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1. INTRODUCTION

Throughout this paper, X shall denote a Banach space and L£(X) the
algebra of all bounded linear operators on X. X* denotes the dual space of
X. For an operator T' € L(X) we write T for its adjoint, N(7T') for its kernel
and T'(X) for its range.

We will say that T € £(X) has a generalized inverse if there is an operator
S € L(X) for which

(1.1) TST=T and STS=S.

The operator S is called a generalized inverse of T'. We recall that in general
a generalized inverse is not unique and that 7" has a generalized inverse if and
only if N(T') and T(X) are closed and complemented subspaces of X (see for
instance, [3]). Observe that if (1.1) holds then T'S, ST, I — TS and I — ST
are projections, T'(X) = TS(X), S(X) = ST(X), N(T) = (I — ST)(X) and
N(S)= (I -TS)(X), hence

(1.2) X=T(X)®N(S) and X =S(X)& N(T).

A bounded linear operator T' on a Hilbert space is said to be a partial isometry
provided that || Tz|| = ||z|| for every z € N(T)*, that is

TT*T ="T.
In this case T is a contraction (see Chapter 13 in [5] for details).

In [7] M. Mebekhta has given the following characterization of partial
isometries on Hilbert spaces:
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THEOREM 1.1. IfT is a contraction on a Hilbert space, then the following
are equivalent:

1. T is a partial isometry;
2. T has a contractive generalized inverse.
Since assertion (2) of Theorem 1.1 does not depend on the structure of

a Hilbert space, Theorem 1.1 suggests the following definition of a partial
isometry on a Banach space. This definition is due to M. Mbekhta [7].

DEFINITION 1.2. An operator T' € £(X) is called a partial isometry if T
is a contraction and admits a generalized inverse which is a contraction.

Remarks. 1. As mentioned by Mbekhta in [7], one of the disadvantages of
Definition 1.2 is that, in general, an isometry on X (i.e. ||Tz| = || for all
xz € X) does not need to be a partial isometry. Indeed an isometry may not
have a generalized inverse.

2. In Definition 1.2, the contractive generalized inverse is not unique, as
is shown by an example in [7, p. 776].

The following proposition collects some properties of partial isometries on
Banach spaces. Proofs can be found in [7].

PRrROPOSITION 1.3. If T € L£(X) is a non-zero partial isometry and S is a
contractive generalized inverse of T then:

L i)l = 18] = TS| = IST| = 1;
2. S(X) C {o € X : |Ta = all}.

If T is a partial isometry on a Hilbert space H and S is a contractive
generalized inverse of T', then S = T* (see [7, Corollary 3.3]). Hence T has a
unique contractive generalized inverse. Furthermore, by (1.2),

(1.3) T"(H) = S(H) ={z € H : | Tz| = ||=[}.

In view of Proposition 1.3 (2) and (1.3) the following question, due to M
Mbekthta [7], arises:

QUESTION 1.4. If T € £(X) is a partial isometry on a Banach space X
and S is a contractive generalized inverse of T', does

(1.4) S(X) ={z e X : Tzl = l=[]} 7
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The following example, provide in [7], shows that in general (1.4) does not
hold.

EXAMPLE 1.5. Let X = C? be equipped with the norm ||(z,y)|| = |z|+y|,
and consider the operator

TZ((l) _Ol)eﬁ(X).

10
s=(00):
then it is easy to see that 72 = T, ||T|| = ||S|| = 1 and that T'ST = T
and STS = S. Thus T is a partial isometry and 7" and S are contractive

generalized inverses of T. For (0,1) € X we have T'(0,1) = (—1,0), thus
700, )] = 10, ]| = 1, but (0,1) ¢ S(X).

Take

PROPOSITION 1.6. If T' € L(X) is a partial isometry, then the following
assertions are equivalent:

1. There is a contractive generalized inverse S of T' such that (1.4) holds.

2. (1.4) holds for every contractive generalized inverse of T'.

Proof. We only have to show that (1) implies (2). Hence assume that S
and Sy are contractive generalized inverses of 7" and that (1.4) holds for S.
It follows from Proposition 1.3 (2) that So(X) C S(X), therefore SyT'(X) C
ST(X). This gives ST ST = SyT, thus ST = SyT', hence S(X) C Sp(X),
and so Sp(X) = S5(X). 1

In this paper we show that in the case of a strictly convex Banach space,
Question 1.4 has an affirmative answer. Furthermore we show that a partial
isometry on a strictly convex Banach space with a strictly convex dual space
has a unique contractive generalized inverse, and we give some corollaries of
these results.

2. RESULTS

We say that the Banach space X is strictly convex if the assumptions

r,y€ X, |zl =yll=1 and z#y
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imply that ||z + y| < 2.

We say that the norm of X is Gateaux-differentiable if, for all z € X \ {0}
and for all h € X, the limit
th|| —
Lz -+ th] — ol
t—0 t
exists when ¢ — 0 (¢ € R). The Banach space X is called smooth if its norm is
Gateaux-differentiable. The duality between strict convexity and smoothness
reads as follows (see [1]):
If X* is smooth, then X is strictly convex; if X* is strictly convex, then
X is smooth. Hence, if X is reflexive, then X is smooth (strictly convex) if
and only if X* is strictly convex (smooth).

ExAMPLES. 1. f X =P or X = [P (1 < p < 0), then X and X* are
strictly convex (see [6, §121]).
2. Let X = R? equipped with the norm

Il = 2 427+ 2

then X is strictly convex, but X* is not strictly convex (see [6, Aufgabe
121.2)).
3. Each Hilbert space is strictly convex ([6, §121]).

The main results of this paper read as follows:

THEOREM 2.1. If X is a strictly convex Banach space and T € L(X) is a
partial isometry with contractive generalized inverse S, then

S(X)={z € X :||Tz| =||z||} and ST = ST
for each contractive generalized inverse Sy of T'.

THEOREM 2.2. If X and X* are both strictly convex and if T € L(X) is
a partial isometry, then T has a unique contractive generalized inverse.

Remark. Asan immediate consequence of Theorem 2.2 we obtain [7, Corol-
lary 3.3]: a partial isometry on a Hilbert space has a unique contractive gen-
eralized inverse.
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Proof of Theorem 2.1. We have, by Proposition 1.3 (2) that S(X) C {z €

X : ||ITz|| = ||z||}. Now let x € X and ||[Tz| = ||z|]. We can assume that
1 = ||z|| = ||[Tz|. By (1.2) there are v € S(X) and v € N(T) such that
x = u + v. In view of Proposition 1.3 (2) we have ||Tu| = ||u||, thus

1= [lz|| = T[]l = [Tu] = [l

We have to show that v = 0. Assume to the contrary that v # 0. Then u # x.
Since X is strictly convex, it follows that ||z + u|| < 2. But

L= |Tull = IT(u+ z0)[| < |7 llu+ 5v]
= [lu+gvll = 52w+l = 3llz +ull <1,

a contradiction. Hence we have v = 0, and so z = u € S(X).

Now suppose that Sj is also a contractive generalized inverse of T. Then
So(X) = {z € X : ||Tz|| = ||=||}, thus S(X) = So(X). It follows that
ST(X) = SyT(X). Since N(ST) = N(T) = N(SoT), we get ST = SoT. 1

Proof of Theorem 2.2. Let S and Sy be contractive generalized inverses
of T'. Theorem 2.1 shows that ST = SyT, thus

(2.1) T*8* = T*S5 .

Since X* is strictly convex and T™ is a partial isometry with contractive
generalized inverses S* and Sj, we obtain as above that

(2.2) S*T* = SiT™ .
From (2.1) and (2.2) we now obtain that

S* = (S"T*)S* = (S;T")S* = Sg(T*S*) = SgT*Sy = S5 »
therefore S = Sy. 1

COROLLARY 2.3. If X* is strictly convex and if T € L(X) is a partial
isometry with contractive generalized inverses S and Sy, then

Proof. As in the proof of Theorem 2.2 we obtain S*T* = S;T*, thus
(T'S)* = (T'Sy)*. Hence TS =TSy and N(S) = N(Sp). 1
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COROLLARY 2.4. IfX is strictly convex, P € L(X), P> = P and ||P| = 1,
then we have:

L P(X)={z e X :|Pz| = [l||};

2. if S € L(X), PSP =P, SPS =S and ||S|| = 1, then §? = S, SP = P
and PS = 5.

Proof. Since ||P|| = 1, P is a partial isometry on X and P is a contractive
generalized inverse of itself. Thus, (1) follows from Theorem 2.1.

For the proof of (2) observe that S is a contractive generalized inverse of
P, therefore; by Theorem 2.1, SP = P2 = P. From this we get

52 = SPS(SP)S = SPSPS=SPS=25.

Therefore S is a partial isometry with contractive generalized inverses S and
P. Theorem 2.1 shows now that §2 = PS, hence S = PS. |

COROLLARY 2.5. Suppose that X and X* are strictly convex and that
Y # {0} is a closed and complemented subspace of X. Then there is at most
one projection P € L(X) such that |P|| =1 and P(X) =Y.

Proof. Let P and @ be projections with ||P|| = ||Q] = 1 and P(X) =
Q(X) =Y. Then P = QP and Q = PQ, thus P = P2 = P(QP) and
Q = Q? = Q(PQ). This shows that P is a partial isometry with contractive
generalized inverses P and (). By Theorem 2.2 it results that P = Q. |1

COROLLARY 2.6. Let T € L(X) be a partial isometry.

1. If X is strictly convex and T right invertible, then there is exactly one
right inverse of T' with norm 1.

2. If X* is strictly convex and T is left invertible, then there is exactly one
left inverse of T' with norm 1.

Proof. (1) Let S and Sy be right inverses of T" such that ||S| = [|S|| = 1.
Then T'S = TSy = I. 1t follows that S and Sy are contractive generalized
inverses of T'. Using Theorem 2.1 we obtain ST = SyT. Hence Sy = SoT'Sy =
STSy=S.

(2) Let S and Sy be left inverses of T' with ||S|| = ||So|| = 1. Then S* and
Sg are right inverses of T* with [|S*|| = ||S{|| = 1. By (1), §* = S, therefore
S=25. 1
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DEFINITIONS. 1. An operator U € £(X) is called hermitian if || exp(itU)]||
=1 for every t € R.

2. Let T € L(X). We will say that T+ € L£(X) is the Moore-Penrose
inverse of T' if T is a generalized inverse of T' and the projections TT" and
T*T are hermitian.

3. T € L(X) is called an MP-partial isometry if T' is a contraction and
admits a contractive Moore-Penrose inverse (see [7]).

Remarks. 1. A bounded linear operator has at most one Moore-Penrose
inverse (see [8]).

2. It is well-known that a bounded linear operator U on a Hilbert space
is hermitian if and only if U = U™ (see [2]).

3. f T € L(X) is an MP-partial isometry, then T is a partial isometry in
the sense of Definition 1.2.

COROLLARY 2.7. Let T € L(X) be an MP-partial isometry and S a con-
tractive generalized inverse of T'.

1. If X is strictly convex, then ST = T*T.

2. If X* is strictly convex, then TS = TT™.

3. If X and X* are strictly convex, then S =T™.

Proof. (1) follows from Theorem 2.1 and (2) follows from Corollary 2.3.
(3) is obtained from Theorem 2.2. |

QUESTION. (see [7, p. 780]) Let ' € £(X) be an MP-partial isometry.
Does

TH(X) ={z € X :||Ta| = [|=[|}
The following example gives a negative answer to this question.

EXAMPLE. Let X = C? be equipped with the norm |(z,9)| =
max{|z|, |y|} and consider the operator

T:(é 8>E£(X).

Then T2 = T and ||T|| = 1, therefore T ia a contractive generalized inverse
for itself. It is easy to see that

it
exp(itT) = < eo (1) ) )
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thus T is hermitian. Therefore T is an MP-partial isometry and T+ = T.
Take (z,y) = (1,1), then T(1,1) = (1,0) and [[T'(1,1)] =1 = |[(1,1)]|, but
(1,1) ¢ TH(X).

If T e £(X)\ {0} has a generalized inverse S, then S # 0 and ||T| =
ITST|| < | TSI, thus [T [|S]] > 1.

We say that T' € L£(X) is a generalized partial isometry if T = 0 or if T
has a generalized inverse S such that ||T'|| [|S|| = 1. Clearly, a partial isometry
is a generalized partial isometry. There are no restrictions on the norm for

generalized partial isometries, every Al is a generalized partial isometry, where
reC.

COROLLARY 2.8. Suppose that T € L(X) \ {0} is a generalized partial
isometry.

1. If X is strictly convex and S and Sy are generalized inverses of T such
that ||| ||S[| = [T/ || Soll = 1, then

S(X) = {z € X :||Ta| = |||z} and ST = SyT.

2. If X and X™ are both strictly convex, then there is exactly one general-
ized inverse S of T with ||T ||S|| = 1.

Proof. Let o= ||T|7", Ty = oT, S1 = 15 and S = 1S;. Then T} ST} =
Ty, SiT1S; = Si, |Th]| = 1 and ||S;|| = 1( = 1,2). Hence T} is a partial
isometry with contractive generalized inverses S; and S5.

(1) Since S(X) = S1(X), we derive from Theorem 2.1 that S(X) = {z €
X : [Tzl = ||z||} = {z € X : ||Tz|| = |T||||z||}. Furthermore we obtain
SlTl = SQTl, thus ST = S(]T

(2) In view of Theorem 2.2 we get S; = So, hence S =Sp. 1

For an operator T' € £(X) \ {0} the reduced minimum modulus is defined
by

Y(T) = inf{||Tz| : z € X, dist(z, N(T)) = 1}.

It is a classical fact that v(7') > 0 if and only if T'(X) is closed, and that
Y(T) = y(T*) (see [4] or [6]).

A proof of the following proposition can be found in [7].
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PROPOSITION 2.9. Let T' € L(X) \ {0} and S € L(X) be a generalized
inverse of T'. Then

| irsiisTi
<) < B2
s <7D = g

If T is as in Proposition 2.9, then

1
~(T) > sup{m :S e LX), TST =T, STS = S} .

COROLLARY 2.10. IfT € L(X)\{0} is a generalized partial isometry then
T) =T

Proof. Let S be a generalized inverse of T such that ||T||||.S]| = 1. Then
TS| < |IT||IS]| =1 and ||ST|| < 1, hence, by Proposition 2.9,

1 1
T|=— <y(T)< — = |T|.
17| IS (T) 17|

We say that T' € L£(X) is a semi-Fredholm operator if T(X) is closed and
dim N(T') < oo or codimT'(X) < oo.

The following result is well-known in the case of partial isometries on

Hilbert spaces ([5, Problem 101]).

THEOREM 2.11. Let X be an arbitrary Banach space.

1. If T € L(X) \ {0} is a generalized partial isometry, U € L(X) and
dim N(T) < dim N(U), then ||T —U|| > ||T]| .

2. If Ty, Ty € L(X) are generalized partial isometries and ||[T} — Ty| <
min{||T1|[, |72[[}, then

dim N(T1) =dim N(Tz) and codim7i(X) = codimT(X).

Proof. (1) Since T is semi-Fredholm and ||T|| = «(T), we have ||T| <
T — U|| by [4, Theorem V.1.6]. (2) follows immediately from (1) by duality.
1
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COROLLARY 2.12. If the generalized partial isometry T € L(X) is semi-
Fredholm and dim N(T') # codimT'(X), then

|IT = 81| = min{||T], |T||~"}
for each generalized inverse S of T' with ||T| ||S] = 1.

Proof. Assume to the contrary that |7 — S| < min{||T|, |T|~'} =
min{[|T||, ||S||}. It follows from Theorem 2.11 that

dim N(S) =dim N(T) and codimS(X) = codimT(X).

But (1.2) shows that dim N(S) = codim T'(X), thus dim N(T') = codimT'(X),
a contradiction. N
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