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An ellipse in R? can be defined as the locus of points for which the sum
of the FKuclidean distances from the two foci is constant. In this paper we
will look at the sets that are obtained by considering in the above definition
distances induced by arbitrary norms.

A real two-dimensional normed linear space will be referred to as a
Minkowski plane. For a Minkowski plane X with norm ||, let S(X) =
{z € X : |z|| =1} and B(X) = {z € X : ||z|| < 1} be, respectively, the unit
sphere and unit ball of X. For z € X, z # 0, let £ = z/||z||. The line through
x,y € X, x # y, will be denoted by (z,y), and the closed segment from z to y
by [z,y]. For A C X we denote by coA the convex hull of A. A closed convex
curve in X is the boundary of a convex body. The curve is said to be strictly
convex if it contains no segment.

DEFINITION 1. Let X be a Minkowski plane, z,y € X, = # y, and ¢ >
llz — y||. The set

Bz, y,c) ={z € X: |lz -zl + |y — 2l = ¢}

will be called the metric ellipse of foci z, y and size c.
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From the identity

T—Y Y—x r+y
(z,y,c¢) 5 5 ¢ + 5
le—y|| ./ —~ — 2¢ r+y
= E(x_yay_ma )
2 |z — yll 2

it follows that to study the structure and affine properties of any metric ellipse
one just needs to study the ellipses

B(z,e) ={y € X : [z +yl + |z —yll = ¢},

with z € S(X) and ¢ > 2.
Throughout the paper we shall often use the following lemma from [4].

LEMMA 1. [4, Proposition 1] For any distinct points z, y, z in a Minkowski
plane X, the inequality ||z — z|| < ||z — y|| + ||y — 2| becomes an equality if
and only if [u,v] C S(X), whereu =z —y andv =y — z.

Let us now look at the structure of metric ellipses. We begin by considering
the special case where z € S(X) and ¢ = 2.

THEOREM 1. Let X be a Minkowski plane and x € S(X). Then

(i) Ifz is a extreme point of S(X) then E(z,2) = [—z, z].

(ii) [5, Proposition 3.10] If [u,v] C S(X) is the maximal segment that con-
tains x, then E(x,2) is the parallelogram (including the interior) with
sides parallel to (0,u) and (0,v), and that has x and —z as opposite
vertices.

Proof. (i) It is obvious that for any z € S(X), [—z,z] C E(z,2). Assume
that there exists y ¢ [—z,z] such that ||z + y|| + ||z — y|| = 2. Then =z,
u=(z+y)/llz+y| and v = (x —y)/||z —y|| are three different points of S(X)

such that || | || |
_llz+y r—y
T = 9 u —+ 5 v,
which implies that z € [u,v] C S(X), i.e., x is not an extreme point of S(X). I

To study the case ¢ > 2, let us first define the set
D(z,c)={y € X: |ly+zll +[ly — =] <c}.

For every z € S(X), it is obvious that if ¢ < 2 then D(z,¢) = 0. On the other
hand, if ¢ > 2 then [—z,z] C D(z,c) and it is immediate to see that D(z,c)
is a bounded centrally symmetric closed convex set.
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THEOREM 2. Let X be a Minkowski plane. For every x € S(X) and ¢ > 2,
the metric ellipse E(x,c) is a centrally symmetric closed convex curve.

Proof. One just needs to show that E(z, ¢) is the boundary of D(z, ¢), i.e.,
E(z,c¢) = D(z,c¢)\Int D(z,c). Let A(z,c) ={y € X : |lz+y||+]z—yl| < c}.
Then E(z,c¢) = D(z,c)\ A(z,c). Since A(z,c) is an open subset of D(z, ¢) one
has that D(z,c)\Int D(z,c) C E(z,c). Now, let y € E(z,c). Since the convex
function f(t) = ||z+ty||+||z—tyl|, t € R, satisfies f(0) =2 < ¢ = f(1) one has
that it is strictly increasing for ¢ > 1. Any neighbourhood of y contains (1+0)y
for § > 0 small enough. Since f(1+0) > f(1) = ¢, then (1 + )y ¢ D(z,c).
Therefore E(z,c) C D(z,c¢) \ Int D(z,c). |

Recall that a normed space X is said to be strictly convex if the unit
sphere S(X) has no segment; equivalently, if |z + y|| = ||z|| + ||y|| imply
z = Ay, with A > 0. The following theorem shows the relationship between
the strict convexity of X and the strict convexity of the metric ellipses.

THEOREM 3. A Minkowski plane X is strictly convex if and only if, for
every © € S(X) and ¢ > 2, E(x,c) Is a strictly convex curve.

Proof. Let us assume that there exist y1,y2 € E(z,c), y1 # y2, such that
[y1,y2] C E(z,c). Then y; and ys are linearly independent and (y; + y2)/2 €
E(z,c). Therefore,

2¢ = |12z + y1 + y2l| + 122 — y1 — 2|
<llz+wull+ Iz + vl + [z — vl + [z — g2l = 2¢,

which implies ||z +y1[| + (|2 +y2ll = [122 +y1 + vl and [z — ][+ [z -yl =
122 — y1 — y2l|- Since y; and ys are linearly independent, one has that either
z+y; and =+ y9 or £ —y; and x — yy are linearly independent. Assuming the
first case and taking £ =z + y1, y = 0, 2 = —x — yo, one gets from Lemma 1
that [m, @] C S(X), i.e., X is not strictly convex.

Let us suppose now that X is not strictly convex and let u,v € S(X),
u # v, be such that [u,v] C S(X). Let x = (u — v)/||u — v|| and v > 1. Then
c=2(14+7)/|lu—wv| > 2. We shall show that E(z,c) is not strictly convex.
Let

yu + v U+ yv
vy = ;Y2 = .
[[u = o]l [lu = o]l
Thus, y1 # y2. Let y, = Ayr + (1 — N)yz, with 0 < X <1, and let
Aly—1 AMy—1)+2
aAZ(W )’ ﬁA:(v )+2

1+~ 147



276 W. SENLIN, J. DONGHAI, J. ALONSO

Then
1+~ 1+~
Yy, — & = au+(l—a)v), y, +z= Byu+ (1 —,)v),
) ||u—v||( A D) b ||u—v|\(A )
with 0 < o, <1 and 0 < 3, <1. Therefore,
144
ly, —=ll = lly, + 2l = 7—,
g g [lu— o

which implies that y, € E(z,c) and then [y;,y2] C E(z,c). 1

Theorem 2 shows that if X is a Minkowski plane then, for every z € S(X)
and ¢ > 2, the metric ellipse E(z,c) is a centrally symmetric closed convex
curve. Thus, there arises naturally the question of whether any centrally
symmetric closed convex curve in the plane can be a metric ellipse for some
Minkowski plane. The following theorem shows that the answer in general is
negative.

THEOREM 4. Let X be a Minkowski plane. There is no z € S(X) and
¢ > 2 such that E(z,c) is a parallelogram.

Proof. We shall prove the theorem by reductio ad absurdum. Let z € S(X)
and ¢ > 2 be such that E(z,c) is the parallelogram of vertices +y, £2. As in
the first part of the proof of Theorem 3 one gets that

757, 757 € S(X). 1)
Now, one can assume without loss of generality that
z=p(ay+ (1 — a)z)
with0 < @ <1/2and p > 0. Since ay+(1—a)z € E(z, c), from the identities
(p+z=pz+ay+(1—a)z), (p—Dz=p(z—ay—(1-a)z),
it follows that
p+1+lp=1=p(lz+ay+ (1 -a)z| + |z —ay— (1 —a)zl]) = pc > 2p,

which implies p < 1.
Assume that « # 0. Then, taking Z = 2pa(y —z), =0,z = (1+p—
2pa)(z —z),and T = (p— 1)(z + 2), y = 0, Z = 2pa(x — y), it follows from

(1) and Lemma 1 that

12pa(z = y)ll + |1+ p = 2pa)(z = 2)[| = [|(1 = p)(z + 2)||
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and
(o = V(@ + 2)|| + [12pa(z — y)|| = (1 + p — 2pa)(z — 2)|.
By summing the above identities one gets that x = y, which is impossible
because = ¢ E(z,c). Therefore & = 0, and then z = pz.
Since (z — 2)/||lz — 2| = —z, taking 2 =0, § = —z, Z =y, and £ = 0,
y = —x, Z = —y, one gets again from (1) and Lemma 1 that

Iyl =1+ [z +yll =1+ ||z -y,
from which follows that
2+ lz+yll + llz—yll =2[lyll < llz+yll + llz —yll,

which is impossible. 1

J. Lindenstrauss [3] introduced the modulus of smoothness pg(t) of a
normed space F as the function

1
pE(t) = 5 suplllz + eyl + llz —tyl =2 Jlo]l = llyl = 1}, ¢=>0.

A normed space E is uniformly smooth if and only if lim;_, pr(t)/t = 0.
Other known properties (see, e.g., [3], [6]) are the following:

(i) 0 < pg(t) <t, for t >0;

(ii) pg(t) is a monotone increasing convex function;

(iii) pr(t) = gsup{llz +tyl + lz —tyl =2 [lz] <1, [lyll < 1}, for ¢ > 0.

Theorem 5 shows the relationship between the “size” of metric ellipses and

the modulus of smoothness of a Minkowski plane X.

THEOREM 5. Let X be a Minkowski plane and let

c(t) = sup inf{c: tB(X)C D(z,c)}, t>0.
z€S(X)

Then
c(t)
px (t) = 7—1 for all ¢t > 0. (2)
Proof. Tt is convenient to recall that if ¢ < 2, then D(xz,c) = (). From (iii)
it follows that one only needs to prove that for every ¢t > 0 and z € S(X) the

identity

sup{||z + ty|| + ||z — ty|| : v € B(X)} =inf{c: tB(X) C D(z,c)}



278 W. SENLIN, J. DONGHAI, J. ALONSO

holds. Taking ¢ = sup{||z + ty|| + ||z — ty|| : v € B(X)} one has that if
y € B(X) then ||z + ty|| + ||z — ty|| < ¢, which implies that tB(X) C D(z,c).
Therefore ¢ > inf{c: tB(X) C D(z,c)}. On the other hand, if ¢ > 2 is such
that tB(X) C D(z,c), then ||z +ty||+ |z —ty| < ¢ for every y € B(X), which
implies ¢ < ¢. Thus one has ¢ < inf{c: tB(X) C D(z,¢)}. 1

The identity (2) was obtained by Baronti, Casini and Papini [2, (2.3)], for
t = 1. From (i), (ii), and (2) it follows that the modulus ¢(¢) is a monotone
increasing convex function such that 2 < ¢(¢) < 2(¢+ 1) for all £ > 0.

If H is an inner product space then pg(t) = V1 +t2 — 1 for every t >
0. Lindenstrauss [3] proved that for every normed space E, pg(t) > pu(t),
(t > 0), with the equality for every ¢ > 0 if and only if E is an inner product
space. In [1] this result was improved by showing that if pg(t) < pm(t) for
some ¢ > 0 not belonging to the countable and dense subset of R

k
T:{tani: n=23,..., k=12..,n—1}

then E is an inner product space. The above allows us to obtain the following
theorem from the identity (2).

THEOREM 6. Let X be a Minkowski plane. Then

(i) c(t) >2vV1+1t* for every t > 0.

(il) Ife(t) < 2v/1 4% for somet >0, t ¢ T, then the norm in X is induced
by an inner product, i.e., the unit sphere S(X) is an ellipse.

However, if ¢ € T then the identity c(t) = 2v/1 + ¢? does not force S(X)
to be an ellipse. For example, if S(X) is a 4n-gon then ¢(t) = 2v/1 + t2 for
t=tan% withk=1,2,...,n— 1.

If the norm in X is induced by an inner product, then for any z € S(X) and
¢ > 2 the ellipse E(z,c) is the set of points y = ax + Bz, where z+ € S(X),
zt Lz and /(a—1)2+ B2+ /(a+1)2 + 32 = c. Theorem 7 shows that
two-dimensional inner product spaces are the only Minkowski planes with such
ellipses.

LEMMA 2. A Minkowski plane X is an inner product space if and only if
there exists ey, ea € S(X) such that ||e; + tea||? = 1 + 2 for every t € R.
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1 1 X

z=(1,1)

N/

z = (1,0)

Figure 1: Metric ellipses E(z,c) for X = (R?,]| ||o) and ¢ = 3, 3.5, 4.

Proof. If X is an inner product space and ej,es € S(X) are such that
e1 L ey then |ley + teg|? = 1 + 2 for every t € R. Conversely, assume that
e1,e2 € S(X) are such that ||e; + tes||? = 1 + 2 for every t € R. Then e;
and ey are linearly independent, and for every s,t € R, ||se; +te||? = s + 2.
Let z,y € X and let a;,3; € R, i = 1,2, be such that £ = aye; + [1ea and
y = ager + frea. Then |z + yl” + [z — y[* = (a1 + a2)® + (B1 + f2)* +
(01 — 02)? + (81 — B2)? = 2(a? + 57) + 2003 + 52) = 2([12]> + ly]l2). .. the
parallelogram equality holds. 1

THEOREM 7. Let X be a Minkowski plane. Then X is an inner product
space if and only if there exist xo,yo € S(X) such that for any ¢ > 2

E(zg,¢) = {azo+ Byo : V(=124 2 +/(a+1)>+ B2 =c}.

Proof. One just has to prove the sufficiency. Let xg,yo € S(X) satisfying
the hypothesis. For every t € R, ¢t # 0,

o + 2ty € {amo+ﬁyo: \/(04—1)2+52+\/(04+1)2+52=c},

where ¢ = 2([t| + V1 + #2) > 2. Thus, 2y + 2tyo € E(0, c), which implies

|z + 2tyo + 2o + ||zo + 2tyo — zoll = 2(|t| + V1 +#2),

and then |zg + tyo| = V1 + ¢?. Lemma 2 completes the proof. |

EXAMPLE 1. Let X = (R?,|-|loc) and ¢ > 2. For 0 < v < 1, E((1,7),c) is
the convex polygon of vertices (5, 5 +v—1), £(5,1+v—35), £(1+v—5,5),
+(§+v—1,5). (See Figure 1.)
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Figure 2: Metric ellipses E((1,0),¢) for ¢ = 3, 3.5, 4 and several norms.

” Hoct 7 ’
[R[E: 2,00

EXAMPLE 2. Figure 2 shows the ellipses E(z,¢) with z = (1,0), ¢ =

3, 3.5, 4, and the norms

[1]
2]

3]
[4]
[5]
[6]

(@1, 22) foet = max{|z1] + (V2 = D]aal, |z2] + (V2 = 1)]a ]},
(@1, z2)lls = (21| + )2,

(:v% + m%)l/2 if zizo >0,

(1, 22)l]2,00 =

max{|z1],|z2|} if z129 <O.
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