A50, 41A65.

1. Introduction

If X is a normed linear space, let $X_1 = \{x \in X : ||x|| \le 1\}$, the closed unit ball of X. For x in X and r > 0, we set

$$B(x,r) = \{ y \in X : ||x - y|| < r \}$$

and if A is a subset of X then the distance of x from the set A is denoted by d(x, A). That is,

$$d(x, A) = \inf\{||x - z|| : z \in A\}.$$

If A and B are bounded, nonempty subsets of a Banach space, we denote by $d_H(A, B)$ the Hausdorff metric distance between A and B, given by

$$d_H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}.$$

By C(Q), we denote the classical Banach space of all complex valued, continuous functions, defined on a compact, Hausdorff space Q, endowed with the

^{*}The author is partially supported by DST/INT/US(NSF-RPO-0141)2003.

^{**}The author is partially supported by NSF-0ISE-0352523.

sup norm. By a closed * subalgebra of C(Q) we mean a closed subalgebra A of C(Q) such that f is in A then \bar{f} , the complex conjugate of f, is also in A.

If C is a closed subset of X, we say C is proximinal in X if for every x in X, the set

$$P_C(x) = \{ y \in C : ||x - y|| = d(x, C) \}$$

is a non-empty set. For any $\delta > 0$ we set

$$P_C(x,\delta) = \{ z \in C : ||x - z|| < d(x,C) + \delta \}.$$

Motivated by a result of Saidi [9], the notion of ball proximinality was introduced in [2].

DEFINITION 1.1. A subspace Y of a normed linear space X is ball proximinal in X if the closed, convex set Y_1 is proximinal in X.

It is easily verified (see [9] and [2]) that if Y is ball proximinal in X, then Y is proximinal in X. That the converse is not true, was shown relatively recently by a counterexample of Saidi, in [9]. Thus, ball proximinality implies proximinality, while the converse is not true.

Following [3], we say a proximinal set C of a normed linear space X is strongly proximinal if for each x in X and $\epsilon > 0$, there exists $\delta > 0$ such that

$$s(x,\delta) = \sup\{d(z, P_C(x)) : z \in P_C(x,\delta)\} < \epsilon. \tag{1.1}$$

DEFINITION 1.2. A ball proximinal subspace Y of X is called strongly ball proximinal if Y_1 is strongly proximinal in X.

Let X be Banach space and x_0 be in X. We say the metric projection P_Y is lower semi-continuous at x_0 if, given $\epsilon > 0$ and z in $P_Y(x_0)$, there exists $\delta = \delta(\epsilon, z) > 0$ such that the set $B(z, \epsilon) \cap P_Y(x)$ is non-empty, for any x in $B(x_0, \delta)$. If δ can be chosen to be independent of z in $P_Y(x_0)$ in the above definition, that is, given $\epsilon > 0$, there exists $\delta > 0$ such that the set $B(z, \epsilon) \cap P_Y(x)$ is non-empty, for any x in $B(x_0, \delta)$ and any z in $P_Y(x_0)$, then we say P_Y is lower Hausdorff semi-continuous at x_0 . The map P_Y is upper semi-continuous at x_0 if given any open neighborhood U of zero in X, there exists $\delta > 0$ such that

$$P_Y(x) \subseteq P_Y(x_0) + U$$

for each x in $B(x_0, \delta)$. Replacing the arbitrary open set U by an open ball in the above, yields the notion of upper Hausdorff semi-continuity. More

precisely, the map P_Y is upper Hausdorff semi-continuous at x_0 , if given $\epsilon > 0$ there exists $\delta > 0$ such that

$$P_Y(x) \subseteq P_Y(x_0) + \epsilon X_1$$

for each x in $B(x_0, \delta)$. We say P_Y is lower (upper, lower Hausdorff, upper Hausdorff) semi-continuous on X if it is lower (upper, lower Hausdorff, upper Hausdorff) semi-continuous at each point of X. The set valued map P_Y is said to be Hausdorff metric continuous if it is both lower and upper Hausdorff semi-continuous.

Remark 1.1. It immediately follows from the above definitions that if a subspace Y of a Banach space X is strongly proximinal, then the metric projection P_Y is upper Hausdorff semi-continuous on X. Also, we observe that while upper semi-continuity implies upper Hausdorff semi-continuity, the implication is the other way round for the corresponding lower semi-continuity concepts. We observe that for a proximinal subspace Y, upper semi-continuity of the metric projection does not imply the existence of a continuous selection for the set valued map P_Y but (by the Michael's selection theorem), lower semi-continuity of P_Y guarantees the existence of a continuous selection for P_Y .

There are many examples of Banach spaces which are proximinal in their second dual. For instance, it is known for long that (see [1], [4], [6] and [11]), C(Q) is proximinal in its bidual. In this paper we show that, techniques used in [4] and [7], can be adapted to prove stronger proximinality and continuity properties of the corresponding metric projections, from C(Q) onto the closed unit ball of a closed * subalgebra. More precisely, we prove that every closed * subalgebra \mathcal{A} of C(Q) is strongly ball proximinal (and hence ball proximinal). Further, we show that the metric projection from C(Q) onto the closed unit ball of \mathcal{A} is Hausdorff metric continuous and hence has a continuous selection. In particular this would imply that C(Q) is strongly ball proximinal in its bidual and the metric projection from $(C(Q))^{**}$ onto $(C(Q))_1$ is Hausdorff metric continuous.

2. Preliminaries

We need some notations and definitions in the sequel, which are given below. Some of these definitions are from [7] and some others are slight modifications of definitions in [7]. We denote the space of complex scalars by $\mathbb C$ and the closed unit disc of $\mathbb C$ by D. That is, $D=\{z\in\mathbb C:|z|\leq 1\}$. By $D(\beta,R)$, we denote the closed disc in $\mathbb C$ with center β and radius R.

Suppose F is a map from Q into compact subsets of \mathbb{C} . Define the distance of an $f \in C(Q)$ from F by the relation

$$\varrho(f,F) = \sup_{t \in Q} \sup_{y \in F(t)} |f(t) - y|. \tag{2.1}$$

Let $t \in Q$. By $r_1(t, F)$, we denote the restricted Chebychev radius of the set F(t), with respect to D. That is,

$$r_1(t, F) = \inf_{z \in D} \sup_{y \in F(t)} |z - y|.$$
 (2.2)

Finally we set,

$$R_1(F) = \sup\{r_1(t, F) : t \in Q\}.$$
 (2.3)

We observe that for each $f \in C(Q)_1$, $\sup_{y \in F(t)} |f(t) - y| \ge r_1(t, F)$, for each $t \in Q$, therefore by (2.2) and (2.3) we get

$$\varrho(f,F) \ge r_1(t,F) \tag{2.4}$$

for each $f \in C(Q)_1$. Hence,

$$d(F, C(Q)_1) = \inf_{f \in C(Q)_1} \varrho(f, F) \ge R_1(F).$$
(2.5)

We define a set valued map H_F from Q into the class of closed convex subsets of D by

$$H_F(t) = \{ z \in D : F(t) \subset D(z, R_1(F)) \}, \ t \in Q,$$
 (2.6)

where F is a map from Q into compact subsets of \mathbb{C} . Here after we assume that the set valued map F is upper semi-continuous on Q.

The following property of uniformly convex spaces, given in Proposition 2 in [7], turns out to be relevant for our discussion. A simpler proof of this property for the space $\mathbb C$ is given below. Also, the selection of η turns out to be independent of the choice of α and β (See Lemma 2.1 below) in this case. This intersection ball property of $\mathbb C$ is repeatedly used in the proof of our main results.

LEMMA 2.1. For fixed R > 0, and $\epsilon > 0$, let $\eta = (\epsilon(2R + \epsilon))^{\frac{1}{2}}$. Then for any α, β in \mathbb{C} , there exists $\gamma \in \mathbb{C}$ such that $|\alpha - \gamma| \leq \eta$ and

$$D(\alpha, R + \epsilon) \cap D(\beta, R) \subset D(\gamma, R)$$
.

Proof. We may assume, without loss of generality, that $\alpha = 0$, β is real. We further assume β is positive, the arguments being similar when β is negative. If $\beta \leq \eta$, we take $\gamma = \beta$. So we only consider the case, where $\beta > \eta$.

For any z in \mathbb{C} and r > 0, let $S(z,r) = \{w \in \mathbb{C} : |z-w| = r\}$. Note that $S(\beta,R) \cap S(0,R+\epsilon) = \{z,\overline{z}\}$ for some z in \mathbb{C} and that x, the real part of z, is positive and attains its minimum when $\beta = \eta$. It is easily verified, using a diagram, that

$$D(\beta, R) \cap D(0, R + \epsilon) \subseteq D(\eta, R) \cap D(0, R + \epsilon)$$

and γ can be chosen to be η .

We now list some facts about the set valued map H_F . Lemma 2.2 was proved in [7], in a more general context. However, the proof for the complex valued maps that we deal with is simpler, and we present it here.

LEMMA 2.2. For each t in Q, $H_F(t)$ is a non- empty, compact, convex subset of \mathbb{C} . Further the set valued map H_F is lower Hausdorff semi-continuous on Q.

Proof. We shall first prove that the values $H_F(t)$ are non-empty. Select any t in Q and consider

$$H_F^{\eta}(t) = \{ \beta \in D : F(t) \subset D(\beta, R_1(F) + \eta) \},$$

for $\eta > 0$. The set $H_F^{\eta}(t)$ is non-empty for each $\eta > 0$. Let $\{\beta_n\} \subseteq D$ be a sequence such that $F(t) \subseteq D(\beta_n, R_1(F) + \frac{1}{n})$, for all $n \ge 1$. Then $\{\beta_n\}$ has a convergent subsequence that converges to, say, β . We claim that β is in $H_F(t)$. Suppose not. Then there is a x in F(t) such that $\|\beta - x\| \ge R_1(F) + \eta$, for some $\eta > 0$. Choose positive integer n such that $\frac{1}{n} < \frac{\eta}{2}$ and $\|\beta - \beta_n\| < \frac{\eta}{2}$. Then

$$\|\beta - x\| \le \|\beta - \beta_n\| + \|\beta_n - x\| \le \frac{\eta}{2} + R_1(F) + \frac{1}{n} < R_1(F) + \eta,$$

which is a contradiction to our assumption. Thus β is in $H_F(t)$ and the set $H_F(t)$ is non-empty.

That the set $H_F(t)$ is a closed, and hence, is a compact subset of D, follows from the fact that the set F(t) is compact. It is easily verified that $H_F(t)$ is a convex set for each t in Q.

We now show that the set valued map H_F is lower Hausdorff semi-continuous. Fix t_0 in Q and select any β_0 in $H_F(t_0)$ and η , a positive number. Let $\epsilon > 0$ be so chosen that $(\epsilon(2R_1(F)+\epsilon))^{\frac{1}{2}} < \eta$. Since F is upper semi-continuous there exists a neighborhood U_{ϵ} of t_0 such that

$$F(t) \subset D(\beta_0, R_1(F) + \epsilon), \text{ if } t \in U_{\epsilon}.$$
 (2.7)

Select any t in U_{ϵ} . We will show that $H_F(t) \cap B(\beta_0, \eta) \neq \emptyset$. Since the set U_{ϵ} is independent of β_0 in $H_F(t_0)$ and t_0 in Q was selected arbitrarily, this would imply H_F is lower Hausdorff semi-continuous on Q.

Pick an element β_1 in $H_F(t)$. Using (2.7), we have

$$F(t) \subset D(\beta_0, R_1(F) + \epsilon) \cap D(\beta_1, R_1(F)).$$

Now, by Lemma 2.1, there is a β in the line segment joining β_0 and β_1 , such that $|\beta - \beta_0| \leq \eta$ and $D(\beta, R_1(F)) \supseteq F(t)$. Since β_0 and β_1 are in D, β is also in D. It is now clear that β belongs to $H_F(t)$ and so $\beta \in H_F(t) \cap B(\beta_0, \eta)$.

We conclude this section with still another fact, that is needed in the sequel, about lower Hausdorff semi-continuous maps.

FACT 2.1. Let f be in C(Q) and δ , a positive number. Assume T is a lower Hausdorff semi-continuous set valued map from Q into the collection of closed, convex non-empty subsets of \mathbb{C} such that $C_f(t) = D(f(t), \delta) \cap T(t)$ is non-empty for each t in Q. Then the set valued map C_f is lower Hausdorff semi-continuous on Q.

Proof. Fix t in Q and select any w in $C_f(t)$. Since T is lower Hausdorff semi-continuous on Q and f is continuous on Q, given $\eta > 0$, we can select a neighborhood N of t (independent of w) such that

$$|f(s) - f(t)| < \frac{\eta}{2}$$
 and $T(s) \cap D(w, \eta/2) \neq \emptyset$

for any s in N. Select any z in this intersection. Then

$$|w - z| \le \frac{\eta}{2}.\tag{2.8}$$

Let s be in N and select z in T(s) to satisfy (2.8). If z is in $C_f(s)$, we are done. Otherwise, $|z - f(s)| > \delta$. Let x be the point of intersection of the disk $D(f(s), \delta)$ and the line segment joining f(s) and z. Clearly, $|x - f(s)| = \delta$.

Now, w is in $C_f(t)$ and so $|w - f(t)| \le \delta$. Hence

$$|w - f(s)| \le |w - f(t)| + |f(s) - f(t)| \le \delta + \frac{\eta}{4}.$$

Since $|w-z| \leq \frac{\eta}{4}$, we have

$$|z - f(s)| \le |z - w| + |w - f(s)| < \frac{\eta}{4} + \delta + \frac{\eta}{4} = \delta + \frac{\eta}{2}.$$

Now x lies in the line segment joining f(s) and z and $|x - f(s)| = \delta$, we must have $|x - z| \leq \frac{\eta}{2}$. Therefore,

$$|x - w| \le |x - z| + |z - w| \le \eta.$$
 (2.9)

Observe that $f(s) \in C_f(s) \subset T(s)$ and z is in T(s). Since T(s) is convex, x is in T(s) and $|x - f(s)| = \delta$ and so x is in $C_f(s)$. Since s in N and $\eta > 0$ were chosen arbitrarily, this with (2.9), implies that C_f is lower Hausdorff semi-continuous at t. As t in Q was selected arbitrarily, this completes the proof. \blacksquare

3. Main results

In this section we prove the main results of this paper. We show that if Q is compact, Hausdorff space, then any closed * subalgebra \mathcal{A} of C(Q) is strongly ball proximinal in C(Q). Further, we prove that the metric projection from C(Q) onto \mathcal{A}_1 is Hausdorff metric continuous.

We begin with some results that are needed in the sequel.

THEOREM 3.1. Let Q be a compact, Hausdorff space. For each upper semi-continuous map F from Q into compact subset of \mathbb{C} there exists a best approximation from $C(Q)_1$. That is, there exists an $f_0 \in C(Q)_1$ such that

$$\varrho(f_0, F) = \inf_{f \in C(Q)_1} \varrho(f, F).$$

Moreover, for each such f_0 we have the equality $\varrho(f_0, F) = R_1(F)$.

Proof. We recall that the set valued map H_F is defined by (2.6). By Lemma 2.2, $H_F(t)$ is a compact, convex and non-empty subset of D for each t in Q and H_F is lower Hausdorff semi-continuous on Q. Now by the Michael selection theorem, there is a continuous selection f_0 of the set valued map H_F . We will show that $\varrho(f_0, F) = \inf_{f \in C(Q)_1} \varrho(f, F) = R_1(F)$ and hence, f_0 is a best approximation to F from $C(Q)_1$.

By (2.5)
$$R_1(F) \le \inf_{f \in C(Q)_1} \varrho(f, F) \le \varrho(f_0, F)$$

and by Lemma 2.2, $f_0(t) \in H_F(t)$ for each $t \in Q$. Now (2.6) and (2.1) imply that $\varrho(f_0, F) \leq R_1(F)$ and so $\varrho(f_0, F) = R_1(F)$. It now follows from (2.5) that f_0 is a best approximation to F from $C(Q)_1$ and $R_1(F) = \inf_{f \in C(Q)_1} \varrho(f, F)$.

Remark 3.1. If F from Q into subsets of \mathbb{C} is upper semi-continuous map then it is clear from the above theorem that the distance of F from $C(Q)_1$ is $R_1(F)$ and f is a best approximation to F from $C(Q)_1$ if and only if f is a continuous selection of the set valued map H_F .

In what follows, we adhere to the notation given below. Throughout X and Y would denote compact Hausdorff spaces and $\phi: Y \to X$ be a continuous surjection. Define $T_{\phi}: C(X) \to C(Y)$ by $T_{\phi}(f) = f \circ \phi$ for $f \in C(X)$. Let $Z = T_{\phi}(C(X))$. Note that

$$||f|| = \sup_{x \in X} |f(x)| = \sup_{y \in Y} |f(\phi(y))| = \sup_{y \in Y} |g(y)| = ||g||$$

and hence f is in $C(X)_1$ if and only if g is in Z_1 .

For h in C(Y), define a set valued map $F = F_h$ on X by

$$F(x) = \{h(y) : y \in \phi^{-1}(x)\}, \text{ for } x \in X.$$
(3.1)

It is easily verified that F(x) is a compact subset of \mathbb{C} for each x in X. If g is in Z then $g = T_{\phi}(f)$, for some f in C(X). Note that g is constant on $\phi^{-1}(x) = \{y \in Y; \phi(y) = x\}$ for every $x \in X$. Now

$$||h - g|| = \sup_{y \in Y} |h(y) - g(y)|$$

$$= \sup_{x \in X} \sup_{y \in \phi^{-1}(x)} |h(y) - g(y)|$$

$$= \sup_{x \in X} \sup_{s \in F(x)} |s - f(x)|$$

$$= \rho(f, F).$$
(3.2)

Let

$$S_1(h) = \sup_{x \in X} \inf_{z \in D} \sup_{y \in \phi^{-1}(x)} |h(y) - z|.$$
(3.3)

Then clearly we have

$$S_1(h) = \sup_{x \in X} \inf_{z \in D} \sup_{s \in F(x)} |s - z| = \sup_{x \in X} r_1(x, F) = R_1(F).$$
 (3.4)

It is easy to see that for each $h \in C(Y)$ and $g \in Z_1$,

$$||h - g|| \ge S_1(h)$$
 and so $S_1(h) \le d(h, Z_1)$. (3.5)

We now have

THEOREM 3.2. For each $h \in C(Y)$, there exists $g_0 \in Z_1$ such that

$$||h - q_0|| = d(h, Z_1) = S_1(h).$$

That is, Z is ball proximinal in C(Y).

Proof. Since (3.5) holds, it is enough to show the existence of a $g_0 \in Z_1$ such that

$$||h - g_0|| = S_1(h).$$

Let $F = F_h$ be given by (3.1). By Theorem 3.1 there exists $f_0 \in C(X)_1$ such that

$$\varrho(f_0, F) = R_1(F).$$

Let $g_0 = T_{\phi}(f_0)$. Then g_0 is in Z_1 . Now using (3.2) and (3.4) we have,

$$||h - g_0|| = \varrho(f_0, F) = R_1(F) = S_1(h)$$
(3.6)

and g_0 is a nearest element to h from Z_1 . Hence Z is ball proximinal in C(Y).

Remark 3.2. We observe from the above Theorem 3.2 that $g = f \circ \phi$ in Z_1 is a nearest element to C(Y) if and only if f is a nearest element to F from $C(X)_1$, where F is given by (3.1). Recall that by Remark 3.1, f is a best approximation to F from $C(X)_1$ if and only if $\rho(f,F) = R_1(F)$. Thus $g = f \circ \phi$ in Z_1 is a nearest element to h in C(Y) if and only if $||h - g|| = S_1(h)$ or equivalently $\rho(f,F) = R_1(F)$.

We now proceed to show that Z is strongly ball proximinal in C(Y) and the metric projection from C(Y) onto Z_1 is lower Hausdorff semi-continuous.

THEOREM 3.3. The space Z is strongly ball proximinal in C(Y).

Proof. Let h be in C(Y) and $\epsilon > 0$ be given. Select $\delta > 0$ such that $3\delta(R_1(F) + 3\delta)^{\frac{1}{2}} < \epsilon$, where $F = F_h$ is given by (3.1). Let g be in Z_1 satisfy $||h - g|| < d(h, Z_1) + \delta = S_1(h) + \delta$. We will show that there is a g_0 such that

 $||h - g_0|| = S_1(h)$ and $||g - g_0|| < \epsilon$. By the above Remark 3.2, this would imply Z_1 is strongly ball proximinal. Let f in $C(X)_1$ satisfy $T_{\phi}(f) = g$. Then by (3.2) and (3.4),

$$\varrho(f, F) = ||h - g|| < S_1(h) + \delta = R_1(F) + \delta.$$

Hence for any z in F(x) and $x \in X$, we have

$$\sup_{x \in X} |f(x) - z| < R_1(F) + \delta,$$

which in turn implies

$$D(f(x), R_1(F) + \delta) \supseteq F(x),$$

for each x in X. Fix x in X and select any α in $H_F(x)$. Now by Lemma 2.1, there is a s_x in complex plane such that $|s_x - f(x)| < \epsilon$, s_x lies in the line segment joining α and f(x) and $D(s_x, R_1(F)) \supseteq F(x)$. Since both f(x) and α lie in D, so does s_x and hence s_x is in $H_F(x)$. Thus $d(f(x), H_F(x)) < \epsilon$. If we set

$$C_f(x) = D(f(x), \epsilon/2) \cap H_F(x), \text{ for } x \in X,$$

then $C_f(x)$ is non-empty for each x in X and the set valued map C_f is lower Hausdorff semi-continuous by Lemma 2.2 and Fact 2.3. By Michael's selection theorem, C_f has a continuous selection, say, f_0 . By Remark 3.2, f_0 is a best approximation to F from $C(X)_1$ and $\varrho(f_0, F) = R_1(F)$. Further $||f - f_0|| < \epsilon$. Now let $g_0 = T_{\phi}(f_0)$. Then g_0 is in Z_1 and by (3.4),

$$||h - q_0|| = \rho(f_0, F) = R_1(F) = S_1(h)$$

and g_0 is a nearest element to h from Z_1 . Also,

$$||g - g_0|| = ||f - f_0|| < \epsilon$$

and this completes the proof.

THEOREM 3.4. For any surjection map $\phi: Y \to X$ where X and Y are compact Hausdorff spaces and $Z = T_{\phi}(C(X))$, the metric projection from C(Y) onto the closed unit ball of Z is lower Hausdorff semi-continuous and hence it has a continuous selection.

Proof. Given $0 < \epsilon < 1$, let h_1, h_2 be elements in C(Y) with $||h_1 - h_2|| < \epsilon$. Then clearly,

$$d_H(F(x), G(x)) \le \epsilon$$
, for all $x \in X$, (3.7)

where

$$F(x) = \{ s \in D : s = h_1(y), y \in \phi^{-1}(x) \}$$

and

$$G(x) = \{t \in D : t = h_2(y), y \in \phi^{-1}(x)\}.$$

From the definition of $r_1(x, F)$, for any $\eta > 0$ there exists β in D such that

$$F(x) \subseteq D(\beta, r_1(x, F) + \frac{\eta}{2}).$$

Now (3.7) implies that

$$D(\beta, r_1(x, F) + \epsilon + \frac{\eta}{2}) \supseteq G(x).$$

Since $\eta > 0$ is arbitrarily chosen, this implies that $r_1(x, G) \leq r_1(x, F) + \epsilon$. Interchange h_1 and h_2 , we conclude, $r_1(x, F) \leq r_1(x, G) + \epsilon$. Hence

$$|r_1(x,F) - r_1(x,G)| \le \epsilon \text{ for all } x \in X.$$
 (3.8)

Clearly, (3.8) implies that

$$|R_1(F) - R_1(G)| \le \epsilon < 1 \text{ if } ||h_1 - h_2|| < \epsilon.$$
 (3.9)

For x in X, we have $H_F(x) = \{\beta \in D : D(\beta, R_1(F)) \supseteq F(x)\}$. If β is in $H_F(x)$, then by (3.7), $D(\beta, R_1(F) + \epsilon)$ contains G(x) and by (3.9), $D(\beta, R_1(G) + 2\epsilon)$ contains G(x). Select any γ_0 in $H_G(x) = \{\beta \in D : D(\beta, R_1(G)) \supseteq G(x)\}$. Then

$$G(x) \subseteq D(\beta, R_1(G) + 2\epsilon) \cap D(\gamma_0, R_1(G)),$$

for all x in X. By Lemma 2.1, there exists γ in D such that

$$D(\gamma, R_1(G)) \supset G(x) \text{ and } |\beta - \gamma| \le \alpha,$$
 (3.10)

where $\alpha = (\epsilon(2R_1(G) + \epsilon))^{\frac{1}{2}}$. Clearly, γ is in $H_G(x)$ and $\alpha \leq (\epsilon(2R + \epsilon))^{\frac{1}{2}}$ where $R = R_1(F) + 1$. Let $\eta(\epsilon) = (\epsilon(2R + \epsilon))^{\frac{1}{2}}$. Then $\eta(\epsilon) > 0$, $\eta(\epsilon)$ decreases to zero as ϵ decreases to zero. Further, using (3.10), we have $|\beta - \gamma| < \eta(\epsilon)$. Since β in $H_F(x)$ and x is in X were arbitrary chosen, we have $H_F(x) \subset$

 $H_G(x) + \eta(\epsilon)D$, for all x in X. Interchanging h_1 and h_2 in the above argument, we can conclude that if $||h_1 - h_2|| < \epsilon$, then $H_G(x) \subset H_F(x) + \eta(\epsilon)D$ and

$$d_H(H_F(x), H_G(x)) < \eta(\epsilon), \text{ for all } x \in X.$$
 (3.11)

We now show that the metric projection from C(Y) onto Z_1 is lower Hausdorff semi-continuous on C(Y). We fix $h_1 \in C(Y)$ and consider any g in $P_{Z_1}(h_1)$ and $\delta_0 > 0$. We will show that there is $\epsilon > 0$ such that if h_2 is in C(Y) and $||h_1 - h_2|| < \epsilon$, then $P_{Z_1}(h_2) \cap D(g, \delta_0) \neq \emptyset$. We recall that, by Remark 3.2, g is in $P_{Z_1}(h_1)$ if and only if there is a continuous selection f of the set valued map H_F , such that $g = f \circ \phi$. Clearly f(x) is in $H_F(x)$ for all $x \in X$. Using (3.11), we choose $0 < \epsilon < 1$ such that for h_2 in C(Y) satisfying $||h_1 - h_2|| < \epsilon$, we have

$$d_H(H_F(x), H_G(x)) < \frac{\delta_0}{2} \quad \text{for all } x \in X.$$
 (3.12)

Note that the choice of ϵ is independent of g in $P_{Z_1}(h_1)$. For x in X, we now set $C_f(x) = H_G(x) \cap D(f(x), \delta)$, where $2\delta = \delta_0$. It follows from (3.12) that $C_f(x) \neq \emptyset$ for all x in X. Further, by Fact 2.1, the set valued map C_f is lower Hausdorff semi-continuous on C(Y).

By the Michael selection theorem, C_f has a continuous selection, say f_1 . The map f_1 is a continuous selection of H_G and so by Remark 3.2, $g_1 = f_1 \circ \phi$ is in $P_{Z_1}(h_2)$. Also $||f - f_1|| \leq \delta < \delta_0$. This proves the lower Hausdorff semicontinuity of the metric projection map P_{Z_1} , at h_1 . Since h_1 in C(Y) was chosen arbitrarily, P_{Z_1} is lower Hausdorff semi-continuous on C(Y).

Let Y be a compact, Hausdorff space and \mathcal{A} be a closed * subalgebra of C(Y) containing the unit, that is the constant function 1. Then it is known that (see [8] and [10]) there is a compact, Hausdorff space X and a continuous surjection ϕ from Y onto X such that $\mathcal{A} = Z = T_{\phi}(C(X))$, where

$$T_{\phi}(f) = f \circ \phi$$
, for $f \in C(X)$.

The following corollary follows from Theorems 3.3 and 3.4.

COROLLARY 3.1. Every closed * subalgebra \mathcal{A} of C(Q), containing the unit, is strongly ball proximinal and the metric projection $P_{\mathcal{A}_1}$ is Hausdorff metric continuous.

It is also known that $C(Q)^{**}$ is a C(K) space, for a compact, Hausdorff space K and C(Q) is a * subalgebra of C(K), containing the unit. Now the corollary below is an immediate consequence of Corollary 3.1 above.

COROLLARY 3.2. If Q is compact, Hausdorff, then C(Q) is strongly ball proximinal in its bidual and the metric projection from $C(Q)^{**}$ onto $C(Q)_1$ is Hausdorff metric continuous.

4. * SUBALGEBRAS WITHOUT UNIT

We now consider the case of closed * subalgebras without unit. Our methods here are motivated by those used in the proof of Theorem 2 in [4]. Let Y be a compact, Hausdorff space and \mathcal{A} be any closed * subalgebra of C(Y). Then it is known that (see [8] and [10]) there is a compact, Hausdorff space X, w in X and a continuous surjection ϕ from Y onto X such that $\mathcal{A} = T_{\phi}(C_0(X))$, where

$$T_{\phi}(f) = f \circ \phi$$
, for $f \in C(X)$

and

$$C_0(X) = \{ f \in C(X) : f(w) = 0 \}.$$

Let F be a map from X into compact subsets of \mathbb{C} . Then $r_1(x, F)$, for $x \in X$, $R_1(F)$, $\varrho(f, F)$ for f in $C_0(X) \subseteq C(X)$ and set valued map H_F , are defined by equations (2.1) to (2.6), in the beginning of Section 2. Further we set

$$r_0(F) = \sup_{z \in F(w)} |z|$$

and

$$\overline{R}_1(F) = \max\{R_1(F), r_0(F)\}.$$
 (4.1)

We define the set valued map \overline{H}_F from X into closed convex subset of D by

$$\overline{H}_F(x) = \begin{cases} H_F(x) & \text{if } x \neq w \\ 0 & \text{if } x = w \end{cases}$$
 (4.2)

Now we have the following lemma, which replaces Lemma 2.2 in this part of the discussion.

LEMMA 4.1. For each x in X, $\overline{H}_F(x)$ is a non- empty, compact, convex subset of \mathbb{C} . Further the set valued map \overline{H}_F is lower Hausdorff semi-continuous on X.

Proof. Clearly $\overline{H}_F(x)$ is a non-empty, compact, convex subset of \mathbb{C} , follows from the corresponding statement for $H_F(x)$. Using Lemma 2.2, it is enough to show that \overline{H}_F is lower Hausdorff semi-continuous at w. Fix η , a positive

number. Let $\epsilon > 0$ be so chosen that $(\epsilon(2R_1(F) + \epsilon))^{\frac{1}{2}} < \eta$. Since F is upper semi-continuous there exists a neighborhood U_{ϵ} of w such that

$$F(x) \subset F(w) + \epsilon D$$
, if $x \in U_{\epsilon}$ (4.3)

We now discuss two cases.

Case i) $\overline{R}_1(F) = R_1(F)$. In this case $R_1(F) \ge r_0(F)$. Hence

$$F(w) \subseteq D(0, r_0(F)) \subseteq D(0, R_1(F))$$

and this with (4.3) implies

$$F(x) \subseteq D(0, R_1(F) + \epsilon)$$
, if $x \in U_{\epsilon}$.

Now proceeding as in the proof of Lemma 2.2, we find β in D such that $|\beta| < \eta$ and β is in F(x).

Case ii) $\overline{R}_1(F) = r_0(F)$. In this case, $r_0(F) \ge R_1(F)$. Thus for any x in U_{ϵ} and α in F(x), we have

$$F(x) \subseteq D(\alpha, R_1(F)) \subseteq D(\alpha, r_0(F)).$$

Note that $F(w) \subseteq D(0, r_0(F))$ and using (4.3),

$$F(x) \subseteq D(0, r_0(F) + \epsilon), \text{ if } x \in U_{\epsilon}.$$

Now we again proceed as in the proof of Lemma 2.2, we find β in D such that $|\beta| < \eta$ and β is in F(x).

Thus in either case, the map \overline{H}_F is lower Hausdorff semi-continuous at w. Since $H_F(w) = \{0\}$, this implies the map is lower Hausdorff semi-continuous at w.

We now prove the analog of Theorem 3.1.

THEOREM 4.1. Let Q be a compact, Hausdorff space, $w \in Q$ and $C_0(Q) = \{f \in C(Q) : f(w) = 0\}$. If F is an upper semi-continuous map from Q into the set of compact subsets of \mathbb{C} , then

$$d(F, C(Q)_1) = \inf\{\rho(f, F) : f \in C_0(Q)_1\} = \overline{R}_1(F)$$

and there exists an $f_0 \in C_0(Q)_1$ such that

$$\varrho(f_0, F) = \overline{R}_1(F).$$

That is, f_0 is a best approximation to F from $C_0(Q)_1$.

Proof. First observe that

$$r_0(F) \leq \varrho(f, F)$$
, if $f \in C_0(Q)_1$.

This with (2.5) implies that

$$\overline{R}_1(F) \le \inf\{\varrho(f,F): f \in C_0(Q)_1\} = d(F,C_0(Q)_1).$$
 (4.4)

By Lemma 2.2, \overline{H}_F is lower Hausdorff semi-continuous on Q, where the set valued map \overline{H}_F is defined by (4.2). By the Michael selection theorem, there is a continuous selection f_0 of the set valued map \overline{H}_F . Note that $r_0(F) \geq r_1(w,F)$. It is now clear that $\varrho(f_0,F) = \overline{R}_1(F)$ and hence, f_0 is a best approximation to F from $C_0(Q)_1$.

Let X and Y be compact, Hausdorff spaces. For h in C(Y), define $F = F_h$ by (3.1) and $S_1(h)$ by (3.3). Let

$$S_0(h) = \sup_{y \in \phi^{-1}(w)} |h(y)|.$$

Define $\overline{S}_1(h) = \max\{S_1(h), S_0(h)\}$. It is easily seen that if $F = F_h$ then

$$S_0(h) = r_0(F)$$
 and $\overline{S}_1(h) = \overline{R}_1(F)$. (4.5)

Let ϕ be a continuous surjection from Y onto X and define the map T_{ϕ} from $C_0(X)$ into C(Y) by

$$T_{\phi}(f) = f \circ \phi$$
, if $f \in C_0(X)$.

Then T_{ϕ} is an isometry and let $\mathcal{A} = T_{\phi}(C_0(X))$. Select any g in \mathcal{A} . Then there is a f in $C_0(X)$ such that $g = T_{\phi}(f)$. For $h \in C(Y)$ and $F = F_h$, we have

$$||h - g|| = \sup_{y \in Y} |h(y) - g(y)|$$

$$= \sup_{x \in X} \sup_{y \in \phi^{-1}(x)} |h(y) - g(y)|$$

$$= \sup_{x \in X} \sup_{s \in F(x)} |s - f(x)|$$

$$= \rho(f, F).$$
(4.6)

and if g is in A_1 then

$$||h - g|| = \sup_{y \in Y} |h(y) - g(y)|$$

$$= \sup_{x \in X} \sup_{y \in \phi^{-1}(x)} |h(y) - g(y)|$$

$$\geq \max \{ \sup_{x \in X} \inf_{z \in D} \sup_{y \in \phi^{-1}(x)} |h(y) - z|, S_0(h) \}$$

$$= \overline{S}_1(h).$$
(4.7)

Hence

$$\overline{S}_1(h) \le d(h, \mathcal{A}_1). \tag{4.8}$$

We now have

THEOREM 4.2. For each $h \in C(Y)$, there exists $g_0 \in A_1$ such that

$$||h - g_0|| = d(h, A_1) = \overline{S}_1(h).$$

That is, \mathcal{A} is ball proximinal in C(Y).

Proof. Because of (4.7), it is enough to show the existence of a $g_0 \in A_1$ such that

$$||h - g_0|| = \overline{S}_1(h).$$

Let $F = F_h$ be given by (3.1). By Theorem 4.2 there exists $f_0 \in C_0(X)_1$ such that

$$\varrho(f_0, F) = \overline{R}_1(F). \tag{4.9}$$

Let $g_0 = T_{\phi}(f_0)$. Then g_0 is in \mathcal{A}_1 . Now using (4.5) and (4.6) we have,

$$||h - g_0|| = \varrho(f_0, F) = \overline{R}_1(F) = \overline{S}_1(h)$$

and g_0 is a nearest element to h from \mathcal{A}_1 . Hence \mathcal{A} is ball proximinal in C(Y).

Hereafter using similar arguments as in Theorems 3.3 and 3.4 we conclude

THEOREM 4.3. Let X,Y and A be as above. Then A_1 is strongly proximinal in C(Y) and the metric projection P_{A_1} is Hausdorff metric continuous on C(Y).

If Q is a compact Hausdorff space and J a closed subspace of C(Q). Then J is an M-ideal in C(Q) (see [5]) if and only if there is a closed subset E of Q such that $J = \{ f \in C(Q) : f \equiv 0 \text{ on } E \}$. ([8] and [10]) Recall that the second dual of C(Q) is again a C(K) space for a compact, Hausdorff K. Hence J is a closed * subalgebra of C(K) (and C(Q)). The following corollary now follows from Theorem 4.4.

COROLLARY 4.1. Let Q be a compact Hausdorff space and J, an M-ideal in C(Q). Then J is strongly ball proximinal in $C(Q)^{**}$ and the metric projection from $C(Q)^{**}$ onto J_1 is Hausdorff metric continuous.

ACKNOWLEDGEMENTS

The second named author's research was supported by the CSIR Research Fellowship and she would like to thank the CSIR for their financial support.

References

- [1] Blatter, J., "Grothendieck Spaces in Approximation Theory, Memoirs of the A.M.S., 120, American Mathematical Society, Providence, R.I., 1972.
- [2] BANDYOPADHYAY, P., BOR-LUH LIN, RAO, T.S.S.R.K., Ball proximinality in Banach spaces, Preprint 2006.
- [3] Godefroy, G., Indumathi, V., Strong proximinality and polyhedral spaces, *Rev. Mat. Complut.*, **14** (1) (2001), 105-125.
- [4] HOLMES, R.B., WARD, J.D., An approximative property of spaces of continuous functions, *Glasgow Math. J.*, **15** (1974), 48-53.
- [5] HARMAND, P., WERNER, D., WERNER, W., "M-Ideals in Banach Spaces and Banach Algebras", Lecture Notes in Math., 1574, Springer-Verlag, Berlin, 1993.
- [6] MACH, J., Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann., 240 (2) (1979), 157-164.
- [7] OLECH, C., Approximation of set-valued functions by continuous functions, *Colloq. Math.*, **19** (1968), 285-293.
- [8] RICKART, C.E., "General Theory of Banach Algebras", Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York 1960.
- [9] Saidi, Fathi B., On the proximinality of the unit ball of proximinal subspaces in Banach spaces: A counterexample, *Proc. Amer. Math. Soc.*, **133** (9) (2005), 2697-2703.
- [10] SEMADENI, Z., "Banach Spaces of Continuous Functions, Vol. 1", Monografie Matematyczne, 55, PWN-Polish Scientific Publishers, Warsaw, 1971.
- [11] Yost, D.T., Best approximation and intersection of balls in Banach spaces, Bull. Austral. Math. Soc., 20 (2) (1979), 285-300.