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A New Proof of Gabriel’s Lemma

Adam Hajduk

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland
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1. Introduction

The technical result [2, Lemma 3.2] of Gabriel, called often Gabriel’s
Lemma (for the precise formulation see Section 2), played a crucial role in
proofs of two famous theorems in representation theory of algebras: the theo-
rem of Gabriel on openness of the set of finite representation type algebras in a
variety of all algebras with a fixed dimension (see [2]) and the Geiss Theorem
saying that degeneration of a wild algebra is also wild (see [3]). The original
proof of Gabriel’s Lemma is rather involved and uses geometry of schemes.
An alternative proof, proposed by H. Kraft for the case of characteristic 0, ap-
plies essentially invariant theory and geometric quotients (see [5]). We present
here a new, quite simple proof, which uses only basic projective geometry and
adapts some arguments presented in [1].

For basic information concerning algebraic geometry and algebraic groups
we refer to [4, 6].

We fix now some notations. Let K be an algebraically closed field, d, z ∈ N
natural numbers, Gl(z) a connected affine algebraic group of K-linear auto-
morphisms of the vector space Kz. We consider the set

alg(d) = {c = (ck
ij) ∈ Kd3 | c satisfies (i) and (ii) below }
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where
d∑

s=1

cs
ijc

l
sk =

d∑

s=1

ck
isc

s
jl(i)

∃ α1, . . . , αd ∈ K
d∑

i=1

αic
k
ij = δjk =

{
0 if i = j

1 if i 6= j
(ii)

for 1 ≤ i, j, k, l ≤ d. It is known that alg(d) is an affine variety called a variety
of algebras. For any element c ∈ alg(d) corresponds a unique associative
algebra structure A(c) on Kd admitting a unit element, where multiplication
on basic elements e1, . . . , ed ∈ Kd is determined by the equations ei ·A(c) ej =∑d

k=1 ck
ij · ek for 1 ≤ i, j ≤ d.

For any c ∈ alg(d) we set

mod c(z) = {M = (Mi) ∈ EndK(Kz)d | M satisfies (a) and (b) below}

∀ i, j Mi ·Mj =
d∑

l=1

cl
ijMl(a)

α1M1 + α2M2 + . . . + αdMd = Id(b)

where α1, . . . , αd ∈ K are obtained from condition (ii) in definition of the
variety alg(d). It is clear that any sequence (Mi) defines an A(c)-module
structure on Kz, where the matrix Mi corresponds to the action of the base
element ei of algebra A(c) on vector space Kz. This mapping yields a bijection
between mod c(z) and all A(c)-module structures on Kz. The set mod c(z) is
an affine variety. The algebraic group Gl(z) acts regularly on the variety
mod c(z) by simultaneous conjugation of all matrices defining a given A(c)-
module structure, two elements in mod c(z) belong to the same orbit if and
only if the respective A(c)-modules are isomorphic.

Suppose that we have an A(c)-module W of dimension z with K-linear
ordered base w = (w1, . . . , wz) ∈ W z. By M(W,w) we mean the element
of mod c(z) corresponding to A(c)-module Kz with the structure transferred
by the isomorphism of vector spaces W and Kz, which maps the consecutive
elements of base w to adequate elements of standard base of Kz.

We define also a variety

algmod(d, z) = {(c,M) | c ∈ alg(d) M ∈ mod c(z)}.
On algmod(d, z) we have the induced Gl(z)-action.
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2. The Proof of Gabriel’s Lemma

Before we present the announced proof we recall the precise formulation
of Gabriel result.

Theorem. (Gabriel’s Lemma) Projection

π : algmod(d, z) → alg(d) , (c,M) 7→ c

maps closed and Gl(z)-invariant subsets into closed subsets.

Proof. We set

Sur(dz, z) = {S ∈ Homk((Kd)z,Kz) | Im S = Kz}

Clearly, Sur(dz, z) is a quasi-affine variety which is equipped with the regular
action of Gl(z) induced by the canonical action of Gl(z) on Kz.

Let Z be the subset of alg(d) × Sur(dz, z) consisting of all pairs (c, S)
such that KerS is an A(c)-submodule of a free module A(c)z, where A(c)z =
(Kd)z as a vector space. In the space (Kd)z we have a canonical linear base
which consists of vectors {ej

i} (i = 1, . . . , d; j = 1, . . . , z), where the sequence
{ej

i} (i = 1, . . . , d) forms a standard base of j-th coordinate of a product

(Kd)z = Kd × · · · ×Kd
︸ ︷︷ ︸

z times

for every j = 1, . . . , z.
Any sequence u = (ut) ∈ {ej

i}z consisting of z pairwise different elements,
defines an open subset Vu ⊂ Sur(dz, z) formed by all elements S ∈ Sur(dz, z)
for which determinant of the matrix

g(u)(S) = [S(u1), . . . , S(uz) ] ∈ Mz(K)

is nonzero. In this way we get open coverings

Sur(dz, z) =
⋃
u

Vu

and
alg(d)× Sur(dz, z) =

⋃
u

alg(d)× Vu
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of the varieties alg(d) and alg(d)×Sur(dz, z), respectively. Moreover, we have
an action of Gl(z) on the variety alg(d) × Sur(dz, z) induced by the action
of Gl(z) on Sur(dz, z). Note that the set Z is Gl(z)-invariant, since for any
S ∈ Sur(dz, z) the kernel kerS is a Gl(z)-invariant element of Gr(dz − z, dz)
under the induced action on Gr(dz − z, dz) which maps the pair (g, kerS) to
element ker gS for any g ∈ Gl(z) (in the other words this map is a trivial action
on Gr(dz−z, dz)). We show now that the set Z is closed in alg(d)×Sur(dz, z).
It is sufficient to show, that Z is locally closed with respect to above open
covering of the set alg(d)× Sur(dz, z).

For any S ∈ Sur(dz, z), S belongs to Vu exactly when Su = S| span(u) is
an isomorphism. Therefore we have (c, S) ∈ Z ∩ (alg(d) × Vu) if and only if
(c, S) ∈ ψ−1

(u,i,v)((0, . . . , 0)) for all 1 ≤ i ≤ d, v ∈ {ej
i}, where

ψ(u,i,v) : alg(d)× Vu → Kz

is given by ψ(u,i,v)(c, S) = S(ei ·c (v − S−1
u (S(v)))) (·c denotes here an

A(c)-module multiplication in a free A(c)-module (Kd)z). Consequently Z ∩
(alg(d)× Vu) is closed and Z is locally closed.

We define now a partial function ϕu : Z 99K algmod(d, z), which is given
by the formula

ϕu(c, S) = (c,M(W(c,S), w(c,S)))

for (c, S) ∈ Z ∩ (alg(d) × Vu), where W(c,S) = (Kd)z/KerS and w(c,S) =
(u1 + KerS, . . . , uz + KerS). We show now that ϕu is regular on its domain
Du. Clearly, Du = Z ∩ (alg(d)× Vu) forms an open set in Z. Notice also that
KerS = span({ej

i − S−1
u (S(ej

i ))}ej
i /∈{u1,...,uz}) and that

Mi(uj + KerS) = ei ·c uj −
∑

k,l;el
k∈u′

[
(ei ·c uj)l

k · (el
k − S−1

u (S(el
k)))

]
+ KerS

where (Mi)i=1,...,d = M(W(c,S), w(c,S)), u′ = {ej
i} \ {u1, . . . , uz} and elements

vl
k ∈ K satisfy the equation v =

∑
i,j vj

i · ej
i for v ∈ (Kd)z. Consequently,

Mi(uj + KerS) depends regularly on (c, S) ∈ Z ∩ (alg(d) × Vu) and ϕu|Du
:

Du → algmod(d, z) is regular.

Now we can complete our proof. We carry out our reasoning in similarly
way as in [1]. Let η : Sur(dz, z) → Gr(dz − z, dz) be a map given by η(S) =
KerS for S ∈ Sur(dz, z), where Gr(dz − z, dz) is a Grassmann variety (see
[4, 6]). The map η is locally a projection (Z is covered by the sets of the
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form Du, see also [1, Lemma 2]) and therefore so is the induced product
η′ = id× η : alg(d)× Sur(dz, z) → alg(d)×Gr(dz− z, dz). Consequently, η′ is
an open map. Consider the following family of diagrams

Z
Â Ä //

ϕu

²²Â
Â
Â alg(d)× Sur(dz, z)

η′
²²

algmod(d, z)
π

&&MMMMMMMMMM
alg(d)×Gr(dz − z, dz)
π1

vvllllllllllllll

alg(d)

where the horizontal map is a canonical embedding. The map η′ is an open
surjection with fibres equal to Gl(z)-orbit. Fix a closed, Gl(z)-invariant subset
X ⊆ algmod(d, z). Then the set X ′ =

⋃
u ϕ−1

u (X) is Gl(z)-invariant and closed
in Z since X ′ is locally closed with respect to the open covering Z =

⋃
uDu (for

any (c, S) ∈ Du1 ∩Du2 we have an equality Gl(z) ·ϕu1(c, S) = Gl(z) ·ϕu2(c, S)
and therefore ϕ−1

u2
(X)∩Du1 ⊆ ϕ−1

u1
(X)). Consequently, X ′ is closed and Gl(z)-

invariant in P = alg(d)×Sur(dz, z), since Z is closed. Hence η′(X ′) is a closed
set as complement of the image η′(P \ X ′). Finally, by completeness of the
variety Gr(dz − z, dz), we infer that π1(η′(X ′)) = π(X) is a closed set.
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