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Let G be a locally compact group. Let σ be a continuous involution of
G and let µ be a complex bounded measure. In this paper we study the
generalized d’Alembert functional equation

D(µ)
∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t) = 2f(x)f(y) , x, y ∈ G ,

where f : G → C to be determined is a measurable and essentially bounded
function.

We give some conditions under which all solutions are of the form

≺ π(x)ξ, ζ Â + ≺ π(σ(x))ξ, ζ Â
2

,

where (π,H) is a continuous unitary representation of G such that π(µ) is of
rank one and ξ, ζ ∈ H. Furthermore, we also consider the case when f is an
integrable solution. In the particular case where G is a connected Lie group,
we reduce the solution of D(µ) to a certain problem in operator theory. We
prove that the solutions of D(µ) are exactly the common eigenfunctions of
some operators associated to a left invariant differential operators on G.

Key words: Functional equation, Gelfand measure, µ-spherical function, positive deni-
nite function, representation theory, Lie group, invariant differential operator.
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1. Introduction

The classical d’Alembert’s functional equation has the form

(1) f(xy) + f(xy−1) = 2f(x)f(y) ,

where x and y run over a group G and f : G → C is the unknown function.
At present the theory of d’Alembert functional equation is extensively

developed. The monographs by Aczél and Dhombres [1] have references and
detailed discussions.

The basic result for the study of equation (1) is a result obtained by Kan-
nappan [9]. It says that every nonzero continuous solution f of d’Alembert’s
functional equation (1) which satisfies the condition f(xyz) = f(yxz) for all
x, y ∈ G has the form

(2) f(x) =
χ(x) + χ(x−1)

2
, x ∈ G ,

where χ : G → C is a nonzero continuous multiplicative function of G. In
particular, all nonzero bounded and continuous solution of equation (1) on
a locally compact abelian group G are represented by the formula f(x) =
Re(χ(x)) with some continuous character χ of the group G (see Ger [7]).

As a continuation of these investigations, in the present paper we are going
to study the following functional equation

(3)
∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t) = 2f(x)f(y) , x, y ∈ G ,

where µ is a complex bounded measure and σ is an involution of G. The
equation (3) is our generalization of d’Alembert’s functional equation (1) in
which µ = δe : the Dirac measure concentrated at the identity element of G.

2. Notation and preliminaries

Throughout this paper, G will be a Hausdorff topological locally compact
group; M(G) denotes the Banach algebra of complex bounded measures, it is
the dual of C0(G) the Banach space of continuous functions vanishing at infin-
ity; C(G) (resp. Cb(G)) designates the space of continuous (resp. continuous
and bounded) complex valued functions; σ denotes a continuous involution of
G (i.e., σ(xy) = σ(y)σ(x) and σ(σ(x)) = x for all x, y ∈ G).

Given µ ∈ M(G), we say that µ is σ-invariant, and we write µ = σ(µ), if

≺ µ, f ◦ σ Â=≺ µ, f Â for all f ∈ Cb(G) ,
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where

≺ µ, f Â=
∫

G
f(x)dµ(x) .

For all µ, ν ∈ M(G), we recall that the convolution µ ∗ ν is the measure given
by

≺ µ ∗ ν, f Â :=
∫

G

∫

G
f(ts)dµ(t)dν(s) , f ∈ Cb(G) ,

and the involution is defined in M(G) by

µ∗ = ˇ̄µ ,

where ≺ µ̄, f Â= ≺ µ, f̄ Â, ≺ µ̌, f Â=≺ µ, f̌ Â, with f̌(x) = f(x−1) and
f̄(x) = f(x) for all x ∈ G.

For every µ ∈ M(G) and every continuous and bounded function f : G →
C we set

fµ(x) =
∫

G

∫

G
f(txs)dµ(t)dµ(s) ,

and we say that f is µ-biinvariant if fµ = f . Noting that if µ ∗ µ = µ, then

f is µ-biinvariant if and only if f is right µ-invariant
( ∫

G f(xt)dµ(t) = f(x)
)

and f is left µ-invariant
( ∫

G f(tx)dµ(t) = f(x)
)
.

For every x ∈ G, δx designates the Dirac measure concentrated at x. If
f ∈ Cb(G) we say that f satisfies the condition K(µ) if
∫

G

∫

G
f(ysxtz)dµ(s)dµ(t) =

∫

G

∫

G
f(xsytz)dµ(s)dµ(t) for all x, y, z ∈ G .

Definition 2.1. Let µ ∈ M(G); µ is called a generalized Gelfand mea-
sure if µ ∗µ = µ and the Banach algebra µ ∗M(G) ∗µ is commutative (under
the convolution).

For the notion of Gelfand measure see [3].

Definition 2.2. Let µ ∈ M(G). A non zero function Φ ∈ Cb(G) is a
µ-spherical function if it satisfies the functional equation

∫
G Φ(xty)dµ(t) =

Φ(x)Φ(y) for all x, y ∈ G.

In a previous paper see [6], the continuous and bounded solutions of (3)
are completely determined under the condition that f satisfies the Kannappan
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type condition K(µ) and in the particular case where µ is a generalized Gelfand
measure. In both cases the solutions are expressed in the formula

(4) f(x) =
Φ(x) + Φ(σ(x))

2
,

where Φ is a µ-spherical function.
In the first part of this paper (Section 3) we are going to study the general

properties of (3). In Theorem 3.1 we give necessary and sufficient conditions
for measurable and essentially bounded function f to satisfy equation (3).
One of these condition is

(5) µ̌ ∗ h ∗ f + (µ̌ ∗ h ∗ f) ◦ σ = 2 ≺ h, f̌ Â f for all h ∈ L1(G) ,

which explains why we restrict our selves to solutions f ∈ Cb(G).
In Theorem 3.2 and Theorem 3.3 we prove that if f ∈ Cb(G) and µ

is a generalized Gelfand measure on G which is σ-invariant, then the map
h 7→ ∫

G h(x)f(x)dx is a character of the commutative Banach subalgebra(
P (L1(G))

)µ if and only if f is a solution of the functional equation (3),
where P (h)(x) = h(x)+h(σ(x))

2 and
(
P (L1(G))

)µ = µ ∗ P (L1(G)) ∗ µ.
The purpose of Section 4 is to give some conditions under which all solu-

tions of the functional equation (3) are of the form

≺ π(x)ξ, ζ Â + ≺ π(σ(x))ξ, ζ Â
2

,

where (π,H) is a continuous unitary representation of G such that π(µ) is of
rank one and ξ, ζ ∈ H.

We prove in Theorem 4.1 that if µ = µ̄ = µ̌ is a generalized Gelfand
measure, then the positive definite solution of (3) with σ(x) = x−1 are of the
form

≺ π(x)ξ, ξ Â +≺ π(x)ξ, ξ Â
2

,

where (π,H) is an irreducible representation of G such that π(µ) is of rank
one. In Theorem 4.2 we give the some similar general result under the condi-
tion that µ is σ-invariant and the solutions satisfies the condition K(µ). We
treat also the case of the integrable solutions. As a consequence we obtain a
characterization of the solutions which satisfies the Kannappan type condition
K(µ) in compact groups.

In Section 5 we consider the case when G is a connected Lie group. We
prove that the solutions are the common eigenfunctions of some operators
associated to a left invariant differential operators on G. The result is given
in Theorem 5.1.
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3. General theory

In Theorem 3.1 below we present the necessary and sufficient conditions
for a measurable and essentially bounded function to be a solution of
equation (3).

Theorem 3.1. Let f be a measurable and essentially bounded function
on G. Then the following statements are equivalent:

(1)
∫
G f(xty)dµ(t)+

∫
G f(xtσ(y))dµ(t) = 2f(x)f(y) for almost all x, y ∈ G;

(2) µ̌ ∗ h ∗ f + (µ̌ ∗ h ∗ f) ◦ σ = 2 ≺ h, f̌ Â f for all h ∈ L1(G);

(3) µ̌ ∗ ϑ ∗ f + (µ̌ ∗ ϑ ∗ f) ◦ σ = 2 ≺ ϑ, f̌ Â f for all ϑ ∈ M(G);

(4) µ̌ ∗ δx ∗ f + (µ̌ ∗ δx ∗ f) ◦ σ = 2f̌(x)f for all x ∈ G;

(5) ≺ ϑ
′ ∗ µ ∗ ϑ, f Â + ≺ ϑ

′ ∗ µ ∗ σ(ϑ), f Â= 2 ≺ ϑ, f Â≺ ϑ
′
, f Â for all

ϑ, ϑ
′ ∈ M(G).

Proof. (1)⇒(2) For all h ∈ K(G) (functions with compact support) and
for almost all y ∈ G, we get

2 ≺ h, f̌ Â f(y) =
∫

G
2f(x−1)f(y)h(x)dx =

∫

G

∫

G
f(x−1ty)h(x)dµ(t)dx

+
∫

G

∫

G
f(x−1tσ(y))h(x)dµ(t)dx

=
∫

G
(h ∗ f)(t−1y)dµ̌(t) +

∫

G
(h ∗ f)(t−1σ(y))dµ̌(t)

= (µ̌ ∗ h ∗ f)(y) + (µ̌ ∗ h ∗ f)(σ(y)) ,

which proves (2).
(2)⇒(3) Follows immediately from the fact that L1(G) is weakly dense

in M(G).
(4)⇒(1) First note that (µ̌∗δx ∗f)(y) =

∫
G f(x−1ty)dµ(t), hence we have

that
∫

G
f(x−1ty)dµ(t) +

∫

G
f(x−1tσ(y))dµ(t) = 2f̌(x)f(y) for all x, y ∈ G .

This proves (1).
(3)⇒(5) If ϑ, ϑ

′ ∈ M(G), then ≺ ϑ
′ ∗ µ ∗ ϑ Â + ≺ ϑ

′ ∗ µ ∗ σ(ϑ), f Â
= ≺ ϑ, µ̌ ∗ ϑ̌′ ∗ f Â + ≺ ϑ, (µ̌ ∗ ϑ̌′ ∗ f) ◦ σ Â = ≺ ϑ, 2 ≺ ϑ̌′ , f̌ Â f Â =
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2 ≺ ϑ
′
, f Â≺ ϑ, f Â. By a small computation we proves the other point of

the theorem.

Consequently we shall assume throughout the paper that the solutions of
equation (3) are bounded and continuous functions on G.

The connection between continuous characters of the commutative Ba-
nach algebra

(
P (L1(G))

)µ = P (L1(G)µ) is illustrated by the following two
theorems.

Theorem 3.2. Let G be unimodular, let µ be a generalized Gelfand mea-
sure on G which is σ-invariant. Let f ∈ Cb(G) be a solution of equation (3).
Then the mapping h 7→ ≺ h, f Â=

∫
G h(x)f(x)dx is a continuous character

of the commutative Banach algebra
(
P (L1(G))

)µ
.

Proof. Assume that f ∈ Cb(G) is a solution of (3). Then, in view of [6,
Lemma 2.3], f is µ-biinvariant and f(σ(x)) = f(x) for all x ∈ G. Therefore,
for all h, g ∈ L1(G) we have

≺
(

g + g ◦ σ

2

)µ

∗
(

h + h ◦ σ

2

)µ

, fÂ =
1
4

∫

G

∫

G

[
(g(x)h(y)

+ g(x)(h ◦ σ)(y) + (g ◦ σ(x))h(y)

+ (g ◦ σ)(x)(h ◦ σ((y))
∫

G
fµ(xty)d(µ ∗ µ)(t)

]
dxdy .

Since µ ∗ µ = µ, fµ = f , f ◦ σ = f and G is unimodular, then we get

≺
(

g + g ◦ σ

2

)µ

∗
(

h + h ◦ σ

2

)µ

, fÂ
=

1
2

∫

G

∫

G
g(x)h(y)

[ ∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t)

]
dxdy

=
∫

G
f(x)g(x)dx

∫

G
f(y)h(y)dy

=
∫

G
f(x)

g(x) + g(σ(x))
2

dx

∫

G
f(y)

h(y) + h(σ(y))
2

dy

=≺
(

g + g ◦ σ

2

)µ

, fÂ≺
(

h + h ◦ σ

2

)µ

, fÂ ,

which concludes the proof of the theorem.
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Theorem 3.3. Let G be unimodular. Let µ be a generalized Gelfand
measure which is σ-invariant on G. If χ : P (L1(G))µ → C∗ is a continu-
ous character of

(
P (L1(G))

)µ
, then there exists f ∈ Cb(G) solution of the

functional equation (3) such that χ(g) =≺ g, f Â for all g ∈ (
P (L1(G))

)µ
.

Proof. Let χ be a nonzero continuous character of the Banach algebra(
P (L1(G))

)µ. The map L1(G) → C, g 7→ χ((g+g◦σ
2 )µ), is continuous and

linear. Consequently, there exists f ∈ £∞(G) such that χ((g+g◦σ
2 )µ) =

≺ g, f Â. In addition, f may be chosen continuous: let f1 ∈ K(G) such
that f1 = f1 ◦ (σ) and χ((P (f1))µ) = 1; for all h ∈ K(G) we have

< h, f > = χ
(
(P (f1))µ

)
χ
(
(P (h))µ

)

= χ
(
(P (h))µ ∗ (P (f1))µ

)
= χ

(
(P (P (h) ∗ fµ

1 ))µ
)

= < P (h) ∗ fµ
1 , f > = < P (h), f ∗ ˇ(fµ

1 ) >

= < h, P (f ∗ ˇ(fµ
1 )) > .

Consequently f = P (f ∗ ˇ(fµ
1 )) and hence f is a continuous function.

On the other hand

χ

((
g + g ◦ σ

2

)µ)
= χ

(
gµ + gµ ◦ σ

2

)
= χ

((
gµ + gµ ◦ σ

2

)µ)

= ≺ gµ, f Â = ≺ g, fµ Â .

It follows that f is µ-biinvariant.
On the other hand

χ

(
gµ + gµ ◦ σ

2

)
= χ

((
gµ+gµ◦σ

2 + gµ+gµ◦σ
2

2

)µ)

=≺ gµ + gµ ◦ σ

2
, fÂ =≺ g,

fµ + fµ ◦ σ

2
Â

=≺ g,
f + f ◦ σ

2
Â .
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Then we get f = f+f◦σ
2 , i.e., f ◦ σ = f . Now, for all g, h ∈ L1(G) we have

≺
(

g + g ◦ σ

2

)µ

∗
(

h + h ◦ σ

2

)µ

, fÂ
=

1
2

∫

G

∫

G
g(x)h(y)

[ ∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t)

]
dxdy

=≺
(

g + g ◦ σ

2

)µ

, fÂ≺
(

h + h ◦ σ

2

)µ

, fÂ
=

∫

G

∫

G
g(x)h(y)f(x)f(y)dxdy ,

hence it follows that∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t) = 2f(x)f(y) for all x, y ∈ G ,

which proves our theorem.

4. Solutions of equation (3) and representations of G

An ambitious project is to obtain the general solution f of the functional
equation (3), where µ ∈ M(G). In this section we produce the explicit solution
formulas for the functional equation (3) in question by means of coefficients
of irreducibles and continuous unitary representation of G.

We start by the following theorem which extend some results which have
been obtained in [5].

Theorem 4.1. Let µ = µ̄ = µ̌ be a generalized Gelfand measure. Let
f ∈ Cb(G) be a positive definite function satisfying equation (3) with σ(x) =
x−1. Then, there exists an irreducible, continuous and unitary representation
(π,H) of G and ξ ∈ H, such that π(µ) is of rank one and

f(x) =
≺ π(x)ξ, ξ Â +≺ π(x)ξ, ξ Â

2
for all x ∈ G .

Noting that in this case Φ(x) =≺ π(x)ξ, ξ Â is a positive definite µ-spherical
function on G.

Proof. It is elementary to check that the function

≺ π(x)ξ, ξ Â +≺ π(x)ξ, ξ Â
2
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is a solution of equation (3) with σ(x) = x−1, where (π,H) is a continuous and
unitary representation of G such that π(µ)(η) =≺ η, ξ Â ξ for all η ∈ H. Thus
what is left is to show that each positive definite, continuous and bounded
solution f occurs in the formula of Theorem 4.1.

Let f ∈ Cb(G) be a nonzero positive definite solution of equation

(6)
∫

G
f(xty)dµ(t) +

∫

G
f(xty−1)dµ(t) = 2f(x)f(y) .

By [6, Lemma 2.3], f is µ-invariant; hence, in view of [3, Theorem 5.3], there
exists a bounded positive Radon measure %f on Ωµ: the set of positive definite
µ-spherical functions on G such that

(7) f(x) =
∫

Ωµ

ω(x)d%f (ω) for all x ∈ G .

Using this expression for f and the fact that f satisfies equation (6) gives us
∫

Ωµ

ω(x)
[ ∫

Ωµ

$(y)d%f − Re(ω)(y)
]
d%f (ω) = 0 .

It follows from the injection map M(Ωµ) → Cb(G), i(ϑ)(x) =
∫
Ωµ

ω(x)dϑ(ω)
(see [2]), that

Re(ω)(y) =
∫

Ωµ

$(y)d%f ($) = f(y)

on the support of %f .
Using the linear independence of the µ-spherical functions (see [6, Lemma

2.2]), we get
Supp(%f ) = {ω, ω̄} , ω ∈ Ωµ ,

and
%f = aδω + bδω̄ where a, b ∈ R+.

This implies that

f(x) = (a + b)Re(ω)(x) + i(a− b) Im(ω)(x) ,

since f(e) = 1 and f(x) = f(x−1), hence there exists ω ∈ Ωµ such that
f(x) = Re(ω)(x) for all x ∈ G.

By [3, Theorem 4.5.2], there exits an irreducible, continuous and unitary
representation (π,H) of G and ξ ∈ H, such that π(µ) is of rank one and
ω(x) =≺ π(x)ξ, ξ Â. This completes the proof of Theorem 4.1.
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Now we are going to give some conditions under which the solutions of
equation (3) are expressed in terms of coefficients of irreducible, continuous
and unitary representations of G, we also consider the integrable solutions,
in particular if G is compact the complete solutions formulas are determined
under the condition that f satisfies K(µ).

Theorem 4.2. Let µ be a σ-invariant measure. Let f ∈ Cb(G) be a
solution of the functional equation (3) satisfying K(µ).

(1) There exists a µ-spherical function Φ such that f(x) = Φ(x)+Φ(σ(x))
2 for

all x ∈ G.

(2) If Φ(x) =≺ π(x)ξ, ζ Â and

f(x) =
≺ π(x)ξ, ζ Â + ≺ π(σ(x))ξ, ζ Â

2
,

then π admits an irreducible subrepresentation π
′
such that π

′
(µ) is of

rank one,

f(x) =
≺ π

′
(x)ξ

′
, ζ Â + ≺ π

′
(σ(x))ξ

′
, ζ Â

2
for all x ∈ G, and π

′
(µ)η =≺ η, ζ Â ξ

′
.

(3) If Φ is a positive definite function and f(x) = Φ(x)+Φ(σ(x))
2 , then there

exists an irreducible, continuous and unitary representation (π,H) of G
such that π(µ) is of rank one and

f(x) =
tr

(
π(x)π(µ)

)
+ tr

(
π(σ(x))π(µ)

)

2
.

(4) If f is integrable, then there exists an irreducible, unitary and integrable
representation (π,H) of G such that π(µ) is of rank one and

f(x) =
≺ π(x)ξ, ζ Â + ≺ π(σ(x))ξ, ζ Â

2

for all x ∈ G, where ξ, ζ ∈ H are such that π(µ)(η) =≺ η, ζ Â ξ.

(5) If G is compact then, there exists an irreducible, continuous and unitary
representation (π,H) of G such that π(µ) is of rank one and

f(x) =
≺ π(x)ξ, ζ Â + ≺ π(σ(x))ξ, ζ Â

2

for all x ∈ G.
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Proof. See [6, Theorem 2.2] for (1), and [4, Theorem 2.2] for (2) and (3).
(4) According to the proof of [6, Theorem 2.1], the µ-spherical functions

Φ in (1) are written in the form

Φ(x) = f(x) + k

[ ∫

G
f(xta)dµ(t)−

∫

G
f(xtσ(a))dµ(t)

]
for all x ∈ G

for some k ∈ C and a ∈ G such that
∫

G
f(ata)dµ(t)−

∫

G
f(atσ(a))dµ(t) 6= 0 or Φ ≡ f .

It follows directly from these formulas that f is integrable if and only
Φ is integrable. Now, by applying [4, Theorem 2.5] we derive the rest of
the proof.

5. Generalized d’Alembert functional equation on Lie groups

In the present section G stands for connected Lie group and σ designate
a continuous automorphism of G which satisfies σ ◦ σ = I.

A form of the continuous solutions of equation (3) we shall characterize
in terms of eigenfunctions of some operators. At this place we recall some
definitions used in the sequel.

For each fixed a ∈ G, we define the translation operator as follows: if
g ∈ C(G) then (Lag)(x) = g(a−1x). We will say that a operator T : C(G) →
C(G) is left-invariant if (LaT )(g) = T (Lag) for all g ∈ C(G).

The following result will be used later.

Proposition 5.1. For any operator T : C(G) → C(G), the operator Tµ

defined by

Tµ(g)(x) =
1
2
T

{
(Lx−1g)µ + (Lx−1g)µ ◦ σ

}
(e) , g ∈ Cb(G) , x ∈ G ,

satisfies the following properties:

(i) Tµ is left invariant;

(ii) Tµ(g)(e) = 1
2 T{gµ + gµ ◦ σ}(e); in particular, if gµ = g and g ◦ σ = g we

have Tµ(g)(e) = T (g)(e);

(iii) if f is a right µ-invariant solution of equation (3), then f is a common
eigenfunction of the operator Tµ; more precisely Tµ(f) = T (f)(e)f .
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Proof. (i) Let g ∈ Cb(G) and let a ∈ G; for all x ∈ G we have

La(Tµg)(x) = Tµg(a−1x) =
1
2

T
{
(Lx−1ag)µ + (Lx−1ag)µ ◦ σ

}
(e)

=
1
2

T
{
(Lx−1(Lag))µ + (Lx−1(Lag))µ ◦ σ

}
(e) = Tµ(Lag)(x) ,

which proves (i).
(ii) Is evident.
(iii) Let f be a right µ-invariant solution of equation (3); this means that

∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t) = 2f(x)f(y)

and ∫

G
f(xt)dµ(t) = f(x)

for all x, y ∈ G. We conclude that

(Ly−1f)µ(x) + (Ly−1f)µ(σ(x)) =
∫

G

∫

G
(Ly−1f)(sxt)dµ(s)dµ(t)

+
∫

G

∫

G
(Ly−1f)(sσ(x)t)dµ(s)dµ(t)

=
∫

G

∫

G
f(ysxt)dµ(s)dµ(t) +

∫

G

∫

G
f(ysσ(x)t)dµ(s)dµ(t)

=
∫

G
f(ysx)dµ(s) +

∫

G
f(ysσ(x))dµ(s) = 2f(x)f(y) .

For x = e, we get

Tµ(f)(y) =
1
2
{
(Ly−1f)µ + (Ly−1f)µ ◦ σ

}
(e) = T (f)(e)f(y) .

Hence it follows that Tµ(f) = T (f)(e)f. This completes the proof.

Let Cµ
∞(G) = µ̌ ∗ C∞ ∗ 4µ̌ denote the space of C∞ and µ-biinvariant

functions on G, where 4 denotes the modular function on G. The subspace
of Cµ

∞(G) of functions g which satisfies g◦σ = g, will be denoted by Cµ
∞(G).

Finally D(G) denote the algebra of left invariant differential operators on G.
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Proposition 5.2. Let µ be a σ-invariant measure with compact support
and let T ∈ D(G). For all g ∈ Cµ

∞(G) we have

Tµg =
1
2
{
Tg ∗ 4µ̌ + (Tg ∗ 4µ̌) ◦ σ

}
.

Furthermore Tµg ∈ Cµ
∞(G).

Proof. Let T ∈ D(G) and let g ∈ Cµ
∞(G). For all x, y ∈ G we have

(Lx−1g)µ(y) =
∫

G

∫

G
g(xtys)dµ(t)dµ(s) .

Since g is right µ-invariant, then we get

(Lx−1g)µ(y) =
∫

G
g(xty)dµ(t) =

∫

G
(L(xt)−1g)(y)dµ(t) ,

it follows that

T (Lx−1g)µ(e) =
∫

G
(TL(xt)−1g)(e)dµ(t)

=
∫

G
(L(xt)−1Tg)(e)dµ(t) =

∫

G
(Tg)(xt)dµ(t) = Tg ∗ 4µ̌ .

On the other hand

(Lx−1g)µ(σ(y)) =
∫

G

∫

G
g(xtσ(y)s)dµ(t)dµ(s) =

∫

G
g(xtσ(y))dµ(t) .

Since g ◦ σ = g and σ(µ) = µ, then we have

(Lx−1g)µ(σ(y)) =
∫

G
g(σ(x)ty)dµ(t) =

∫

G
(L(σ(x)t)−1g)(y)dµ(t) .

This implies that

T (Lx−1g)µ(e) =
∫

G
(TL(σ(x)t)−1g)(e)dµ(t) =

∫

G
(L(σ(x)t)−1Tg)(e)dµ(t)

=
∫

G
(Tg)(σ(x)t)dµ(t) = (Tg ∗ 4µ̌)(σ(x)) .

Consequently

(Tµg)(x) =
1
2
{Tg ∗ 4µ̌)(x) + (Tg ∗ 4µ̌)(σ(x)} .
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This proves the first point of Proposition 5.2.
It’s clear that (Tµg)(σ(x)) = (Tµg)(x) for all x ∈ G.
Now we are going to prove that Tµg is µ-biinvariant. In virtue of the

fact that g ∈ Cb(G) is µ-biinvariant (with σ(µ) = µ) if and only if g ◦ σ is
µ-biinvarint and according to expression of Tµg, it’s sufficient to prove that
Tµg ∗ 4µ̌ is µ-biinvariant. So

µ̌ ∗ (Tg ∗ 4µ̌) ∗ 4µ = µ̌ ∗ Tg ∗ 4µ̆ = T (µ̌ ∗ g) ∗ 4µ̌ = Tg ∗ 4µ̌ .

This shows that Tµg is µ-biinvariant.
On the other hand, by using the fact that µ is a compactly supported

measure, it’s easy to prove that Tµg ∈ C∞(G). This completes the proof.

The main result of the present section is the following theorem.

Theorem 5.3. Let G be a connected Lie group. Let µ be a complex
measure with compact support such that σ(µ) = µ = µ ∗ µ. Let f ∈ C(G).
Then, the following statements are equivalent:

(1) f is a solution of the functional equation (3);

(2) (i) f is µ-biinvariant, f ◦ σ = f ,

(ii) f is analytic, and

(iii) f is the common eigenfunction of the operators Tµ for all T ∈ D(G).

Proof. (1)⇒(2) Follows directly from [6, Proposition 5.1, Lemma 2.3].
(2)⇒(1) Suppose that (2) holds, with Tµf = λ(T )f for any operator

T ∈ D(G). By Proposition 5.1 (4), λ(T ) = T (f)(e). For a fixed element x in
G, we define the new function

g(y) =
1
2

{ ∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t)

}
, y ∈ G .

Since µ ∗ µ = µ, σ(µ) = µ and f is µ-biinvariant, then also g is µ-biinvariant.
In virtue of σ(µ) = µ and f ◦ σ = f we get

g(y) =
1
2

{∫

G
(L(xt)−1f)(y)dµ(t) +

∫

G
(L(σ(x)t)−1f)(y)dµ(t)

}
.

Consequently for all T ∈ D(G) we have

(Tµ(g))(y) =
1
2

{ ∫

G
Tµ(L(xt)−1f)(y)dµ(t) +

∫

G
Tµ(L(σ(x)t)−1f)(y)dµ(t)

}
.
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Since Tµ is left invariant (see Proposition 5.1), then we obtain

(Tµg)(y) =
1
2

{∫

G
Tµf(xty)dµ(t) +

∫

G
Tµf(σ(x)ty)dµ(t)

}

= T (f)(e)
1
2

{ ∫

G
f(xty)dµ(t) +

∫

G
f(σ(x)ty)dµ(t)

}

= T (f)(e)
1
2

{ ∫

G
f(xty)dµ(t) +

∫

G
f(σ(y)tx)dµ(t)

}

= T (f)(e)g(y) .

In particular
(Tµg)(e) = T (f)(e)g(e) .

By Proposition 5.1 (ii) we have

(Tµg)(e) = T (g)(e) ,

and hence it follows that

T (g − g(e)f)(e) = 0 for all T ∈ D(G)

since g − g(e)f is analytic function on the connected Lie group G. Then, in
view of [8, Chapter II] we obtain

g − g(e)f ≡ 0 on G .

We conclude that

1
2

{∫

G
f(xty)dµ(t) +

∫

G
f(xtσ(y))dµ(t)

}

=
∫

G
f(xt)dµ(t)f(y) = f(x)f(y)

for all x, y ∈ G. This ends the proof of Theorem 5.3.

Corollary 5.4. Let G be a connected Lie group, let µ be a complex
measure with compact support such that σ(µ) = µ = µ∗µ, and let f ∈ C(G).
If f is a solution of the functional equation (3), then f is the unique solution
of

{
g ∈ Cµ

∞(G) : Tµ(g) = T (f)(e)g for all T ∈ D(G)
}
.
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