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1. Introduction

The theory of derivations on operator algebras (in particular, C∗-algebras,
AW ∗-algebras and W ∗-algebras) is an important and well developed integral
part of the general theory of operator algebras and modern mathematical
physics (see e.g. [13], [14], [4]). It is well-known that every derivation of a
C∗-algebra is norm continuous and that every derivation of an AW ∗-algebra,
and in particular of a W ∗-algebra is always inner. A very detailed study of
derivations on C∗-algebras is given in [14] and a comprehensive account of such
a theory in general Banach algebras is given in the recent monograph [7]. In
particular, the latter book details the conditions guaranteeing the automatic
continuity of derivations on various classes of Banach algebras.

The development of noncommutative integration theory initiated in [15],
has brought about new classes of (not necessarily Banach) algebras of un-
bounded operators, which by their algebraic and order-topological structure
are still somewhat similar to C∗, W ∗ and AW ∗-algebras (see e.g. [8]). Special
importance here is attached to the algebra L(M) of all measurable opera-
tors affiliated with a von Neumann algebra M . In the classical case, when
M = L∞[0, 1], the algebra L(M) coincides with the familiar space S(0, 1) of
all (classes of) measurable functions on [0, 1].

This development has naturally led to the question concerning the de-
scription of derivations on algebras L(M) and their properties. Some partial
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results in this direction are contained in [9], [10], [2]. In particular, in [2] the
following two problems are explicitly stated:

1) Is every derivation on L(M) continuous with respect to the measure
topology on L(M)?

2) Is every derivation on L(M) necessarily inner?

The present paper answers both questions in the negative for the setting
of commutative von Neumann algebras M . In fact, in our study of derivations
we have been able to deal with a general class of commutative algebras which
are regular in the sense of von Neumann, which contains as a special and im-
portant case, the subclass of algebras of measurable operators L(M) affiliated
with commutative von Neumann algebras M . Our key results concern the
extension of a derivation δ living on a subalgebra B of a commutative algebra
A which is regular in the sense of von Neumann to the algebra itself.

The paper consists of two sections and the present Introduction. In Section
2 following, we catalogue some necessary facts and tools from inverse semi-
group theory and the theory of algebras which are regular in the sense of von
Neumann. In particular, we describe various relevant properties of derivations
on a such algebra A and those of a special metric ρ on A associated with a
finite strictly positive measure living on the Boolean algebra of all idempo-
tents in A. In Section 3, we present results showing the existence of non-zero
derivations on A, provided the latter is complete with respect to the metric ρ.
The main result in that section (and that of the paper) is given in Theorem
3.1, asserting that every derivation δ : B → A extends from a subalgebra B to
a derivation on A. The proof of this result is partitioned into several steps,
some of which correspond to various natural extensions of the subalgebra B;
in particular, the embedding of B into the least regular in the sense of von
Neumann subalgebra in A, the extension of B by an integral element with
respect to B and the extension of B by a weakly transcendental element with
respect to B. The execution of the first step (as well as the proof of several
other auxiliary results) is done in Section 2, while two latter steps are per-
formed in Section 3. It is perhaps worth mentioning that in the previously
considered cases, where A is a field, or a unital integral domain, these two
steps are similar to the operations of algebraic and transcendental extensions
of B, respectively. In those cases, the procedures of extending a derivation
δ are well-known, see e.g. [7, §1.8]. However, in our setting, when A is a
commutative algebra regular in the sense of von Neumann, the extension of δ
to an “ integral extension of B ” encountered significant technical difficulties.
It is of interest to observe, that although the idea of such an extension in the
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present paper remains essentially the same as for the “ algebraic extension of
B ” in the cases when A is a field, or a unital integral domain (see [7, Theorem
1.8.15]), its technical execution is based on an entirely different method. To
explain this point in a little more detailed manner, we remark that the idea
of the extension of δ in this instance is based on the equality

δ(p(a)) = pδ(a) + p′(a)δ(a) = 0 ,

where a is an algebraic element with respect to B and p(x) =
n∑

k=0

bkx
k is a

polynomial with coefficients from B, such that p(a) = 0 and where pδ(x) =
n∑

k=0

δ(bk)xk (these notations are further explained in Section 3). To use the

equality above for the definition of an extension δ(a), it is necessary to justify
the “ division ” by p′(a). In the case, when A is a field, this justification is
relatively simple [19, Ch. 10, §76], while for the case that A is a unital integral
domains it is based on the introduction of a specially designed homomorphism
(naturally linked with δ) [7, Theorem 1.8.15]. In our case of commutative
algebra regular in the sense of von Neumann, none of the approaches above
works (due to the existence of rich families of idempotents and zero divisors).
Our approach, at this point, is entirely different. Using the properties of
supports of elements from A (explained and introduced in Section 2) and
assuming that a is an integral element with respect to B (in our setting there
is a significant difference between the notion of an algebraic element and that
of an integral element; see relevant definitions and examples in Section 3),
we have managed to partition the support of a into a finite family of pairwise
disjoint idempotents `k’s, such that p′(a)`k is invertible in the reduced algebra
A`k (Proposition 3.4). This idea allows correct definition of the extension of
δ to the “ integral ” extension B(a) of the subalgebra B (Proposition 3.5 and
Proposition 3.6). The final step of our programme is the extension of δ to
the subalgebra B(a), in the case when a is not necessarily an integral element
with respect to B. Again, if a were a transcendental element with respect to
B, then such an extension could have been easily realized through previously
known schemes (see e.g. [7, §1.8]). However, in our case, there are examples
of elements a ∈ A, which are neither integral, nor transcendental with respect
to B (Example 3.1) and this again renders all previously known approaches
inapplicable. To deal with this obstacle, we introduce and utilize the notion
of a weakly transcendental element with respect to B. For such elements, it is
still possible to define the extension of δ to the subalgebra B(a) (Proposition
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3.7) and this makes it possible to complete the proof of Theorem 3.1 by a
(standard) method involving an appeal to Zorn’s lemma (cf. [19], [7]).

Having established this extension result for derivations, we apply it to
obtain a criterion for existence of a non-zero derivation on an arbitrary ρ-
complete commutative algebra A regular in the sense of von Neumann. With
the help of this criterion, one can easily see that for a commutative von Neu-
mann algebra M , the algebra L(M) admits non-zero derivations, if and only if
the Boolean algebra of all idempotents in M is not atomic. This further implies
(see Remark 3.1) that there exists a non-zero derivation δ : L∞[a, b] → S[a, b]
(recall, that any derivation from L∞[a, b] into itself is necessarily inner [13]).

We use terminology and notation from regular rings theory [16], [12], in-
verse semigroup theory [6], von Neumann algebra theory [17], [13] and theory
of measurable operators from [15], [20], [8].

Some results from this paper have been announced in [3].

2. Preliminary information and results

The main objective of the present section is to describe the properties of an
arbitrary commutative algebra that is regular in the sense of von Neumann,
which will be utilized for building the extension of a differentiation living on
a subalgebra of such an algebra.

Firstly, we need to review some notions and tools from the theory of inverse
semigroups. Let S be an arbitrary semigroup. The elements a and b from S
are called inverses to each other, if aba = a, bab = b (see [6]). The semigroup
S is called inverse, if for any a ∈ S there exists a unique inverse element to
a, which is denoted by i(a). For any elements a, b from an inverse semigroup
S it follows that: i(ab) = i(b)i(a); i(i(a)) = a; in addition, e = ai(a) is an
idempotent in S, i.e., e2 = e, and ea = a (see, for example, [6, §1.9]). In
particular, for any idempotent f ∈ S we have f = f · f · f , i.e., f = i(f), and
therefore i(af) = i(f)i(a) = fi(a). It is shown in [6, §1.9] that e = ai(a) is
the unique idempotent in S, for which aS = eS.

We need the following criterion for S to be inverse (see [6, §1.9]).

Proposition 2.1. A semigroup S is inverse if and only if any two idem-
potents commute and for any a ∈ S there exists an element b ∈ S such that
a = aba.

The semigroup S is said to be regular if for every a ∈ S, there exists an
element b ∈ S such that a = aba. A regular subsemigroup of the inverse
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semigroup S is also an inverse semigroup and its inversion coincides with the
inversion in S.

Let A be a commutative algebra with unit 1 over field K. Obviously, A
is a commutative semigroup with respect to multiplication in A. We denote
by ∇ the set of all idempotents in A.

For any e, f ∈ ∇, we set e ≤ f , if ef = e. It is well known (see, for
example, [12, Prop. 1.6, p. 137]), that this relation is a partial order relation
in ∇, with respect to which ∇ is a Boolean algebra. In addition, for the lattice
operations and the operation of taking the complement in ∇, the following
equalities are true: e ∨ f = e + f − ef , e ∧ f = ef , Ce = 1− e. As usual, we
denote by e M f = (e∨ f)∧C(e∧ f) the symmetric difference of idempotents
e and f .

We recall, that the nonzero element q from the Boolean algebra ∇ is called
an atom, if from the conditions 0 6= e ≤ q, e ∈ ∇ it follows that e = q. The
Boolean algebra ∇ is called atomic, if for any nonzero e ∈ ∇ there exists an
atom q, such that q ≤ e.

A ring A is called regular in the sense of von Neumann, if for any a ∈ A
there exists b ∈ A such that a = aba (see [16]).

A commutative unital algebra, which is simultaneously a regular in the
sense of von Neumann ring is called a commutative regular in the sense of von
Neumann algebra. For brevity, everywhere below we refer to such algebras
simply as to regular algebras.

Further, we shall always assume that A is a unital commutative regular
algebra over the field K, and that ∇ is the Boolean algebra of all idempotents
in A. Clearly, with respect to the operation of multiplication in A, the algebra
A is a commutative regular semigroup, which is an inverse semigroup (see
Proposition 2.1).

The idempotent e ∈ ∇ is said to be the support of a ∈ A, if ea = a and
from ga = a, g ∈ ∇, it follows that e ≤ g. As we have already mentioned
above, for every a ∈ A, we have e := ai(a) belongs to ∇ and ea = a. If g ∈ ∇
and ga = a, then gi(a) = i(ga) = i(a), i.e., ge = gi(a) · a = i(a)a = e,
and therefore e ≤ g. This means that the idempotent e = ai(a) is the
support of a.

We shall denote by s(a) the support of the element a ∈ A. If e ∈ ∇, then
i(e) = e, and therefore s(e) = ei(e) = e.

The following proposition lists some simple properties of supports.
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Proposition 2.2. The following relations hold for any a, b ∈ A, e, f ∈ ∇:

(i) s(i(a)) = s(a), s(an) = s(a), s(αa) = s(a), for all α ∈ K, α 6= 0,
n = 1, 2, . . . ;

(ii) s(ab) = s(a)s(b);

(iii) ab = 0 ⇔ s(a)s(b) = 0;

(iv) if ab = 0, then i(a + b) = i(a) + i(b), s(a + b) = s(a) + s(b);

(v) s(b− a) ≥ s(b) M s(a), s(e− f) = e M f = (e− f)2.

Proof. The proofs of (i), (ii) and (iii) follow immediately from the definition
of support and properties of inverse elements.

(iv) Let ab = 0. Since s(a)s(b) = 0, then (a + b)(s(a) + s(b)) = as(a) +
bs(b)s(a) + as(a)s(b) + bs(b) = a + b, i.e., s(a) + s(b) ≥ s(a + b). On the
other hand s(a + b)s(a) = s((a + b)a) = s(a2 + bs(b)s(a)a) = s(a2) = s(a),
and similarly s(a + b)s(b) = s(b). This means that s(a + b) ≥ s(a) ∨ s(b) =
s(a) + s(b). Consequently, s(a + b) = s(a) + s(b).

Using this equality together with (i), (iii), we get that (a + b)(i(a) + i(b))
= ai(a) + ai(b) + bi(a) + bi(b) = s(a) + as(a)s(b)i(b) + bs(b)s(a)i(a) + s(b) =
s(a)+ s(b) = s(a+ b). Consequently, i(a+ b) = i(a+ b)s(a+ b) = i(a+ b)(a+
b)(i(a) + i(b)) = s(a + b)(i(a) + i(b)) = (s(a) + s(b))(s(a)i(a) + s(b)i(b)) =
i(a) + i(b).

(v) Let e1 = s(a) − s(a)s(b), e2 = s(b) − s(a)s(b), e3 = s(a)s(b). Then
ei ∈ ∇, eiej = 0, i 6= j, i, j = 1, 2, 3, and s(a)∨s(b) = e1∨e2∨e3 = e1+e2+e3.
Therefore, b−a = (b−a)(s(a)∨ s(b)) = (b−a)e1 +(b−a)e2 +(b−a)e3. Since
s(b)e1 = 0, s(a)e2 = 0, we have for a1 := (b−a)e1 = −ae1, b1 := (b−a)e2 = be2

and d := (b − a)e3 that a1b1 = a1d = b1d = 0. It now follows from (i) that
s(b−a) = s(a1)+s(b1)+s(d) ≥ s(a1)+s(b1). However, s(a1) = s(−a)s(e1) =
s(a)e1 = e1, s(b1) = s(b)s(e2) = e2, and thus s(b− a) ≥ e1 ∨ e2 = s(a) M s(b).
Finally, if e, f ∈ ∇, then we get (see (iv)) that s(e−f) = s((e−ef)+(ef−f)) =
s(e− ef) + s(ef − f) = e− ef + f − ef = e M f .

We list below a few important examples of commutative unital regular
algebras.

Example 2.1. Let ∆ be an arbitrary set, and let A := K∆ =
{{αq}q∈∆ :

αq ∈ K for all q ∈ ∆
}

be the direct product of a ∆ copies of the field K.
With respect to the pointwise algebraic operations, the set A is a commutative
algebra (over K) with unit 1 := {1q}q∈∆, where 1q = 1K is the unit in K. Any
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idempotent in A has the form e = eB = {αq}q∈∆, where B ⊂ ∆, αq = 1K

for q ∈ B, αq = 0 for q ∈ (∆ \ B). Hence, the Boolean algebra ∇ of all
idempotents in A coincides with the atomic Boolean algebra of all subsets of
∆. Let a = {αq}q∈∆, b = {βq}q∈∆ ∈ A, βq := α−1

q , if αq 6= 0, and βq := 0,
if αq = 0. Then a = a2b, i.e., A is a regular algebra, in particular, i(a) = b,
s(a) = eB, where B = {q ∈ ∆ : αq 6= 0}.

Example 2.2. Let (Ω,Σ, µ) be a localizable measure space (see [15]). We
denote by S = S(Ω, Σ, µ) the algebra of all (classes of) measurable functions
on (Ω, Σ, µ) with values in the field K, where K = R is the field of all real
numbers, or else K = C is the field of complex numbers. Clearly, S is a
commutative regular algebra with unit 1 given by 1(ω) ≡ 1, ω ∈ Ω. The
Boolean algebra ∇ of all idempotents in S coincides with the Boolean algebra
of classes of almost everywhere equal sets from Σ. For any a ∈ S, the support
s(a) is a class from ∇ with the representative {ω ∈ Ω : |a(ω)| 6= 0} ∈ Σ.

Example 2.3. Let M be a commutative AW ∗ algebra, in particular, W ∗

algebra, and let L(M) be the algebra of all measurable operators affiliated with
M . It is well-known that L(M) (respectively, its self-adjoint part Lh(M) :=
{a ∈ L(M) : a∗ = a}) is a commutative regular algebra with a unit over
the field C (respectively, over the field R) (see, for example, [8], [15]). We
note that the regular algebra from Example 2.1 is a special case of the regular
algebra in this example.

Let M be an arbitrary algebra, and let B be a subalgebra of M. A linear
map δ : B →M is called a derivation, if δ(ab) = δ(a)b+aδ(b) for any a, b ∈ B.
The derivation δ is called inner, if there exists an element a ∈ M, such that
δ(b) = [b, a] = ba − ab for all b ∈ B. Clearly, every inner derivation on
commutative algebras is identically equal to zero, that is in such algebras any
nonzero derivation is necessarily not inner.

We list below a few simple properties of derivations, which will be fre-
quently used in the sequel.

Proposition 2.3. If B is a subalgebra in A and δ : B → A is a derivation,
then the following hold for all b ∈ B and e ∈ B ∩∇:

(i) δ(bn) = nbn−1δ(b), n = 1, 2, . . . ;

(ii) δ(e) = 0;

(iii) δ(be) = δ(b)e;
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(iv) if s(b) ∈ B, then s(δ(b)) ≤ s(b);

(v) δ(i(b)) = −δ(b)i(b2) if i(b) ∈ B.

Proof. The assertions (i), (ii) are established in [7, §1.8]. The assertion
(iii) follows from (ii).

(iv) If s(b) ∈ B, then appealing to (iii) we get, δ(b) = δ(s(b)b) = s(b)δ(b),
whence s(δ(b)) ≤ s(b).

(v) If i(b) ∈ B, then s(b) = b i(b) ∈ B, and therefore 0 = δ(s(b)) =
δ(b · i(b)) = δ(b)i(b) + δ(i(b))b, i.e., δ(i(b))b = −δ(b)i(b). Consequently, via
Proposition 2.2 (i) and (iii) above, we conclude

δ(i(b)) = δ(i(b)s(b)) = δ(i(b))s(b)

= δ(i(b))b · i(b) = −δ(b)i(b)i(b) = −δ(b)i(b2) .

In what follows, we shall be examining derivations δ : B → A, such that
s(δ(b)) ≤ s(b) for each b ∈ B. This condition holds automatically, if B is a
regular subalgebra in A, i.e., when B is a regular ring. Indeed, in this case, due
to the uniqueness of the inverse element for every b ∈ B (taken in B and/or
in A), we see that the element s(b) = bi(b) belongs to B. Thus, according to
Proposition 2.3 (iv), we have s(δ(b)) ≤ s(b).

It is probably worthwhile to mention that there are no non-trivial deriva-
tions on the regular commutative algebra K∆ from Example 2.1 (in the special
case that K = C this fact is pointed out in [2]). Indeed, for any derivation
δ : K∆ → K∆ and x = {xq} ∈ K∆, we have

eqδ(x) = δ(eqx) = xqδ(eq) = 0 , ∀q ∈ ∆ ,

where eq is the idempotent in ∇ corresponding to the point q ∈ ∆. This
means that δ(x) = 0. On the other hand, the situation with commutative
regular algebras in Example 2.2 can be quite different and the demonstration
of this phenomenon is the main objective of the present paper.

Generally speaking, our task in this paper consists in extending a deriva-
tion δ defined on a subalgebra B ⊆ A to a derivation defined on the whole
algebra A. The first step in this programme is to show that δ extends to
the subalgebra A(B,∇), the smallest subalgebra in A containing B and the
Boolean algebra ∇ of all idempotents from A. Clearly,

A(B,∇) =





n∑

i=1

biei +
m∑

j=1

αjfj : bi ∈ B, ei, fj ∈ ∇, αj ∈ K, n, m ∈ N


 ,
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where N is the set of all natural numbers.

Proposition 2.4. If B is a subalgebra in A and δ : B → A is a derivation
such that s(δ(b)) ≤ s(b) for all b ∈ B, then there exists the unique derivation
δ1 : A(B,∇) → A such that δ1(b) = δ(b) for all b ∈ B.

Proof. For each a =
n∑

i=1
biei+

m∑
j=1

αjfj ∈ A(B,∇), we set δ1(a) =
n∑

i=1
δ(bi)ei.

We shall show that this definition is well-defined. Let ak =
nk∑
i=1

b
(k)
i e

(k)
i +

mk∑
j=1

α
(k)
j f

(k)
j , k = 1, 2, and let a1 = a2. We denote by ∇0 the finite Boolean

subalgebra in ∇, generated by the idempotents e
(1)
1 , . . . , e

(1)
n1 , e

(2)
1 , . . . , e

(2)
n2 ,

f
(1)
1 , . . . , f

(1)
m1 , f

(2)
1 , . . . , f

(2)
m2 . Let q1, . . . , ql be all the atoms in ∇0.

Since a1 = a2, then a1qk = a2qk for all k = 1, . . . , l, i.e.,

qk

∑

i : e
(1)
i ≥qk

b
(1)
i + qk

∑

j : f
(1)
j ≥qk

α
(1)
j = qk

∑

i : e
(2)
i ≥qk

b
(2)
i + qk

∑

j : f
(2)
j ≥qk

α
(2)
j .

Setting

ck :=
∑

i : e
(1)
i ≥qk

b
(1)
i −

∑

i : e
(2)
i ≥qk

b
(2)
i ,

βk :=
∑

j : f
(1)
j ≥qk

α
(1)
j −

∑

j : f
(2)
j ≥qk

α
(2)
j ,

we get qk(ck + βk) = 0, 1 ≤ k ≤ l. If βk = 0, then qkck = 0, and therefore, by
Proposition 2.2 (iii), qks(ck) = 0 and hence, by the assumption, qks(δ(ck)) =
0, in particular, qkδ(ck) = 0. We shall now show that the latter equality
continues to hold also for those indices k = 1, 2, . . . , l for which βk 6= 0.
Indeed, for such k’s, we define dk = −β−1

k ck and note that it follows from
the equality qkck = −βkqk, that qkdk = qk. Therefore, qk = q2

k = qkd
2
k,

and hence qk(d2
k − dk) = 0. Again using Proposition 2.2 (iii), we obtain that

qks(d2
k − dk) = 0. Since, by the assumption, s(δ(b)) ≤ s(b) for all b ∈ B, we

infer qks(δ(d2
k−dk)) = 0, in particular, qkδ(d2

k−dk) = 0. Therefore, it follows
from Proposition 2.3 (i) combined with the equality qkdk = qk that qkδ(dk) =
qkδ(d2

k) = 2qkδ(dk), i.e., qkδ(dk) = 0, and qkδ(ck) = −βkqkδ(dk) = 0. Hence,
qkδ(ck) = 0 for all k = 1, . . . , l.
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This implies that
n1∑

i=1

δ(b(1)
i )e(1)

i =
l∑

k=1

qk

∑

i : e
(1)
i ≥qk

δ(b(1)
i )

=
l∑

k=1

qk

∑

i : e
(2)
i ≥qk

δ(b(2)
i ) =

n2∑

i=1

δ(b(2)
i )e(2)

i .

This means that the map δ1 is well-defined on A(B,∇). The linearity of
δ1 and the equality δ1(b) = δ(b) for all b ∈ B immediately follow from the
definition. We shall now show that δ1(ad) = δ1(a)d + aδ1(d) for all a, d ∈
A(B,∇). Let a, b ∈ B, e, f ∈ ∇. Then

δ1((ae)(bf)) = δ1(abef) = δ(ab)ef = (δ(a)b + aδ(b))ef = δ1(ae)bf + aeδ1(bf)

and δ1(aef) = δ(a)ef = δ1(ae)f . Now, let

a =
k∑

i=1

biei +
m∑

j=1

αjfj , d =
l∑

s=1

b′se
′
s +

t∑

p=1

α′pf
′
p

be arbitrary elements from A(B,∇). Then

δ1(ad) = δ1


∑

i,s

bieib
′
se
′
s +

∑

i,p

bieiα
′
pf
′
p +

∑

j,s

b′se
′
sαjfj +

∑

j,p

αjα
′
pfjfp




=
∑

i,s

(
δ1(biei)b′se

′
s + bieiδ1(b′se

′
s)

)
+

∑

i,p

δ1(biei)α′pf
′
p +

∑

j,s

δ1(b′se
′
s)αjfj

= δ1(a)d + aδ1(d) .

This completes the proof that δ1 : A(B,∇) → A is a derivation. Now, let
δ2 : A(B,∇) → A be a derivation for which, δ2(b) = δ(b) for all b ∈ B. Then,
it follows from Proposition 2.3 (ii), (iii) that for any bi ∈ B, ei, fj ∈ ∇, αj ∈ K
we have

δ2




n∑

i=1

biei +
m∑

j=1

αjfj


 =

n∑

i=1

δ2(bi)ei =
n∑

i=1

δ(bi)ei

= δ1




n∑

i=1

biei +
m∑

j=1

αjfj


 ,

i.e., δ1 = δ2.
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The following proposition contains the second step of our programme; in
particular, it shows that an arbitrary derivation δ : A(B,∇) → A extends to
a derivation on the least regular subalgebra containing B and ∇.

Proposition 2.5. Let B be a subalgebra in A such that ∇ ⊂ B and let
δ : B → A be a derivation. If B(i) := {a · i(b) : a, b ∈ B}, then B(i) is
the least regular subalgebra in A containing B, and there exists a unique
derivation δ1 : B(i) → A such that δ1(b) = δ(b) for all b ∈ B.

Proof. Clearly, K · B(i) ⊆ B(i). Since i(ab) = i(b)i(a) and i(i(a)) = a, we
have i(B(i)) = B(i).

Let ak, bk ∈ B, dk = aki(bk) ∈ B(i), k = 1, 2. Then a1i(b1) · a2i(b2) =
a1a2i(b1b2), i.e., B(i) · B(i) ⊆ B(i).

We shall now show that d1 + d2 ∈ B(i). Clearly, to this end, it is sufficient
to establish that d1 + d2 = u · i(v), where

u := a1(s(d1)− s(d1d2)) + a2(s(d2)− s(d1d2)) + (a1b2 + a2b1)s(d1d2) ,

v := b1(s(d1)− s(d1d2)) + b2(s(d2)− s(d1d2)) + b1b2s(d1d2) .

For brevity, we also set

e = s(d1)− s(d1d2) , f = s(d2)− s(d1d2) , g = s(d1d2) .

Since s(dk) = s(ak)s(bk), k = 1, 2 (see Proposition 2.2 (ii)), we get (using
Proposition 2.2 (iv))

d1 + d2 = a1i(b1)e + (a1i(b1) + a2i(b2))g + a2i(b2)f

= a1i(b1)e + a2i(b2)f + (a1b2i(b2)i(b1)s(d1)s(d2)

+ a2b1i(b1)i(b2)s(d1)s(d2))

=
(
a1e + a2f

) · i(b1e + b2f
)

+ (a1b2 + a2b1)(i(b1b2)s(d1d2))

= u · i(v) .

Thus, B(i) is a subalgebra in A. For any element a i(b) from B(i), the element
b i(a) also belongs to B(i), and since

a i(b) = a i(b)s(b)s(a) = (a i(b))(b i(a))(a i(b)) ,

it follows that B(i) is a regular ring. Combining the latter with the definition
of B(i), we deduce that B(i) is the least regular subalgebra in A, containing B.
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We define δ1 : B(i) → A, as follows

δ1(a i(b)) = δ(a)i(b)− aδ(b)i(b2) .

We have to verify first that this map is well-defined. Let a1i(b1) = a2i(b2),
ak,bk ∈ B, k = 1, 2. Then s(a1)s(b1) = s(a1i(b1)) = s(a2i(b2)) = s(a2)s(b2).
We have that s(b1) ·s(b2)(a1b2−a2b1) = a1i(b1)b1 ·b2s(b2)−a2i(b2)b2b1s(b1) =
a2i(b2)b1b2 − a2i(b2)b1b2 = 0. Since e = s(a1)s(b1) = s(a2)s(b2) ≤ s(b1) ∧
s(b2) = s(b1) · s(b2), then e(a1b2− a2b1) = 0. Since s(δ(b)) ≤ s(b) for all b ∈ B
(see Proposition 2.2 (iv)), we get 0 = eδ(a1b2 − a2b1) = e(δ(a1)b2 + δ(b2)a1 −
δ(a2)b1 − δ(b1)a2). We remark also that from the equality a1i(b1) = a2i(b2),
it follows that a1s(b1) = a2b1i(b2), a2s(b2) = a1b2i(b1). Therefore, using the
inclusion ∇ ⊂ B and the equalities s(i(b1

2b2
2)) = s(b1

2)s(b2
2) = s(b1)s(b2), we

infer that
[
δ(a1)i(b1)− a1δ(b1)i(b2

1)
]− [

δ(a2)i(b2)− a2δ(b2)i(b2
2)

]

= e i(b2
1b

2
2)

(
δ(a1)b1b

2
2 − a1δ(b1)b2

2 − δ(a2)b2b
2
1 + a2δ(b2)b2

1

)

= e i(b2
1b

2
2)

(
δ(a1)b1b

2
2 − a2b1b2δ(b1)− δ(a2)b2b

2
1 + a1b1b2δ(b2)

)

= e i(b1b2)
(
δ(a1)b2 − a2δ(b1)− δ(a2)b1 + a1δ(b2)

)
= 0 .

This means that the map δ1 is well-defined.
Clearly, δ1(λa i(b)) = λ δ1(a i(b)) for all λ ∈ K. Thus, to show that δ1 is

a linear map, we need only to establish that δ1(d1 + d2) = δ1(d1) + δ1(d2) for
all dk = aki(bk), ak, bk ∈ B, k = 1, 2. To this end, using results and notation
from the first part of the proof, we note first that d1 + d2 = u · i(v), and so,
by the definition of δ1, we have

δ1(d1 + d2) = δ(u)i(v)− uδ(v) · i(v2) .

Further, we note that it is a straightforward verification that

e(d1 + d2) = e u · i(e v) = a1i(b1)e ,

f(d1 + d2) = a2i(b2)f ,

g(d1 + d2) = (a1b2 + a2b1)i(b1b2)g ,

and that for any h ∈ ∇, a, b ∈ B the following holds

δ1(h a i(b)) = δ(h a)i(b)− h aδ(b)i(b2) = hδ1(a i(b)) .
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Hence,

eδ1(d1 + d2) = δ1(e(d1 + d2)) = e(δ(a1)i(b1)− a1δ(b1)i(b1
2)) = eδ1(d1) ,

fδ1(d1 + d2) = δ1(f(d1 + d2)) = f(δ(a2)i(b2)− aδ(b2)i(b2
2)) = fδ1(d2) ,

gδ1(d1 + d2) = δ1(g(d1 + d2))

= g
(
(δ(a1)b2 + a1δ(b2) + δ(a2)b1 + a2δ(b1)

)
i(b1b2)

− (a1b2 + a2b1)(δ(b1)b2 + b1δ(b2)) · i(b1
2b2

2))

= g(δ(a1)i(b1)− a1δ(b1)i(b1
2) + δ(a2)i(b2)− a2δ(b2)i(b2

2))

= g(δ1(d1) + δ1(d2)) .

Since s(u) ≤ s(d1) ∨ s(d2) = e + f + g, s(v) ≤ e + f + g, we have

s(δ1(d1 + d2)) ≤ e + f + g ,

and therefore, using the inequalities

s(δ1(d1)) ≤ s(d1) = e + g ,

s(δ1(d2)) ≤ s(d2) = f + g ,

we obtain

δ1(d1 + d2) = δ1(d1 + d2)(e + f + g) = eδ(d1) + fδ1(d2) + g(δ1(d1) + δ1(d2))

= δ1(d1) + δ1(d2) .

Thus, δ1 is a linear map. In order to verify that δ1 is a derivation on B(i), we
note that for any dk = aki(bk), ak, bk ∈ B, k = 1, 2, we have

δ1(d1d2) = δ1(a1a2i(b1b2))

= (δ(a1)a2 + a1δ(a2))i(b1b2)− a1a2(δ(b1)b2 + b1δ(b2))i(b1
2b2

2)

= (δ(a1)i(b1)− a1δ(b1)i(b1
2))a2i(b2)

+ (δ(a2)i(b2)− a2δ(b2)i(b2
2))a1i(b1)

= δ1(d1)d2 + δ1(d2)d1 .

Thus, δ1 is a derivation on B(i).
If b ∈ B, then δ1(b) = δ1(b i(1)) = δ(b)i(1)− bδ(1)i(1) = δ(b).
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Finally, let δ2 : B(i) → A be a derivation, such that δ2(b) = δ(b) for all
b ∈ B. By Proposition 2.3 (v), for a, b ∈ B we have

δ2(a i(b)) = δ2(a)i(b) + aδ2(i(b)) = δ2(a)i(b)− aδ2(b)i(b2) = δ1(a i(b)) ,

i.e., δ2 = δ1.

We now recall a few notions related to measure theory on boolean algebras.
A non-negative function µ : ∇ → [0,∞] is said to be a measure on the Boolean
algebra ∇, if µ(e ∨ g) = µ(e) + µ(g) for all e, g ∈ ∇ such that e ∧ g = 0 and
µ(0) = 0. The measure µ is said to have the direct sum property, if there
exists a family {ei}i∈I ⊆ ∇ of nonzero pairwise disjoint elements, such that
sup
i∈I

ei = 1 and µ(ei) < ∞ for all i ∈ I. The measure µ is called finite, if

µ(e) < ∞ for all e ∈ ∇. It is called strictly positive, if from the equality
µ(e) = 0, it follows that e = 0. The measure µ is called completely additive
(respectively, countably additive), if for any (respectively, for any countable)
family {ei}i∈I ⊆ ∇ of nonzero pairwise disjoint elements such that sup

i∈I
ei ∈ ∇,

the equality µ

(∑
i∈I

ei

)
=

∑
i∈I

µ(ei) holds.

We assume below that µ is a strictly positive finite measure on the Boolean
algebra ∇ of all idempotents of a commutative regular algebra A. We define
the function ρ : A×A → R, by setting:

ρ(a, b) = µ(s(a− b)) .

The following proposition represent the third step in our programme: it
shows that a derivation δ : B → A extends from the subalgebra B to the
closure of B in the topology defined by the metric ρ. The assertion below that
ρ is a metric on A and that (A, ρ) is a topological ring is known for certain
algebras of continuous admissible functions on a Stone compact equipped with
a finite measure [1]; we supply full proofs here for the reader’s convenience.

Proposition 2.6. (i) ρ is a metric on A;

(ii) ρ(a, b) = ρ(a + c, b + c) for any a, b, c ∈ A, ρ(λa, λb) = ρ(a, b) for any
a, b ∈ A, λ ∈ K, λ 6= 0;

(iii) the operations (a, b) → a + b, (a, b) → ab are bi-continuous and a → −a
is continuous in the metric ρ, i.e., A is a topological ring in the metric
topology given by ρ, moreover, ρ(ac, bc) ≤ ρ(a, b);
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(iv) ρ(i(a), i(b)) = ρ(a, b) for all a, b ∈ A;

(v) if B is a subalgebra in A, such that ∇ ⊂ B and if δ : B → A is a
derivation, then ρ(δ(a), δ(b)) ≤ ρ(a, b) for all a, b ∈ B, in particular, δ is
uniformly continuous in the metric ρ;

(vi) if B is a subalgebra (respectively, a regular subalgebra) in A, such that
∇ ⊂ B and if δ : B → A is a derivation, then the closure B of the algebra
B in (A, ρ) is a subalgebra (respectively, a regular subalgebra) in A, and
there exists a unique derivation δ1 : B → A, such that δ1(b) = δ(b) for
all b ∈ B.

Proof. The assertions (i), (ii), (iii) follow immediately from the definition
of the metric ρ and properties of the support (see Proposition 2.2.).

(iv) Let a,b ∈ A, e = 1−s(a− b). Then (a− b)e = 0, i.e., a e = b e. Hence
i(a)e = i(a e) = i(b e) = i(b)e, and therefore (i(a)− i(b))e = 0. Consequently,
e ≤ 1−s(i(a)− i(b)), i.e., s(i(a)− i(b)) ≤ s(a− b). Replacing in the argument
above a by i(a), and b by i(b), we get that s(a − b) ≤ s(i(a) − i(b)). Thus,
s(a− b) = s(i(a)− i(b)) and ρ(i(a), i(b)) = ρ(a, b).

(v) Since ∇ ⊂ B, it follows from Proposition 2.3 (iv) that s(δ(a)) ≤
s(a), and therefore for any a, b ∈ B we have that ρ(δ(a), δ(b)) = µ(s(δ(a −
b))) ≤ µ(s(a − b)) = ρ(a, b), which implies, in particular, that δ is uniformly
continuous in the metric ρ.

(vi) It follows from (ii) and (iii) above that B is a sub-ring in A. Let
λ ∈ K, a ∈ B, an ∈ B, ρ(an, a) → 0. If λ 6= 0, then ρ(λan, λa) = ρ(an, a) → 0,
i.e., λa ∈ B. If λ = 0, then λa = 0 ∈ B ⊂ B. Consequently, B is a subalgebra
in A. Furthermore, it follows from (iv) above, that i(a) ∈ B for any a ∈ B,
provided that B is a regular subalgebra. Thus, in this case, the subalgebra B
is also a regular subalgebra in A. Now, using the assertions (iii) and (v), it is
easily shown that the derivation δ extends uniquely to a derivation on B.

We recall that the Boolean algebra ∇ is called complete (respectively,
σ-complete ), if for any subset (respectively, countable subset) M ⊂ ∇ there
exists a least upper bound supM ∈ ∇. The Boolean algebra ∇ is said to have
a countable type, if any family of nonzero pairwise disjoint elements from ∇
is no more than countable. Clearly, for Boolean algebras of countable type
the notions of fully additive and countably additive measures coincide. It is
shown in [18, chapter I, §6] that if ∇ admits a strictly positive measure, then
it necessarily has a countable type. Every σ-complete Boolean algebra of a
countable type is a complete Boolean algebra. If ∇ is a complete Boolean
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algebra of countable type, then for every subset M ⊂ ∇, there exists a count-
able subset M1 ⊂ M , such that supM1 = supM (see [18, chapter III, §2]).
Let µ be a strictly positive countably additive measure on the Boolean algebra
∇, and let d(e, f) := µ(e M f), e, f ∈ ∇. It is shown in [18, chapter III, §5]
that d is a metric on ∇, and if (∇, d) is a complete metric space, then ∇ is a
complete Boolean algebra.

Proposition 2.7. Let A be a commutative unital regular algebra, and
let µ be a strictly positive countably additive finite measure on the Boolean
algebra ∇ of all idempotents from A, ρ(a, b) = µ(s(a − b)). If (A, ρ) is a
complete metric space, then

(i) ∇ is a complete Boolean algebra of the countable type;

(ii) if ai ∈ A, aiaj = 0 for i 6= j, i, j = 1, 2, . . . , then the series
∞∑
i=1

ai

converges in (A, ρ) to some element a such that a s(ai) = ai, i = 1, 2, . . . ,
and s(a) = sup

i≥1
s(ai).

Proof. (i) Suppose en ∈ ∇, a ∈ A, ρ(en, a) → 0 when n → ∞. Then
en = en

2 → a2, and therefore a2 = a, i.e., a ∈ ∇. Consequently, ∇ is a closed
subset of (A, ρ), in particular, (∇, ρ) is complete metric space.

If e, f ∈ ∇, then s(e − f) = e M f (see Proposition 2.2 (v)) and therefore
µ(e M f) = ρ(e, f). It follows now from [18, chapter III, §5] that ∇ is complete
Boolean algebra.

(ii) Let en =
n∑

k=1

s(ak), e = sup
k≥1

s(ak). Since s(ai)s(aj) = 0 for i 6= j (see

Proposition 2.2 (iii)), we have en ∈ ∇, en ≤ en+1 and e = sup
n≥1

en, in particular,

µ(e) = lim
n→∞µ(en) and lim

m>n
m,n→∞

µ(em − en) = 0. It follows, that for m > n, we

have

ρ

(
m∑

k=1

ak,
n∑

k=1

ak

)
= ρ

(
m∑

k=n+1

ak, 0

)
= µ

(
s

(
m∑

k=n+1

ak

))

= µ

(
m∑

k=n+1

s(ak)

)
= µ(em − en) → 0 as m,n →∞ .

Consequently, the sequence {an}n≥1 is a Cauchy sequence in (A, ρ), and there

exists an element a ∈ A, such that ρ

(
n∑

k=1

ak, a

)
→ 0 as n →∞. For a fixed
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index i ≥ 1, we have
(

n∑
k=1

ak

)
s(ai) = ai for every n ≥ i. Therefore, by

Proposition 2.6 (iii), we get a s(ai) = ai. It follows that ais(a) = a s(ai)s(a) =
a s(ai) = ai, and so s(ai) ≤ s(a) for all i = 1, 2, . . . . Consequently, e ≤ s(a).

On the other hand, as
(

n∑
k=1

ak

)
e =

n∑
k=1

aks(ak)e =
n∑

k=1

ak, we get by passing

to the limit as n → ∞, that a e = a. Consequently, s(a) ≤ e, and therefore
s(a) = e.

In what follows, we shall be concerned with complete commutative regular
algebras (A, ρ). The important examples of such algebras listed below are a
specialization of the examples following Proposition 2.2.

Example 2.4. Let ∆ be a countable set, let A = K∆ and let µ be a
strictly positive countably additive measure on the Boolean algebra of all
subsets in ∆ (this Boolean algebra is naturally identified with the Boolean
algebra of all idempotents in A). For any a = {αq}q∈∆, b = {βq}q∈∆ ∈ A, we
have that ρ(a, b) = µ(s(a − b)) = µ({q ∈ ∆ : αq 6= βq}. Consequently, the
topology generated by the metric ρ, coincides with the product topology in
the product A =

∏
q∈∆ Kq with Kq = K, q ∈ ∆, and each Kq is equipped with

the discrete topology. This implies that (A, ρ) is a complete metric space.

Example 2.5. Let A = S(Ω, Σ, µ), where µ is a finite countably additive
measure on Σ, and K = R, or else K = C. The measure µ defines a strictly
positive countably additive measure on the complete Boolean algebra ∇ of all
idempotents in A. For any a, b ∈ A, we have ρ(a, b) = µ(s(a − b)) = µ({ω ∈
Ω : a(ω) 6= b(ω)}). The metric space (A, ρ) is a complete. Due to the lack of
a suitable reference, we supply below a short proof.

Let {an}n≥1 be a Cauchy sequence in (A, ρ). Passing to a subsequence if
necessary, we may assume that ρ(an+1, an) < 1/2n for all n = 1, 2, . . . . For
each fixed k ≥ 1, we set Ek :=

∞∩
n=k

{ω ∈ Ω : an(ω) = ak(ω)}. Clearly, Ek ∈ Σ,

Ek ⊂ Ek+1 and Ω \ Ek = {ω ∈ Ω : an(ω) 6= ak(ω) for some n > k}. Let
m > k and Am := {ω ∈ Ω : ak(ω) = ak+1(ω) = · · · = am−1(ω) 6= am(ω)}.
Then

Am =
(

m−1∩
n=k

{ω ∈ Ω : an(ω) = ak(ω)}
)
∩ {ω ∈ Ω : am(ω) 6= ak(ω)} ,

and so Am ∈ Σ and Ω \ Ek =
∞∪

m=k+1
Am. We denote by em the idempotent

from ∇ corresponding to the set Am. From the definition of the set Am,
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we have that em ≤ s(am − am−1). Therefore µ(em) ≤ µ(s(am − am−1)) =
ρ(am, am−1) < 1/2m−1. Let qk be the idempotent in ∇ corresponding to the

set Ek. Since 1 − qk =
∞∨

m=k+1
em, we have µ(1 − qk) ≤

∞∑
m=k+1

1
2m−1 = 1

2k−1 .

Consequently, qk ↑ 1, in particular, µ(Ω \ (
∞∪

k=1
Ek)) = 0. We set

a(ω) =





a1(ω) , ω ∈ E1 ,

ak(ω) , ω ∈ Ek \Ek−1 , k ≥ 2 ,

0, ω ∈ Ω \ (
∞∪

k=1
Ek) .

Clearly, a ∈ A and a(ω) = an(ω) for all ω ∈ Ek and n ≥ k. Consequently,
s(a − ak) ≤ 1 − qk, and so ρ(a, ak) ≤ 1

2k−1 , i.e., the subsequence {ak}k≥1

converge to a in (A, ρ). Hence, (A, ρ) is a complete metric space.
Consider in A the metric d(a, b) :=

∫
Ω |a − b|(1 + |a − b|)−1dµ, which

generates in A the topology of a convergence in measure. It is well known
that the set B of all function from A taking finitely many different values
is dense in (A, d). Let δ be a derivation from A to A. It follows now from
Proposition 2.3 (ii) that δ(b) = 0 for all b ∈ B. Therefore, if δ is continuous
with respect to the metric d, then δ(a) = 0 for all a ∈ A.

Example 2.6. Let M be a commutative AW ∗-algebra and let µ be a
strictly positive finite countably additive measure on the Boolean algebra of
all projections in M . Then M is a W ∗-algebra (see, for example, [8]) and
so, the algebra of all measurable operators L(M) may be identified with the
algebra S(Ω,Σ, µ) for the some measure space (Ω,Σ, µ) with a finite countably
additive measure [15]. Therefore, by the preceding example, the commutative
regular algebra L(M) (respectively, Lh(M)) is a complete metric space with
respect to the metric ρ(a, b) = µ(s(a−b)). We also note, that it further follows
from the preceding example that any continuous in topology of convergence
in measure derivation on L(M) vanishes.

Let A be a commutative unital regular algebra over the field K, and let
µ be a strictly positive countably additive measure on the Boolean algebra ∇
of all idempotents from A. Let us further assume that A is complete with re-
spect to the metric ρ(a, b) = µ(s(a− b)), a, b ∈ A. An element a ∈ A is called

finitely valued (respectively, countably valued), if a =
n∑

k=1

αkek, where αk ∈ K,

ek ∈ ∇, ek ej = 0, k 6= j, k, j = 1, . . . , n, n ∈ N (respectively, a =
ω∑

k=1

αkek,
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αk ∈ K, ek ∈ ∇, ek ej = 0, k 6= j, k, j = 1, . . . , ω, where ω is a natural num-
ber or ω = ∞ (in the latter case the convergence of series is understood with
respect to the metric ρ, see Proposition 2.7)). We denote by K(∇) (respec-
tively, Kc(∇)) the set of all finitely valued (respectively, countably valued) el-
ements in A. Clearly, ∇ ⊂ K(∇) ⊂ Kc(∇) and K(∇), Kc(∇) are subalgebras

in A. If a =
n∑

k=1

αkek ∈ K(∇) (respectively a =
ω∑

k=1

αkek ∈ Kc(∇)), then

s(a) = sup{ek : αk 6= 0} and i(a) =
∑

k:αk 6=0

α−1
k ek ∈ K(∇) (respectively,

i(a) ∈ Kc(∇)). Consequently, K(∇) and Kc(∇) are regular subalgebras in A.
Clearly, if the field K has characteristic zero, then K(∇) = Kc(∇) if and only
if ∇ is a finite Boolean algebra (in that case K(∇) = Kc(∇) = A).

The following proposition shows, in particular, that the algebra Kc(∇) is
always closed in (A, ρ).

Proposition 2.8. The closure K(∇) of the algebra K(∇) in (A, ρ) coin-
cides with Kc(∇).

Proof. Let a ∈ Kc(∇)�K(∇) be a countably valued but not finitely valued

element in A, i.e., a =
∞∑
i=1

αiei, where αi ∈ K, αi 6= αj , ei ∈ ∇, ei 6= 0,

ei ej = 0, i 6= j, i, j ≥ 1. Let us set an =
n∑

i=1
αiei. Then an ∈ K(∇),

ρ(an, a) ≤ µ(
∞∨

i=n+1
ei) =

∞∑
i=n+1

µ(ei) → 0 as n →∞. Consequently, a ∈ K(∇),

and therefore Kc(∇) ⊂ K(∇).
Suppose now that b ∈ K(∇). For any α ∈ K, we set

J(α) := {e ∈ ∇ : e ≤ s(b), be = αe} .

Clearly, J(α) is an ideal in the complete Boolean algebra ∇. We set further
fα = ∨J(α), and choose an increasing sequence {en}n≥1 ∈ J(α), so that
fα = sup

n≥1
en, in particular, ρ(en, fα) → 0 as n →∞. Clearly, fα ≤ s(b). Since

ρ(αen, αfα) → 0 and ρ(ben, bfα) → 0 as n → ∞ (see Proposition 2.6), and
since αen = ben, n = 1, 2, . . . , we have bfα = αfα. Consequently, fα ∈ J(α),
i.e., J(α) = fα∇. If α 6= β, α, β ∈ K, fα fβ = e 6= 0, then αe = eb = βe, which
is impossible. Consequently, fα fβ = 0 for any α, β ∈ K, α 6= β. Since the
Boolean algebra∇ has a countable type, the set {fα : α ∈ K, µ(fα) > 0} is at
most countable. We denote this set as {f1, f2, . . . , fn, . . . }, where bfn = αnfn,
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αn ∈ K, n = 1, 2, . . . . Let us further set

f =
∑

n≥1

fn , b1 =
∑

n≥1

αnfn , b2 = b− b1 .

Since

bf = ρ− lim
k→∞

b
k∑

n=1

fn = ρ− lim
k→∞

k∑

n=1

αnfn = b1 ,

we have b2 = (s(b)− f)b, s(b2) = s(b)− f .
We claim that f = s(b). If this is the case, then b = b1 ∈ Kc(∇) and

Proposition 2.8 is proved. Let us suppose that f < s(b) and work towards a
contradiction. For any α ∈ K, e ∈ ∇, 0 < e ≤ s(b) − f we then have that
b2e 6= αe. This implies that s(b2e − αe) = e. Indeed, s(b2e − αe) ≤ e, and
if it were that q := e − s(b2e − αe) 6= 0, then q(b2e − αe) = 0, and therefore
b2q = αq, but this is not the case. Let us now consider an arbitrary element

a =
k∑

n=1

βnpn ∈ K(∇)

such that s(a) ≤ s(b) − f , βn ∈ K, βn 6= 0, pn pj = 0, n 6= j, n, j = 1, . . . , k.
We shall show that for every such element a, the following estimate ρ(b2, a) =
µ(s(b)− f) > 0 holds. Indeed, from one hand, we have

s(b)−f ≥ s(b2−a) ≥ s(b2pn−apn) = s(b2pn−βnpn) = pn , n = 1, . . . , k ,

i.e., s(b2 − a) ≥
k∑

n=1
pn = s(a). On the other hand, from the equality (b2 −

a)(s(b)− f − s(a)) = b2(s(b)− f − s(a)), it follows that

s(b2 − a)(s(b)− f − s(a)) = s(b2)(s(b)− f)− s(b2)s(a) = s(b)− f − s(a) ,

i.e., s(b2−a) ≥ s(b)−f−s(a). Thus, s(b2−a) = s(b)−f , and this establishes
our claim. Now, we note that since b, b1 ∈ K(∇), we have b2 ∈ K(∇),
and therefore there exists a sequence an ∈ K(∇), which converges to b2 in
(A, ρ). Setting, cn = (s(b) − f)an, we see that cn ∈ K(∇), s(cn) ≤ s(b) − f ,
ρ(b2, cn) → 0. However, for every element cn, n = 1, 2, . . . , it follows from the
claim established above that ρ(b2, cn) = µ(s(b) − f) > 0. This contradiction
shows that f = s(b) and b = b1 ∈ Kc(∇).
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Suppose that Kc(∇) = A and let δ : A → A be an arbitrary derivation.
By Proposition 2.3 (ii), we have δ(a) = 0 for all a ∈ K(∇). Therefore, from
Proposition 2.6 (v) and Proposition 2.8, it follows that δ(a) = 0 for all a ∈
K(∇) = Kc(∇) = A, i.e., δ vanishes on A. Thus, non-trivial derivations may
exist only on those commutative regular algebras A, for which A 6= Kc(∇).
Such algebras are exemplified by the algebras L(M) and Lh(M), where M is a
commutative von Neumann algebra whose Boolean algebra of all projections
is not atomic and has a countable type. The latter assertion follows from the
following well-known result.

Proposition 2.9. If A = S(Ω, Σ, µ), where (Ω, Σ, µ) is a finite measure
space, then Kc(∇) = A if and only if ∇ is an atomic Boolean algebra.

We conclude from Proposition 2.8 and Proposition 2.9 that the closure
K(∇) of the subalgebra K(∇) in (S(Ω,Σ, µ), ρ) coincides with S(Ω, Σ, µ) if
and only if the Boolean algebra ∇ is atomic. In that case, as we noted above,
any derivation on S(Ω, Σ, µ) vanishes.

3. Construction of a non-zero derivation on a
commutative regular algebra

Everywhere in this section A is a commutative unital regular algebra over
the field K. We shall always assume below that the Boolean algebra ∇ of all
idempotents in A admits a finite strictly positive countably additive measure
µ such that A is complete with respect to the metric ρ defined by ρ(a, b) :=
µ(s(a− b)), a, b ∈ A.

In this section we complete the presentation of our main results; in par-
ticular, the construction of an extension of a derivation δ : B → A from
a subalgebra B ⊆ A to a derivation on A. This construction allows us to
present examples of non-zero derivations on the algebra S = S(Ω, Σ, µ) of
all measurable functions on a measure space (Ω, Σ, µ) such that the Boolean
algebra ∇ of all idempotents in S is not atomic.

In this section, the field K is assumed to have the characteristic zero (this
assumption is used in a crucial way in the proof of Proposition 3.4 below).

For a subalgebra B in A, we denote by B[x] the algebra of all polynomials

with coefficients from B, i.e., p ∈ B[x], if p(x) =
n∑

k=0

akx
n−k, where ak ∈ B,

k = 0, 1, . . . , n, n ∈ N, anx0 = an. The largest integer n − k, for which
ak 6= 0 is called the degree of the polynomial p(x) (notation: deg p). If 1 ∈ B
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and the leading coefficient of a polynomial p(x) is equal to 1, then p(x) is
called a unitary (monic ) polynomial. The following result is established in
[19, ch. 3, §14].

Proposition 3.1. (The division algorithm) If 1 ∈ B and p ∈ B[x] is
a unitary polynomial, if f ∈ B[x] and deg f ≥ deg p, then f = gp + r, where
g, r ∈ B[x], deg r < deg p.

Clearly, the algebra B[x] is naturally identified with a subalgebra in A[x],
and we shall use in the sequel the embedding B[x] ⊂ A[x] without any further
comment. We note that for any element a ∈ A, the set B(a) = {p(a) : p ∈
B[x]} is a subalgebra in A, which is generated by B and the element a. Clearly,
B ⊂ B(a), and if a ∈ B, then B = B(a).

We shall first work with derivations ` : B[x] → A[x], i.e., with linear maps
from B[x] to A[x] such that `(pg) = `(p)g + p`(g) for any p, g ∈ B[x].

Let δ : B → A be a derivation. For any p(x) =
(

n∑
k=0

akx
n−k

)
∈ B[x], we

set

p′(x) =
n−1∑

k=0

(n− k)akx
n−k−1, pδ(x) =

n∑

k=0

δ(ak)xn−k .

It is easy to verify the following assertion. We omit the details.

Proposition 3.2. The maps p → p′, p → pδ are derivations from B[x]
to A[x].

Let B be a unital subalgebra in A. An element a ∈ A is said to be
– algebraic with respect to B, if there exists a non-zero polynomial p ∈ B[x],
such that p(a) = 0;
– integral with respect to B, if there exists a unitary polynomial p ∈ B[x],
such that p(a) = 0;
– transcendental with respect to B, if a is not algebraic over B;
– weakly transcendental with respect to B, if a 6= 0, and for any non-zero
idempotent e ≤ s(a) the element ea is not integral with respect to B.

It is clear that an integral element with respect to B is algebraic with
respect to B. Moreover, if ∇ ⊂ B, then any non-zero element a ∈ A, such
that s(a) < 1 is also algebraic with respect to B, since for the polynomial
q(x) = (1 − s(a))x ∈ B[x] we have q(a) = 0. In particular, this implies that
any transcendental element c with respect to B ⊃ ∇ has the support s(c) = 1.

The example that follows shows that that there may be algebraic elements
(with respect to B), which are not integral.
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Example 3.1. Let A = S([0, 1], λ), where as before λ is Lebesgue mea-
sure on the segment [0, 1], and let B be the subalgebra in A, generated by the
Boolean algebra of all idempotents in A and by the subalgebra of all poly-
nomials from A. Consider the idempotent e in A, corresponding to the set
[0, 1/2], and set a := ec + (1 − e)d, where c = c(t) = t1/2, d = d(t) = exp(t),
t ∈ [0, 1]. Then, q(a) = 0 for the polynomial q(x) = (ex2 − eb) ∈ B[x], where
b ∈ B, b(t) ≡ t, i.e., a is an algebraic element with respect to B. However, a is
not an integral element with respect to B, since for every unitary polynomial
p(x) ∈ B[x], we have p(a) 6= 0.

We note further, that the element a1 := (1− e)d has the support s(a1) =
(1−e) < 1 and this easily implies that a1 is an algebraic element with respect
to B. At the same time, it is easy to see that for every non-zero idempotent
g ≤ s(a1), the element ga1 = gd is not an integral element with respect to B.
Thus, the element a1 is simultaneously an algebraic and weakly transcendental
element with respect to B.

It is important to point out, that if a is a transcendental element with
respect to B and ∇ ⊂ B, then a is necessarily also weakly transcendental with
respect to B. Indeed, if it were not so, then there exists a non-zero idempotent
e, such that e ≤ s(a) and such that ea is an integral element with respect to B,
i.e., there exists a unitary polynomial p(x) = (xn + a1x

n−1 + · · ·+ an) ∈ B[x]
such that 0 = p(ea) = ean + ea1a

n−1 + · · ·+an. Since ∇ ⊂ B, this means that
a is an algebraic with respect to B and this is not the case.

Assume that B ⊆ A is a regular subalgebra such that ∇ ⊂ B. Our first
objective in this section is to build an extension of a derivation δ : B → A to
a derivation δ1 : B(a) → A, where a is an integral element with respect to B.
To this end we shall require several technical results whose necessity may be
explained as follows.

Assume for a moment, that we have already built a derivation δ1 : B(a) →
A extending δ : B → A. Then, for every polynomial g(x) =

n∑
k=0

akx
n−k ∈ B[x]

we have

δ1(g(a)) = δ1

(
n∑

k=0

aka
n−k

)

=
n∑

k=0

(δ(ak)an−k + (n− k)aka
n−k−1δ1(a)) = gδ(a) + g′(a)δ1(a) .
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Let p be a unitary polynomial in B[x] for which p(a) = 0. Then,

0 = δ1(p(a)) = pδ(a) + p′(a)δ1(a) .

Suppose, we are given that

p′(a)i(p′(a)) = s(p′(a)) ≥ s(δ1(a)) .

Then,

δ1(a) = s(p′(a))δ1(a) = p′(a)i(p′(a))δ1(a) = −pδ(a)i(p′(a)) ,

and so the derivation δ1 has to be of the form

δ1(g(a)) = gδ(a)− g′(a)pδ(a)i(p′(a)) .

In order to (correctly) define such a mapping from B(a) into A some extra
technical work is required. It should be noted, that in special cases whenA is a
field (respectively, a unital integral domain) and the element a is an algebraic
with respect to B, a similar approach to the extension of δ onto the subalgebra
B(a) has been given in [19, Ch. 10, §76] (respectively, [7, §1.8]). However,
in our situation, when A is a commutative regular algebra the proof of the
inequality s(p′(a)) ≥ s(δ1(a)) and hence that of the existence of δ1(g(a)) =
gδ(a)−g′(a)pδ(a)i(p′(a)) requires extra efforts, even in the (seemingly) simpler
case when a is an integral element with respect to B. The technical details
of our approach are entirely different from those of [19] and [7] and based
on a crucial use of the internal algebraic structure of a commutative regular
algebra.

Let µ be a finite strictly positive countably additive measure on the
Boolean algebra ∇ of all idempotents in A, let ρ(a, b) = µ(s(a − b)), and
suppose that (A, ρ) be a complete metric space.

Proposition 3.3. Suppose that B is a regular subalgebra in A, closed in
(A, ρ) such that ∇ ⊂ B. If 0 6= a ∈ A is an integral element with respect to
B, then there exist natural numbers n1 < n2 < · · · < nm and pairwise disjoint
idempotents `1, . . . , `m ∈ ∇, such that

(i) s(a) =
m∑

k=1

`k;

(ii) for every non-zero idempotent e ≤ `k the minimal degree of a unitary
polynomial g ∈ B[x], for which g(ae) = 0 is nk, k = 1, . . . , m.
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Proof. Let p(x) = xn +a1x
n−1 + · · ·+an−1x+an be a unitary polynomial

from B[x], for which p(a) = 0. Then qe(ae) = ep(a) = 0 for every e ∈ ∇,
where qe(x) = xn + ea1x

n−1 + · · ·+ean−1x+ean is a unitary polynomial from
B[x]. Consequently, for e ∈ ∇, e 6= 0, e ≤ s(a) we may define the number

d(e) := min {deg(g) : g ∈ B[x] is a unitary polynomial such that g(ae) = 0} ,

which clearly does not exceed n. Let 0 < e1 ≤ e2 ≤ s(a), e1, e2 ∈ ∇, and
let g(x) = xm + b1x

m−1 + · · · + bm−1x + bm be a unitary polynomial from
B[x], for which g(ae2) = 0. Then f(x) = xm + e1g(x) − e1x

m is also a
unitary polynomial from B[x], deg g = deg f such that f(ae1) = e1g(ae1) =
e1e2g(ae1) = e1g(ae2) = 0. This shows that d(e1) ≤ d(e2).

Let n1 := min{d(e) : e ∈ ∇, e 6= 0, e ≤ s(a)}, J1 := {e ∈ ∇ : d(e) =
n1, e ≤ s(a)}∪{0}. We shall show that J1 is an ideal in∇. If 0 < e1 ≤ e2 ∈ J1,
then n1 ≤ d(e1) ≤ d(e2) = n1, i.e., d(e1) = n1 and e1 ∈ J1. Let e1, e2 ∈ J1,
e1e2 = 0. Choose unitary polynomials g1, g2 ∈ B[x] of degree n1, for which
g1(ae1) = 0 = g2(ae2). Set

f1(x) = g1(x)− xn1 , f2(x) = g2(x)− xn1 ,

and

q1(x) = e1f1(x) , q2(x) = e2f2(x) , r(x) = xn1 + q1(x) + q2(x) .

It follows from the definition that r(x) is a unitary polynomial from B[x],
deg r = n1 and that r(a(e1 + e2)) = e1a

n1 + e2a
n1 + q1(ae1) + q2(ae2) =

e1a
n1 + e2a

n1 + e1f1(ae1) + e2f2(ae2) = e1g1(ae1) + e2g2(ae2) = 0. This
implies that (e1 + e2) ∈ J1. If e1, e2 ∈ J1 and e1e2 6= 0, then (e1 − e1e2) ∈ J1,
and e1 ∨ e2 = (e1 − e1e2) + e2 ∈ J1. Thus, J1 is an ideal in ∇.

We set `1 := sup {e : e ∈ J1} and claim that `1 ∈ J1. Since ∇ is a
complete Boolean algebra of a countable type (see Proposition 2.7), there
exists an increasing sequence en ∈ J1, such that en ↑ `1. Setting t1 = e1,
tn = en − en−1, n > 1, we see that tn ∈ J1, tntm = 0, n 6= m, n,m = 1, 2, . . . ,
`1 =

∞∨
n=1

tn. Next, pick unitary polynomials gn ∈ B[x] of degree n1, for which

gn(atn) = 0, n = 1, 2, . . . , and set

fn(x) = gn(x)− xn1 , qn(x) = tnfn(x) .

It follows from the assumptions above that deg qn ≤ n1 − 1, and that the
supports of all coefficients of the polynomial qn(x) belong to the Boolean
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algebra tn∇, i.e., qn(x) =
n1−1∑
k=0

b
(n)
k xn1−k−1, where b

(n)
k ∈ B, s(b(n)

k ) ≤ tn, for all

k = 0, 1, . . . , n1−1. Consequently, by Proposition 2.7 and since B is closed, the

series
∞∑

n=1
b
(n)
k composed from the coefficients of polynomials qn accompanying

k’th powers converges in B in the metric ρ for every k = 1, 2, . . . , n1 − 1. Set

bk :=
∞∑

n=1

b
(n)
k , q(x) =

n1−1∑

k=0

bkx
n1−k−1 ∈ B[x] .

Clearly, the polynomial r(x) = xn + q(x) is a unitary polynomial from B[x]

with deg r = n1, and such that r(a`1) = `1a
n1 + q(a`1) =

∞∑
n=1

tnan1 +
∞∑

n=1
qn(atn) =

∞∑
n=1

(tnan1 + qn(atn)) =
∞∑

n=1
tngn(atn) = 0. Thus, `1 ∈ J1 and so

J1 = `1∇. If `1 = s(a), then the proof of Proposition 3.3 is completed.
Let us assume now that `1 6= s(a). It follows from the definition of J1,

that for any non-zero idempotent ∇ 3 e ≤ s(a), e`1 = 0, we have d(e) > n1.
We set, n2 = min{d(e) : e ∈ ∇, e 6= 0, e ≤ s(a)− `1}, J2 = {e ∈ ∇ : d(e) =
n2, e ≤ s(a)− `1}∪ {0}. Clearly, n2 > n1. Repeating the previous argument,
we obtain that J2 is an ideal in ∇, `2 = ∨{e : e ∈ J2} ∈ J2 and J2 = `2∇.
If `1 + `2 = s(a), then the construction of the numbers {ni} and that of the
idempotents {ei} is completed. Otherwise, we continue this process until we
have `1 + · · · + `m = s(a). Since n1 < n2 < · · · < nm ≤ n, it is guaranteed
that this process of defining of {ni} and {`i} necessarily terminates for some
natural number m.

Proposition 3.4. Let a, {nk}m
k=1, {`k}m

k=1 be the same as in Proposition
3.3, and in addition a /∈ B. Let gk ∈ B[x] be a unitary polynomial with

deg gk = nk, gk(a`k) = 0, k = 1, 2, . . . , m. Setting pa(x) := xnm +
m∑

k=1

(gk(x)−
xnk)xnm−nk`k, we have

s(g′k(a`k)) ≥ `k , pa(a) = 0 , s(p′a(a)) ≥ s(a) .

Proof. Note, that it follows from the definition that the polynomial pa is
unitary. Since gk(x) = xnk + a1x

nk−1 + · · ·+ ank
, we have

g′k(x) = nkx
nk−1 + (nk − 1)a1x

nk−2 + · · ·+ ank−1 .
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If n1 = 1, then g′1(x) = 1 and s(g′1(a`1)) = 1 ≥ `1. Suppose that n1 >
1. It follows that nk > 1 for all k = 1, . . . , m and, since the field K has
characteristic zero, the polynomial

qk(x) = n−1
k g′k(x)

is a unitary polynomial with deg qk = nk−1, for which s(qk(a`k)) = s(g′k(a`k)).
If

(1− s(qk(a`k)))`k := e 6= 0 ,

then

0 = qk(a`k)e = (ae)nk−1 + (nk − 1)n−1
k a1(ae)nk−2 + · · ·+ n−1

k ank−1e ,

and therefore d(e) ≤ nk−1 (see the definition of the function d in the proof of
Proposition 3.3), which contradicts Proposition 3.3 (ii). Consequently, e = 0,
and therefore

s(g′k(a`k)) ≥ `k , k = 1, . . . , m .

Further, since s(a) =
m∑

k=1

`k (Proposition 3.3 (i)), we have

pa(x) = xnm +
m∑

k=1

`kgk(x)xnm−nk −
m∑

k=1

`kx
nm

= xnm +
m∑

k=1

`kgk(x`k)xnm−nk − s(a)xnm

= xnm(1− s(a)) +
m∑

k=1

`kgk(x`k)xnm−nk

and

p′a(x) = nm(1− s(a))xnm−1 +
m−1∑

k=1

(nm − nk)xnm−nk−1`kgk(x)

+
m−1∑

k=1

`kg
′
k(x)xnm−nk + `mg′m(x) .

Substituting a in the formulae above, we obtain pa(a) = 0 and

p′a(a) =
m∑

k=1

g′k(a`k)(a`k)nm−nk`k .
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It follows that s(p′a(a)) ≤
m∑

k=1

`k = s(a) and also that

p′a(a)`k = g′k(a`k)(a`k)nm−nk`k , ∀ k = 1, . . . ,m .

Combining this fact with the inequality (see above) s(g′k(a`k)) ≥ `k, we get

s(p′a(a)`k) = `k , ∀ k = 1, . . . , m ,

whence s(p′a(a)) ≥ `k for all k = 1, . . . , m, which further implies s(p′a(a)) ≥
m∑

k=1

`k = s(a). Thus, s(p′a(a)) ≥ s(a).

Proposition 3.5. Let a, pa(x) be the same as in Proposition 3.4, let
g ∈ B[x], g(a) = 0, and let δ : B → A be a derivation. Then gδ(a) −
g′(a)pδ

a(a)i(p′a(a)) = 0.

Proof. Let g(x) =
n∑

k=0

akx
n−k, ak ∈ B and set

u(x) = s(a)g(x) , v(x) = (1− s(a))g(x) .

Clearly, g(x) = u(x) + v(x). Since

v′(x) = (1− s(a))
n−1∑

k=0

(n− k)akx
n−k−1 , vδ(x) = (1− s(a))

n∑

k=0

δ(ak)xn−k ,

we have v′(a) = an−1(1 − s(a)), vδ(a) = δ(an)(1 − s(a)). Appealing now to
the equalities s(i(p′a(a))) = s(p′a(a)) = s(a) (see Proposition 3.4), we obtain

vδ(a)− v′(a)pδ
a(a)i(p′a(a)) = δ(an)(1− s(a))

− an−1(1− s(a))pδ
a(a)i(p′a(a))s(a)

= δ(an(1− s(a))) .

Since g(a) = 0, we have an(1 − s(a)) = g(a)(1 − s(a)) = 0 and we further
obtain

vδ(a)− v′(a)pδ
a(a)i(p′(a)) = 0 .

Therefore

gδ − g′(a)pδ
a(a)i(p′a(a)) = uδ(a)− u′(a)pδ

a(a)i(p′a(a)) . (1)
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Let {`k}m
k=1, {nk}m

k=1, {gk}m
k=1 be the same as in the assertion of Proposi-

tion 3.4. Set
uk(x) = `ku(x) , k = 1, . . . , m .

Since s(a) =
m∑

k=1

`k, we have u(x) =
m∑

k=1

uk(x). By Proposition 3.1, there exist

polynomials fk(x), rk(x) ∈ B[x], such that

uk(x) = fk(x)gk(x) + rk(x) , deg rk < deg gk = nk , k = 1, . . . , m .

Since uk(x) = `kuk(x), we may (and shall) assume that the supports of all
coefficients of the polynomials fk(x) and rk(x) belong to `k∇. Further, from
the equalities

gk(a`k) = 0 , uk(a) = `ku(a) = `ks(a)g(a) = 0 ,

and

uk(a`k) = `kg(a`k) = `k(g(a)`k + g(0)(1− `k)) = `kg(a) = 0 ,

it follows that

rk(a`k) = uk(a`k)− fk(a`k)gk(a`k) = 0 , k = 1, . . . , m .

We claim that, in fact, rk(x) ≡ 0, i.e., all coefficients of the polynomial

rk(x) vanish, k = 1, . . . , m. Let rk(x) =
t∑

j=0
bjx

t−j , b0 6= 0, t ∈ N. Consider

the unitary polynomial f(x) = xt + i(b0)(b1x
t−1 + · · · + bt−1x + bt). Since

s(b0) = b0i(b0), s(bj) ≤ `k, j = 0, 1, . . . , t, we have

f(as(b0)) = ats(b0) + i(b0)(b1(as(b0))t−1 + · · ·+ bt(as(b0)) + bt)

= i(b0)
t∑

j=0

bj(as(b0))t−j = i(b0)
t∑

j=0

`kbj(as(b0))t−j

= i(b0)
t∑

j=0

bj(a`k)t−j = i(b0)rk(a`k) = 0 .

Since deg f = deg rk = t < nk, this means that d(s(b0)) < nk, which (together
with the inequality s(b0) ≤ `k) contradicts Proposition 3.3 (ii). Consequently,
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rk(x) ≡ 0, and therefore uk(x) = fk(x)gk(x), k = 1, . . . , m. Hence (see
Proposition 3.2)

u′k(x) = f ′k(x)gk(x) + fk(x)g′k(x) ,

uδ
k(x) = f δ

k (x)gk(x) + fk(x)gδ
k(x) .

Since, by the assumption, g(a) = 0, we deduce from the above that

u′k(a`k) = fk(a`k)g′k(a`k) , uδ
k(a`k) = fk(a`k)gδ

k(a`k) ,

and further, appealing to the inequalities (which follow from Proposition 3.4
and the assumptions on fk’s and rk’s)

s(g′k(a`k)) ≥ `k , s(fk(a`k)) ≤ `k ,

that
s(u′k(a`k)) ≤ `k , s(uδ

k(a`k)) ≤ `k . (2)

We use the relations above to show that

uδ
k(a`k)− u′k(a`k)gδ

k(a`k)i(g′k(a`k)) = 0 . (3)

Indeed, the equality uδ
k(a`k) = fk(a`k)gδ

k(a`k) together with

u′k(a`k)gδ
k(a`k)i(g′k(a`k)) = fk(a`k)g′k(a`k)gδ

k(a`k)i(g′k(a`k))

= fk(a`k)s(fk(a`k))`kg
δ
k(a`k)s(g′k(a`k)

= fk(a`k)gδ
k(a`k)`k

show that (3) holds. Since uk(x) = `ku(x) = `k(u(x) + v(x)) = `kg(x) and
s(a) =

∑m
k=1 `k, we get

m∑

k=1

uk(a`k) =

(
m∑

k=1

a0`k

)
an + · · ·+

(
m∑

k=1

an−1`k

)
a

+
m∑

k=1

an`k = s(a)g(a) = u(a) ; (4)

m∑

k=1

uδ
k(a`k) =

(
m∑

k=1

δ(a0)`k

)
an + . . .

+

(
m∑

k=1

δ(an−1)`k

)
a +

m∑

k=1

δ(an)`k = uδ(a) ; (5)
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m∑

i=k

u′(a`k) = n

(
m∑

k=1

a0`k

)
an−1 + . . .

+
m∑

k=1

an−1`k = s(a)g′(a) = u′(a) . (6)

Further, for

pa(x) = xnm +
m∑

k=1

(gk(x)− xnk)xnm−nk`k

= xnm +
m∑

k=1

(gk(x)xnm−nk`k − xnm`k) ,

we have pδ
a(x) =

m∑
i=k

gδ
k(x)xnm−nk`k and obviously, pδ

a(a) =
n∑

k=1

gδ
k(a)anm−nk`k,

i.e.,
pδ

a(a)`k = gδ
k(a)anm−nk`k .

Since gk(a`k) = 0, we have 0 = gk(a`k)`k+gk(0)(1−`k), i.e., gk(0)(1−`k) = 0,
and therefore gk(x)`k = gk(`kx). This implies that gδ

k(a)`k = gδ
k(a`k) and thus

pδ
a(a)`k = gδ

k(a`k)anm−nk .

It is shown, in the proof of Proposition 3.4 that

p′a(a)`k = g′k(a`k)(a`k)nm−nk`k .

Consequently,

pδ
a(a)i(p′a(a))`k = gδ

k(a`k)anm−nki(g′k(a`k))i(a)nm−nk`k

= gδ
k(a`k)i(g′(a`k))s(a)`k = gδ

k(a`k)i(g′k(a`k))`k . (7)

Now, taking into account that s(p′a(a)) = s(a) =
m∑

k=1

`k, s(u(a)) ≤ s(a), we

deduce from (2)–(7) that

uδ(a)− u′(a)pδ
a(a)i(p′a(a)) =

m∑

k=1

(uδ(a)− u′(a)pδ
a(a)i(p′a(a)))`k

=
m∑

k=1

(uδ
k(a`k)− u′k(a`k)gδ

k(a`k)i(g′k(a`k))) = 0 ,

which together with (1) completes the proof of Proposition 3.5.
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We have now prepared all necessary technical tools to accomplish the
fourth step in our extension programme. In the next proposition we build
the extension of a derivation δ : B → A onto the subalgebra B(a) for an
integral element a with respect to B.

Proposition 3.6. Let B ⊆ A be a regular ρ-closed subalgebra, such that
B ⊃ ∇, and let δ : B → A be a derivation. If a is an integral element with
respect to B, then there exists a unique derivation δ1 : B(a) → A, such that
δ1(b) = δ(b) for all b ∈ B.

Proof. Let f, p ∈ B[x] be such that f(a) = p(a) and set g(x) := f(x)−p(x).
Then g ∈ B[x], g(a) = 0, and therefore by Proposition 3.5, we have

gδ(a)− g′(a)pδ
a(a)i(p′a(a)) = 0 .

Since gδ(a) = f δ(a)− pδ(a), g′(a) = f ′(a)− p′(a), we get

f δ(a)− f ′(a)pδ
a(a)i(p′a(a)) = pδ(a)− p′(a)pδ

a(a)i(p′a(a)) .

Consequently, for any f(a) ∈ B(a), f ∈ B[x], the map

δ1(f(a)) = f δ(a)− f ′(a)pδ
a(a)i(p′a(a))

is well-defined. Since the maps f → f ′, f → f δ are derivations (see Proposi-
tion 3.2), the map δ1 : B(a) → A is also a derivation. If b ∈ B, f(x) ≡ b, then
f ′(x) ≡ 0, f δ(x) = δ(b), f(a) = b, and therefore f ′(a) = 0, f δ(a) = δ(b), i.e.,
δ1(b) = δ1(f(a)) = δ(b).

Suppose now that δ2 : B(a) → A is a derivation, such that δ2(b) = δ(b) for

all b ∈ B. For any f(x) =
n∑

k=0

akx
n−k ∈ B[x], we have that

δ2(f(a)) = δ2

(
n∑

k=0

aka
n−k

)
=

n∑

k=0

δ2(ak)an−k +
n−1∑

k=0

(n− k)aka
n−k−1δ2(a)

=
n∑

k=0

δ(ak)an−k + f ′(a)δ2(a) = f δ(a) + f ′(a)δ2(a) .

Since pa(a) = 0, it follows 0 = δ2(pa(a)) = pδ
a(a)+p′a(a)δ2(a). Multiplying the

latter equality by i(p′a(a)) and using the equality s(p′a(a)) = s(a) established
in Proposition 3.4, we obtain

−pδ
a(a)i(p′a(a)) = p′a(a)i(p′a(a))δ2(a) = s(a)δ2(a) = δ2(s(a)a) = δ2(a) .
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On the other hand, for f(x) = x ∈ B[x] we have f(a) = a, f δ(a) = 0,
f ′(a) = 1, and therefore

δ1(a) = δ1(f(a)) = −pδ
a(a)i(p′a(a)) = δ2(a) .

Consequently, for any f(x) ∈ B[x], we have

δ2(f(a)) = f δ(a) + f ′(a)δ2(a) = f δ(a) + f ′(a)δ1(a) = δ1(f(a)) ,

i.e., δ2 = δ1.

We have arrived at the penultimate step in our programme of extending a
derivation δ : B → A onto A: the extension of δ onto a subalgebra of A which
itself is an extension of B by a non-integral element with respect to B. It is
important to observe that a non-integral element a with respect to B is not
necessarily transcendental (see Example 3.1), so we are not in a position to
apply Theorem 1.8.16 from [7], in which the extension of δ on B(a) is presented
for the case when a is transcendental with respect to B. Our approach here
is based on the (new) notion of a weakly transcendental element introduced
at the beginning of the present section.

Proposition 3.7. Let B be a regular subalgebra in A such that ∇ ⊂ B
and let δ : B → A be a derivation. If a ∈ A is a weakly transcendental element
with respect to B, then for every c ∈ A, such that s(c) ≤ s(a), there exist
a unique derivation δ1 : B(a) → A, such that δ1(b) = δ(b) for all b ∈ B and
δ1(a) = c.

Proof. Let
n∑

j=0
ajx

n−j := g(x) ∈ B[x] be such that g(a) = 0. We shall show

that gδ(a) = 0 and g′(a)s(a) = 0. Since s(a0) = a0i(a0), we have

0 = i(a0)g(a) = i(a0)
n∑

j=0

aja
n−i = s(a0)an + a1i(a0)an−1 + · · ·+ i(a0)an

= (s(a0)a)n + a1i(a0)(s(a0)a)n−1 + · · ·+ i(a0)an .

Since a is a weakly transcendental element with respect to B, i(a0)aj ∈ B,
j = 1, . . . , n, and since s(a0)s(a) ≤ s(a), we derive that s(a0)a = 0. It follows,
that a0a

n = 0 and so g1(a) = 0, where

g1(x) :=
n∑

j=1

ajx
n−j ∈ B[x] .
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Repeating the preceding argument n times, we see that

s(aj)a = 0 , j = 0, 1, . . . , n− 1 , an = 0 .

Consequently, δ(aj)an−j = δ(aj)s(aj)an−j = 0, j = 0, . . . , n − 1, δ(an) = 0,
hence

gδ(a) = 0 , g′(a)s(a) =
n−1∑

j=0

(n− j)aja
n−j−1s(a) = 0 .

We now define the map δ1 : B(a) → A, by setting

δ1(f(a)) := f δ(a) + f ′(a)c , ∀ f ∈ B[x] .

If f, p ∈ B[x] are such that f(a) = p(a), then setting g = f − p, we have
g ∈ B[x], g(a) = 0, and, by the previous argument,

f δ(a) = pδ(a) , f ′(a)s(a) = p′(a)s(a) .

Since s(c) ≤ s(a), it follows f ′(a)c = p′(a)c. This shows that the map δ1

is defined correctly. Since the maps f → f ′, f → f δ are derivations (see
Proposition 3.2), the map δ1 : B(a) → A is also a derivation such that δ1(b) =
δ(b) for all b ∈ B (see the proof of Proposition 3.6). If f(x) = x, then f(a) = a,
f ′(a) = 1, f δ(a) = 0, i.e., δ1(a) = c.

Let δ2 : B(a) → A be a derivation, for which δ2(b) = δ(b) for all b ∈ B and
δ2(a) = c. Then, for any f ∈ B[x] we have (see the proof of Proposition 3.6)

δ2(f(a)) = f δ(a) + f ′(a)δ2(a) = f δ(a) + f ′(a)c = δ1(f(a)) ,

i.e., δ1 = δ2.

The following theorem is our first main result. It provides sufficient con-
ditions for a derivation initially defined on a subalgebra of a commutative
regular algebra to have an extension to the algebra.

Theorem 3.1. Let B be a subalgebra of a commutative unital regular
algebra A over a field K of characteristic zero with finite strictly positive
countable-additive measure µ on the Boolean algebra ∇ of all idempotents
in A, and let ρ(a, b) = µ(s(a − b)), a, b ∈ A. If the metric space (A, ρ)
is complete, then for any derivation δ : B → A for which s(δ(b)) ≤ s(b)
for all b ∈ B there exists a derivation δ0 : A → A, such that δ0(b) = δ(b)
for all b ∈ B.
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Proof. Thanks to Proposition 3.6 and Proposition 3.7, the proof of the
theorem may be realized via a standard scheme involving the Zorn’s lemma
(see, for example, [7, §1.8]). Indeed, consider the set X of all pairs (Aα, δα),
where Aα is a subalgebra in (A, ρ), B ⊂ Aα and δα : Aα → A is a derivation,
satisfying δα(b) = δ(b) for all b ∈ B and s(δα(a)) ≤ s(a) for all a ∈ Aα. The set
X is not empty, since (B, δ) ∈ X. We define the partial order relation on X,
by setting (Aα1 , δα1) ≤ (Aα2 , δα2), if and only if Aα1 ⊂ Aα2 , δα2(a) = δα1(a)
for all a ∈ Aα1 . Let Y := {(Ai, δi)}i∈I be an arbitrary linearly ordered subset
from X. Set AI = ∪

i∈I
Ai. Clearly, AI is a subalgebra in A, B ⊂ AI , and

the derivation δI : AI → A, given by δI(a) = δi(a) for all a ∈ Ai, i ∈ I is
well-defined and is such that s(δI(a) ≤ s(a) for all a ∈ AI . This implies that
(AI , δI) ∈ X and (Ai, δi) ≤ (AI , δI) for any i ∈ I.

According to the Zorn’s lemma, there exists a maximal element (A0, δ0) ∈
X. By the propositions 2.4, 2.5 and 2.6, we have that ∇ ⊂ A0, that the
algebra A0 is regular and closed in (A, ρ), and it follows from the assumption
on A0 and Proposition 3.6, that every integral element with respect to A0 in
fact belongs to A0. Suppose that A0 6= A and select a ∈ A, a 6∈ A0. The
set J = {e ∈ ∇ : e ≤ s(a), e a ∈ A0} is an ideal in the complete Boolean
algebra ∇. Set e0 = ∨J and select an increasing sequence {en}n≥1 ⊆ J so

that e0 =
∞∨

n=1
en, in particular, ρ(en, e0) → 0 for n → ∞. Then e0 ≤ s(a),

ena ∈ A0 and ρ(ena, e0a) → 0 (Proposition 2.6 (iii)). Since A0 = A0, we have
e0a ∈ A0. This implies that e0 ∈ J . Consider the element c := (1 − e0)a.
Since a = c + e0a 6∈ A0, we have c 6∈ A0. We shall show that c is a weakly
transcendental element with respect to A0. If this is not the case, then there
exists a non-zero idempotent e ≤ s(c) = (1 − e0)s(a), such that ec is an
integral element with respect to A0. It follows, ea = ec ∈ A0, and therefore
e ∈ J , i.e., e ≤ (1 − e0)e0 = 0. This contradiction shows that c is a weakly
transcendental element with respect to A0. According to Proposition 3.7, the
derivation δ0 can be extended to the derivation δ3 living on the subalgebra
A3 in (A, ρ) such that A0 ⊂ A3, c ∈ A3. This implies that (A3, δ3) ∈ X
and (A0, δ0) ≤ (A3, δ3), A0 6= A3, which contradicts to the maximality of the
element (A0, δ0) in X. Consequently, A0 = A, and this completes the proof
of Theorem 3.1.

Remark 3.1. Let S be an algebra of all (classes of) measurable functions
on the interval ([a, b], λ) (as before, λ is the linear Lebesgue measure), let
P [a, b] be the subalgebra of all polynomials in S, and let δ(p) = p′ be the
standard derivation on P [a, b]. Since s(p) = 1 for any p ∈ P [a, b], p 6= 0,
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it follows from Theorem 3.1 that there exists a derivation δ : S → S, such
that δ(p) = p′ for all p ∈ P [a, b]. In particular, this implies that there exists
a non-zero derivation from L∞([a, b], λ) to S. In this connection, we recall
that are no non-zero derivations from L∞(Ω, Σ, µ) → L∞(Ω,Σ, µ) (see, for
example, [13]).

We shall now describe the class of commutative regular algebras which
admit a non-zero derivation. Let A,K,∇, µ, ρ be the same as in the assump-
tions of Theorem 3.1. Denote by Kc(∇) the subalgebra of all countably-valued
elements in A.

Proposition 3.8. If K is an algebraically closed field of characteristic
zero, and a ∈ A is an integral element with respect to Kc(∇), then a ∈ Kc(∇).

Proof. Since a is an integral element with respect to Kc(∇), we have p(a) =
0 for the some polynomial p(x) = xn + a1x

n−1 + · · ·+ an ∈ Kc(∇)[x]. Every

coefficient ak has a representation as a convergent series ak =
∞∑

j=1
α

(k)
j e

(k)
j ,

where α
(k)
j ∈ K, e

(k)
j ∈ ∇, e

(k)
i e

(k)
j = 0, i 6= j, i, j = 1, 2, . . . , k = 1, . . . , n.

Without loss of generality, we may (and shall) assume that
∞∑

j=1
e
(k)
j = 1 for all

k = 1, . . . , n. Consider the atomic Boolean subalgebra ∇0 of ∇, generated by
the elements e

(k)
j , k = 1, . . . , n, j = 1, 2, . . . . Atoms in ∇0 are the elements of

the form

e = e
(1)
j1

e
(2)
j2

. . . e
(n)
jn

, e 6= 0 , jk ≥ 1 , k = 1, 2, . . . , n .

For any such atom, we have that

(ea)n + α
(1)
j1

(ea)n−1 + α
(2)
j2

(ea)n−2 + · · ·+ α
(n)
jn

e = 0 .

Since K is an algebraically closed field, we have (see, for example, [19, ch. 10,
§72]) that

q(x) = xn +
n∑

k=1

α
(k)
jk

xn−k = (x− β1) . . . (x− βn)

for some βk ∈ K, k = 1, . . . , n. It follows,

0 = eq(ea) = (ea− β1e) . . . (ea− βne) .

Hence s(ea− β1e) . . . s(ea− βne) = 0, and therefore 1 =
n∨

k=1
(1− s(ea− βke)).
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Since s(ea − βke) ≤ e, k = 1, . . . , n, it follows e =
n∨

k=1
(e − s(ea − βke)).

Pick pairwise disjoint elements f1, f2, . . . , fn ∈ ∇ so that e =
n∨

k=1
fk and

fk ≤ e− s(ea− βke) for all k = 1, . . . , n. Then,

afk = afk(e− s(ea− βke)) = fk(ae− as(ea− βke))

= fk(ae− (ae− βke)s(ae− βke)− βks(ae− βke))

= fk(ae− ae + βke− βks(ae− βke)) = βkfk − βkfks(ae− βke) .

This implies that ae =
n∑

k=1

afk ∈ Kc(∇) for any atom e ∈ ∇0. Since 1 =

ρ −
∞∑
i=1

qi (the series converges in (A, ρ)), where {qi} are atoms from ∇0, we

obtain a = ρ −
∞∑
i=1

aqi. From here and from Proposition 2.8, it follows that

a ∈ Kc(∇).

The following theorem is our second main result. It provides necessary
and sufficient conditions for a wide class of commutative regular algebras to
have a non-zero derivation.

Theorem 3.2. Let A be a commutative unital regular algebra over an
algebraically closed field K of characteristic zero, let µ be a finite strictly pos-
itive countably additive measure on the Boolean algebra ∇ of all idempotents
in A and let A be complete in the metric ρ(a, b) = µ(s(a−b)), a, b ∈ A. There
are the non-zero derivations on A if and only if Kc(∇) 6= A.

Proof. If Kc(∇) = A, then the fact that every derivation on A vanishes is
already established in Section 2.

Let Kc(∇) 6= A. Since Kc(∇) contains all integral elements with respect to
Kc(∇) (see Proposition 3.8), we may repeat the proof of Theorem 3.1 replacing
A0 with Kc(∇), obtaining that there exists a weakly transcendental element
c ∈ A over Kc(∇). By Proposition 3.7, there exists a non-zero derivation
δ1 : Kc(∇)(c) → A, such that δ1(c) = c 6= 0, δ1(a) = 0 for all a ∈ Kc(∇).
Since ∇ ⊂ Kc(∇) ⊂ Kc(∇)(c), we have δ1(b) = δ1(s(b)b) = s(b)δ1(b), i.e.,
s(δ1(b)) ≤ s(b) for all b ∈ Kc(∇)(c). Therefore, it follows from Theorem 3.1
that there exists a derivation δ0 : A → A, such that δ0(c) = δ1(c) = c 6= 0,
i.e., δ0 is a non-zero derivation on A.
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The following theorem is an important specialization of the preceding re-
sult to the commutative regular algebra S(Ω, Σ, µ).

Theorem 3.3. Let (Ω, Σ, µ) be a finite measure space and let S = S(Ω, Σ,
µ) be the algebra of all measurable function on (Ω, Σ, µ) with values in the
field K, where K = R, or else K = C. The following conditions are equivalent:

(i) There exists a non-zero derivation δ : S → S;

(ii) The Boolean algebra ∇ of all idempotents in S is not an atomic Boolean
algebra.

Proof. Since K = C is an algebraically closed field of characteristic zero,
the proof of the theorem for this case follows from Proposition 2.9 and Theo-
rem 3.2.

Let K = R, and denote by SR, SC the algebras of all measurable functions
on (Ω,Σ, µ) with values in R and C respectively. Set Sh = {a ∈ SC : a = a},
where a is the complex conjugate for the function a ∈ SC. Clearly, Sh may
be identified with SR, and that SC = Sh + iSh, where i ∈ C, i2 = −1. Fix
a derivation δ : SC → SC, and define the maps δk : Sh → Sh, k = 1, 2, by
setting δ1(a) := Re δ(a), δ2(a) := Im δ(a), where, as usual, for b ∈ SC, we
denote Re b = (b + b)/2, Im b = (b− b)/2i. Clearly, δk is a R-linear map from
Sh into Sh, k = 1, 2. For any a, b ∈ Sh, we have

δ1(ab) = Re δ(ab) = Re(δ(a)b + aδ(b))

= (Re δ(a))b + a(Re δ(b)) = δ1(a)b + aδ1(b) ,

that is δ1 is a derivation on Sh. Analogously, δ2 is a derivation on Sh. For
any function a ∈ SC, we have

δ(a) = δ(Re a) + iδ(Im a) = Re δ(Re a) + i Im δ(Re a)

+ iRe δ(Im a)− Im δ(Im a)

= δ1(Re a) + iδ1(Im a)− δ2(Im a) + iδ2(Re a) .

Suppose that ∇ is a Boolean algebra which is not atomic and so, by the
first part of the proof, there exists a non-zero derivation δ : SC → SC. In
particular, δ(a) 6= 0 for some 0 6= a ∈ SC, for which we also have (see the pre-
ceding equality) that at least one of the functions δ1(Re a), δ1(Im a), δ2(Re a),
δ2(Im a) is non-zero. This implies that at least one of the derivations δ1, δ2 on
SR does not vanish.
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To complete the proof, it remains to observe that if∇ is an atomic Boolean
algebra, then by Proposition 2.9, the algebra of all countably-valued elements
in SR coincides with SR, and therefore, according to the propositions 2.3, 2.6
and 2.8, any derivation from SR to SR vanishes.

The following corollary follows from Theorem 3.3 and the definition of
the first Hochschild cohomology group H1(A,A) as the factor-group of all
derivations of the algebra A by the subgroup of all inner derivations of A (see
[5, Ch. IX, §4] and [7, Section 1.9])

Corollary 3.1. The cohomology group H1
(
S(Ω,Σ, µ), S(Ω, Σ, µ)

)
is

non-trivial if and only if the Boolean algebra ∇ of all idempotents in
S(Ω, Σ, µ) is not atomic.

Remark 3.2. The assertion of Theorem 3.3 holds also for localizable mea-
sure spaces (Ω,Σ, µ). To see that, it is sufficient to represent Ω as a union of
pairwise disjoint measurable sets with a finite measure and to each of these
sets apply Theorem 3.3.

Finally, we present a variant of Theorem 3.3 for commutative algebras of
measurable operators.

Theorem 3.4. Let M be a commutative von Neumann algebra, let L(M)
be the algebra of all measurable operators, affiliated with M . The following
conditions are equivalent:

(i) There exists a not-zero derivation δ : L(M) → L(M).

(ii) The Boolean algebra ∇ of all projections in M is not an atomic Boolean
algebra.

Proof. It is well-known that the algebra L(M) may be identified with the
algebra SC(Ω, Σ, µ) for some localizable measure space (Ω,Σ, µ) (see [15]).
Therefore, the assertion of Theorem 3.4 follows from that of Theorem 3.3 and
Remark 3.2.

Thus, if the Boolean algebra ∇ of all projections in commutative von
Neumann algebra M is not atomic, then there are non-zero derivations in
L(M), which are not continuous with respect to the measure topology.
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