On a Question of Mbekhta

CHRISTOPH SCHMOEGER

Mathematisches Institut I, Universität Karlsruhe (TH), Englerstrasse 2, 76128 Karlsruhe, Germany

 $e ext{-}mail: christoph.schmoeger@math.uni-karlsruhe.de$

(Presented by M. Mbekhta)

AMS Subject Class. (2000): 47A53

Received March 17, 2005

1. Introduction

Throughout this paper, X shall denote a Banach space and $\mathcal{L}(X)$ the algebra of all bounded linear operators on X. X^* denotes the dual space of X. For an operator $T \in \mathcal{L}(X)$ we write T^* for its adjoint, N(T) for its kernel and T(X) for its range.

We will say that $T \in \mathcal{L}(X)$ has a generalized inverse if there is an operator $S \in \mathcal{L}(X)$ for which

(1.1)
$$TST = T \text{ and } STS = S.$$

The operator S is called a generalized inverse of T. We recall that in general a generalized inverse is not unique and that T has a generalized inverse if and only if N(T) and T(X) are closed and complemented subspaces of X (see for instance, [3]). Observe that if (1.1) holds then TS, ST, I - TS and I - ST are projections, T(X) = TS(X), S(X) = ST(X), N(T) = (I - ST)(X) and N(S) = (I - TS)(X), hence

(1.2)
$$X = T(X) \oplus N(S) \text{ and } X = S(X) \oplus N(T).$$

A bounded linear operator T on a Hilbert space is said to be a partial isometry provided that ||Tx|| = ||x|| for every $x \in N(T)^{\perp}$, that is

$$TT^*T = T$$
.

In this case T is a contraction (see Chapter 13 in [5] for details).

In [7] M. Mebekhta has given the following characterization of partial isometries on Hilbert spaces:

THEOREM 1.1. If T is a contraction on a Hilbert space, then the following are equivalent:

- 1. T is a partial isometry;
- 2. T has a contractive generalized inverse.

Since assertion (2) of Theorem 1.1 does not depend on the structure of a Hilbert space, Theorem 1.1 suggests the following definition of a partial isometry on a Banach space. This definition is due to M. Mbekhta [7].

DEFINITION 1.2. An operator $T \in \mathcal{L}(X)$ is called a partial isometry if T is a contraction and admits a generalized inverse which is a contraction.

Remarks. 1. As mentioned by Mbekhta in [7], one of the disadvantages of Definition 1.2 is that, in general, an isometry on X (i.e. ||Tx|| = ||x|| for all $x \in X$) does not need to be a partial isometry. Indeed an isometry may not have a generalized inverse.

2. In Definition 1.2, the contractive generalized inverse is not unique, as is shown by an example in [7, p. 776].

The following proposition collects some properties of partial isometries on Banach spaces. Proofs can be found in [7].

PROPOSITION 1.3. If $T \in \mathcal{L}(X)$ is a non-zero partial isometry and S is a contractive generalized inverse of T then:

- 1. ||T|| = ||S|| = ||TS|| = ||ST|| = 1;
- 2. $S(X) \subseteq \{x \in X : ||Tx|| = ||x||\}.$

If T is a partial isometry on a Hilbert space H and S is a contractive generalized inverse of T, then $S = T^*$ (see [7, Corollary 3.3]). Hence T has a unique contractive generalized inverse. Furthermore, by (1.2),

$$(1.3) T^*(H) = S(H) = \{x \in H : ||Tx|| = ||x||\}.$$

In view of Proposition 1.3 (2) and (1.3) the following question, due to M Mbekthta [7], arises:

QUESTION 1.4. If $T \in \mathcal{L}(X)$ is a partial isometry on a Banach space X and S is a contractive generalized inverse of T, does

$$(1.4) S(X) = \{x \in X : ||Tx|| = ||x||\}?$$

The following example, provide in [7], shows that in general (1.4) does not hold.

EXAMPLE 1.5. Let $X = \mathbb{C}^2$ be equipped with the norm ||(x, y)|| = |x| + |y|, and consider the operator

$$T = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \in \mathcal{L}(X)$$
.

Take

$$S = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \,,$$

then it is easy to see that $T^2 = T$, ||T|| = ||S|| = 1 and that TST = T and STS = S. Thus T is a partial isometry and T and S are contractive generalized inverses of T. For $(0,1) \in X$ we have T(0,1) = (-1,0), thus ||T(0,1)|| = ||(0,1)|| = 1, but $(0,1) \notin S(X)$.

PROPOSITION 1.6. If $T \in \mathcal{L}(X)$ is a partial isometry, then the following assertions are equivalent:

- 1. There is a contractive generalized inverse S of T such that (1.4) holds.
- 2. (1.4) holds for every contractive generalized inverse of T.

Proof. We only have to show that (1) implies (2). Hence assume that S and S_0 are contractive generalized inverses of T and that (1.4) holds for S. It follows from Proposition 1.3 (2) that $S_0(X) \subseteq S(X)$, therefore $S_0T(X) \subseteq ST(X)$. This gives $STS_0T = S_0T$, thus $ST = S_0T$, hence $S(X) \subseteq S_0(X)$, and so $S_0(X) = S(X)$.

In this paper we show that in the case of a *strictly convex* Banach space, Question 1.4 has an affirmative answer. Furthermore we show that a partial isometry on a strictly convex Banach space with a strictly convex dual space has a unique contractive generalized inverse, and we give some corollaries of these results.

2. Results

We say that the Banach space X is strictly convex if the assumptions

$$x, y \in X, ||x|| = ||y|| = 1$$
 and $x \neq y$

imply that ||x+y|| < 2.

We say that the norm of X is Gâteaux-differentiable if, for all $x \in X \setminus \{0\}$ and for all $h \in X$, the limit

$$\lim_{t \to 0} \frac{\|x + th\| - \|x\|}{t}$$

exists when $t \to 0$ ($t \in \mathbb{R}$). The Banach space X is called *smooth* if its norm is Gâteaux-differentiable. The duality between strict convexity and smoothness reads as follows (see [1]):

If X^* is smooth, then X is strictly convex; if X^* is strictly convex, then X is smooth. Hence, if X is reflexive, then X is smooth (strictly convex) if and only if X^* is strictly convex (smooth).

Examples. 1. If $X = l^p$ or $X = L^p$ (1), then <math>X and X^* are strictly convex (see [6, §121]).

2. Let $X = \mathbb{R}^2$ equipped with the norm

$$||(x,y)|| = (x^2 + y^2/4)^{1/2} + \frac{|y|}{2},$$

then X is strictly convex, but X^* is not strictly convex (see [6, Aufgabe 121.2]).

3. Each Hilbert space is strictly convex ([6, §121]).

The main results of this paper read as follows:

THEOREM 2.1. If X is a strictly convex Banach space and $T \in \mathcal{L}(X)$ is a partial isometry with contractive generalized inverse S, then

$$S(X) = \{x \in X : ||Tx|| = ||x||\}$$
 and $S_0T = ST$

for each contractive generalized inverse S_0 of T.

THEOREM 2.2. If X and X^* are both strictly convex and if $T \in \mathcal{L}(X)$ is a partial isometry, then T has a unique contractive generalized inverse.

Remark. As an immediate consequence of Theorem 2.2 we obtain [7, Corollary 3.3]: a partial isometry on a Hilbert space has a unique contractive generalized inverse.

Proof of Theorem 2.1. We have, by Proposition 1.3 (2) that $S(X) \subseteq \{x \in X : ||Tx|| = ||x||\}$. Now let $x \in X$ and ||Tx|| = ||x||. We can assume that 1 = ||x|| = ||Tx||. By (1.2) there are $u \in S(X)$ and $v \in N(T)$ such that x = u + v. In view of Proposition 1.3 (2) we have ||Tu|| = ||u||, thus

$$1 = ||x|| = ||Tx|| = ||Tu|| = ||u||$$
.

We have to show that v = 0. Assume to the contrary that $v \neq 0$. Then $u \neq x$. Since X is strictly convex, it follows that ||x + u|| < 2. But

$$1 = ||Tu|| = ||T(u + \frac{1}{2}v)|| \le ||T|| ||u + \frac{1}{2}v||$$

= $||u + \frac{1}{2}v|| = \frac{1}{2}||2u + v|| = \frac{1}{2}||x + u|| < 1$,

a contradiction. Hence we have v=0, and so $x=u\in S(X)$.

Now suppose that S_0 is also a contractive generalized inverse of T. Then $S_0(X) = \{x \in X : ||Tx|| = ||x||\}$, thus $S(X) = S_0(X)$. It follows that $ST(X) = S_0T(X)$. Since $N(ST) = N(T) = N(S_0T)$, we get $ST = S_0T$.

Proof of Theorem 2.2. Let S and S_0 be contractive generalized inverses of T. Theorem 2.1 shows that $ST = S_0T$, thus

$$(2.1) T^*S^* = T^*S_0^*.$$

Since X^* is strictly convex and T^* is a partial isometry with contractive generalized inverses S^* and S_0^* , we obtain as above that

$$(2.2) S^*T^* = S_0^*T^*.$$

From (2.1) and (2.2) we now obtain that

$$S^* = (S^*T^*)S^* = (S_0^*T^*)S^* = S_0^*(T^*S^*) = S_0^*T^*S_0^* = S_0^*,$$

therefore $S = S_0$.

COROLLARY 2.3. If X^* is strictly convex and if $T \in \mathcal{L}(X)$ is a partial isometry with contractive generalized inverses S and S_0 , then

$$TS = TS_0$$
 and $N(S) = N(S_0)$.

Proof. As in the proof of Theorem 2.2 we obtain $S^*T^* = S_0^*T^*$, thus $(TS)^* = (TS_0)^*$. Hence $TS = TS_0$ and $N(S) = N(S_0)$.

COROLLARY 2.4. If X is strictly convex, $P \in \mathcal{L}(X), P^2 = P$ and ||P|| = 1, then we have:

- 1. $P(X) = \{x \in X : ||Px|| = ||x||\};$
- 2. if $S \in \mathcal{L}(X)$, PSP = P, SPS = S and ||S|| = 1, then $S^2 = S$, SP = P and PS = S.

Proof. Since ||P|| = 1, P is a partial isometry on X and P is a contractive generalized inverse of itself. Thus, (1) follows from Theorem 2.1.

For the proof of (2) observe that S is a contractive generalized inverse of P, therefore; by Theorem 2.1, $SP = P^2 = P$. From this we get

$$S^2 = SPS(SP)S = SPSPS = SPS = S$$
.

Therefore S is a partial isometry with contractive generalized inverses S and P. Theorem 2.1 shows now that $S^2 = PS$, hence S = PS.

COROLLARY 2.5. Suppose that X and X^* are strictly convex and that $Y \neq \{0\}$ is a closed and complemented subspace of X. Then there is at most one projection $P \in \mathcal{L}(X)$ such that ||P|| = 1 and P(X) = Y.

Proof. Let P and Q be projections with ||P|| = ||Q|| = 1 and P(X) = Q(X) = Y. Then P = QP and Q = PQ, thus $P = P^2 = P(QP)$ and $Q = Q^2 = Q(PQ)$. This shows that P is a partial isometry with contractive generalized inverses P and Q. By Theorem 2.2 it results that P = Q.

COROLLARY 2.6. Let $T \in \mathcal{L}(X)$ be a partial isometry.

- 1. If X is strictly convex and T right invertible, then there is exactly one right inverse of T with norm 1.
- 2. If X^* is strictly convex and T is left invertible, then there is exactly one left inverse of T with norm 1.

Proof. (1) Let S and S_0 be right inverses of T such that $||S|| = ||S_0|| = 1$. Then $TS = TS_0 = I$. It follows that S and S_0 are contractive generalized inverses of T. Using Theorem 2.1 we obtain $ST = S_0T$. Hence $S_0 = S_0TS_0 = STS_0 = S$.

(2) Let S and S_0 be left inverses of T with $||S|| = ||S_0|| = 1$. Then S^* and S_0^* are right inverses of T^* with $||S^*|| = ||S_0^*|| = 1$. By (1), $S^* = S_0^*$, therefore $S = S_0$.

DEFINITIONS. 1. An operator $U \in \mathcal{L}(X)$ is called hermitian if $\|\exp(itU)\|$ = 1 for every $t \in \mathbb{R}$.

- 2. Let $T \in \mathcal{L}(X)$. We will say that $T^+ \in \mathcal{L}(X)$ is the Moore-Penrose inverse of T if T^+ is a generalized inverse of T and the projections TT^+ and T^+T are hermitian.
- 3. $T \in \mathcal{L}(X)$ is called an MP-partial isometry if T is a contraction and admits a contractive Moore-Penrose inverse (see [7]).

Remarks. 1. A bounded linear operator has at most one Moore-Penrose inverse (see [8]).

- 2. It is well-known that a bounded linear operator U on a Hilbert space is hermitian if and only if $U = U^*$ (see [2]).
- 3. If $T \in \mathcal{L}(X)$ is an MP-partial isometry, then T is a partial isometry in the sense of Definition 1.2.

COROLLARY 2.7. Let $T \in \mathcal{L}(X)$ be an MP-partial isometry and S a contractive generalized inverse of T.

- 1. If X is strictly convex, then $ST = T^+T$.
- 2. If X^* is strictly convex, then $TS = TT^+$.
- 3. If X and X^* are strictly convex, then $S = T^+$.

Proof. (1) follows from Theorem 2.1 and (2) follows from Corollary 2.3. (3) is obtained from Theorem 2.2. \blacksquare

QUESTION. (see [7, p. 780]) Let $T \in \mathcal{L}(X)$ be an MP-partial isometry. Does

$$T^+(X) = \{x \in X : ||Tx|| = ||x||\}?$$

The following example gives a negative answer to this question.

Example. Let $X = \mathbb{C}^2$ be equipped with the norm $||(x,y)|| = \max\{|x|,|y|\}$ and consider the operator

$$T = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \in \mathcal{L}(X).$$

Then $T^2 = T$ and ||T|| = 1, therefore T is a contractive generalized inverse for itself. It is easy to see that

$$\exp(itT) = \begin{pmatrix} e^{it} & 0\\ 0 & 1 \end{pmatrix},$$

thus *T* is hermitian. Therefore *T* is an MP-partial isometry and $T^+ = T$. Take (x, y) = (1, 1), then T(1, 1) = (1, 0) and ||T(1, 1)|| = 1 = ||(1, 1)||, but $(1, 1) \notin T^+(X)$.

If $T \in \mathcal{L}(X) \setminus \{0\}$ has a generalized inverse S, then $S \neq 0$ and $||T|| = ||TST|| \le ||T||^2 ||S||$, thus $||T|| ||S|| \ge 1$.

We say that $T \in \mathcal{L}(X)$ is a generalized partial isometry if T = 0 or if T has a generalized inverse S such that $||T|| \, ||S|| = 1$. Clearly, a partial isometry is a generalized partial isometry. There are no restrictions on the norm for generalized partial isometries, every λI is a generalized partial isometry, where $\lambda \in \mathbb{C}$.

COROLLARY 2.8. Suppose that $T \in \mathcal{L}(X) \setminus \{0\}$ is a generalized partial isometry.

1. If X is strictly convex and S and S_0 are generalized inverses of T such that $||T|| ||S|| = ||T|| ||S_0|| = 1$, then

$$S(X) = \{x \in X : ||Tx|| = ||T|| \, ||x||\}$$
 and $ST = S_0T$.

2. If X and X^* are both strictly convex, then there is exactly one generalized inverse S of T with ||T|| ||S|| = 1.

Proof. Let $\alpha = ||T||^{-1}$, $T_1 = \alpha T$, $S_1 = \frac{1}{\alpha}S$ and $S_2 = \frac{1}{\alpha}S_0$. Then $T_1S_iT_1 = T_1$, $S_iT_1S_i = S_i$, $||T_1|| = 1$ and $||S_i|| = 1$ (i = 1, 2). Hence T_1 is a partial isometry with contractive generalized inverses S_1 and S_2 .

- (1) Since $S(X) = S_1(X)$, we derive from Theorem 2.1 that $S(X) = \{x \in X : ||T_1x|| = ||x||\} = \{x \in X : ||Tx|| = ||T|| ||x||\}$. Furthermore we obtain $S_1T_1 = S_2T_1$, thus $ST = S_0T$.
 - (2) In view of Theorem 2.2 we get $S_1 = S_2$, hence $S = S_0$.

For an operator $T \in \mathcal{L}(X) \setminus \{0\}$ the reduced minimum modulus is defined by

$$\gamma(T) = \inf\{||Tx|| : x \in X, \operatorname{dist}(x, N(T)) = 1\}.$$

It is a classical fact that $\gamma(T) > 0$ if and only if T(X) is closed, and that $\gamma(T) = \gamma(T^*)$ (see [4] or [6]).

A proof of the following proposition can be found in [7].

PROPOSITION 2.9. Let $T \in \mathcal{L}(X) \setminus \{0\}$ and $S \in \mathcal{L}(X)$ be a generalized inverse of T. Then

$$\frac{1}{\|S\|} \le \gamma(T) \le \frac{\|TS\| \|ST\|}{\|S\|}.$$

If T is as in Proposition 2.9, then

$$\gamma(T) \ge \sup \left\{ \frac{1}{\|S\|} : S \in \mathcal{L}(X), TST = T, STS = S \right\}.$$

COROLLARY 2.10. If $T \in \mathcal{L}(X) \setminus \{0\}$ is a generalized partial isometry then $\gamma(T) = ||T||$.

Proof. Let S be a generalized inverse of T such that ||T|| ||S|| = 1. Then $||TS|| \le ||T|| ||S|| = 1$ and $||ST|| \le 1$, hence, by Proposition 2.9,

$$||T|| = \frac{1}{||S||} \le \gamma(T) \le \frac{1}{||S||} = ||T||.$$

We say that $T \in \mathcal{L}(X)$ is a semi-Fredholm operator if T(X) is closed and $\dim N(T) < \infty$ or codim $T(X) < \infty$.

The following result is well-known in the case of partial isometries on Hilbert spaces ([5, Problem 101]).

Theorem 2.11. Let X be an arbitrary Banach space.

- 1. If $T \in \mathcal{L}(X) \setminus \{0\}$ is a generalized partial isometry, $U \in \mathcal{L}(X)$ and $\dim N(T) < \dim N(U)$, then $||T U|| \ge ||T||$.
- 2. If $T_1, T_2 \in \mathcal{L}(X)$ are generalized partial isometries and $||T_1 T_2|| < \min\{||T_1||, ||T_2||\}$, then

$$\dim N(T_1) = \dim N(T_2)$$
 and $\operatorname{codim} T_1(X) = \operatorname{codim} T_2(X)$.

Proof. (1) Since T is semi-Fredholm and $||T|| = \gamma(T)$, we have $||T|| \le ||T - U||$ by [4, Theorem V.1.6]. (2) follows immediately from (1) by duality.

COROLLARY 2.12. If the generalized partial isometry $T \in \mathcal{L}(X)$ is semi-Fredholm and dim $N(T) \neq \operatorname{codim} T(X)$, then

$$||T - S|| \ge \min\{||T||, ||T||^{-1}\}$$

for each generalized inverse S of T with ||T|| ||S|| = 1.

Proof. Assume to the contrary that $||T - S|| < \min\{||T||, ||T||^{-1}\} = \min\{||T||, ||S||\}$. It follows from Theorem 2.11 that

$$\dim N(S) = \dim N(T)$$
 and $\operatorname{codim} S(X) = \operatorname{codim} T(X)$.

But (1.2) shows that $\dim N(S) = \operatorname{codim} T(X)$, thus $\dim N(T) = \operatorname{codim} T(X)$, a contradiction.

REFERENCES

- [1] Beauzamy, B., "Introduction to Banach Spaces and their Geometry", North-Holland, Amsterdam, 1985.
- [2] BONSALL, F.F., DUNCAN, J., "Complete Normed Algebras", Springer-Verlag, New York-Heidelberg, 1973.
- [3] CARADUS, S.R., "Generalized Inverse and Operator Theory", Queen's papers in pure and appl. math. 50, Queen's Univ. Kingston, Ont., 1978.
- [4] Goldberg, S., "Unbounded Linear Operators", McGraw-Hill, New York-Toronto, 1966.
- [5] HALMOS, P.R., "A Hilbert Space Problem Book", D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967.
- [6] HEUSER, H., "Funktionalanalysis, 3", Teubner, Stuttgart, 1991.
- [7] MBEKHTA, M., Partial isometries and generalized inverses, Acta Sci. Math. (Szeged), 70 (2004), 767-781.
- [8] RAKOCEVIC, V., Moore-Penrose inverse in Banach algebras, *Proc. Roy. Irish Acad.*, Sect. A, 88 (1988), 57–60.