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1. INTRODUCTION

Valdivia compacta and associated real Banach spaces were studied in [12,
13, 3] and later by the author [6, 7, 8]. In the present paper we introduce
associated classes of complex Banach spaces and discuss their properties in
relation to those of real spaces. We start by defining the relevant classes of
compact spaces and Banach spaces.

If I is any set we set

Y(T)={z € R" : {y €T : z(y) # 0} is countable}.

This space is considered with the pointwise convergence topology inherited
from R and is called a Z-product of real lines. Compact spaces which are
homeomorphic to a subset of 3(I") are called Corson.

A compact space K is Valdivia if it is, for a set I', homeomorphic to a subset
K' of R with K’ N X(T") dense in K’. A subset A C K is called a X-subset
of T if there is a homeomorphic injection 4 : K — R with A = h=1(2(T)).
Hence a compact space is Valdivia if and only if it admits a dense X-subset.

Valdivia compact spaces are a natural generalization of Corson compact
spaces. For example, the ordinal interval [0, w;] and the Tychonoff cube [0, 1]7
for I uncountable are Valdivia compact spaces which are not Corson.

We continue by the associated classes of Banach spaces. By a Banach space
we mean either a real or a complex Banach space, unless one of these possi-
bilities is explicitly chosen. If X is a Banach space and A C X, then span A
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denotes the set of all linear combinations (complex ones if X is complex, real
ones if X is real) of elements of A.

Let X be a Banach space. A subspace S C X* is a Y-subspace of X* if
there is M C X with span M dense in X such that

S={¢e€X":{x e€M:{(x)+#0} is countable}.

If X* is a 3-subspace of itself, the space X is called weakly Lindelof determined
(shortly WLD). A Banach space X is called Plichko (1-Plichko) if X* admits a
norming (1-norming, respectively) 3-subspace. Recall that S C X* is norming
if

2| = sup{lé(@)| : € € SN Bx-},  a € X,

defines an equivalent norm on X. If this norm is equal to the original one, S
is called 1-norming. Note that a subspace S C X™ is 1-norming if and only if
S N By~ is weak* dense in By=.

These classes have been previously defined for real spaces (see [2, 7]). It is
easy to check that our definitions are in the real case equivalent to the original
ones. For basic properties of Valdivia compacta and related real Banach spaces
we refer to [7]. In Proposition 2.3 below we recall only few properties which
will be constantly used.

If X is a complex Banach space, we denote by Xz the space X considered
as a real space. For any topological space K we denote by C(K,R) the space
of real-valued continuous functions on K and by C(K,C) the space of all
complex-valued continuous functions on K. If K is compact, we consider on
these spaces the supremum norm making C(K,R) a real Banach space and
C(K,C) a complex Banach space.

In the present paper we study namely complex 1-Plichko spaces. The
main results are contained in Section 3. They include ‘complex analogues’ of
some known results on real spaces, together with formulations which work in
both cases. Another part is the study of the relationship of the complex and
real spaces. This relationship is not obvious as, for example, it is not clear
whether a complex Banach space X is 1-Plichko whenever X is 1-Plichko
(see Section 4 for reformulations and related problems). We show that the
answer is positive in some special cases — for the space C(K, C) and for spaces
X such that X* is the weak* closed convex hull of its weak* Gy points.

On the other hand, it is easy to show that a complex Banach space X is
WLD if and only if Xz is WLD and that for any compact space K the space
C(K,C) is WLD if and only if C(K,R) is WLD. Similar equivalences hold for



COMPLEX BANACH SPACES WITH VALDIVIA DUAL UNIT BALL 245

several smaller classes of Banach spaces (separable, weakly compactly gen-
erated, subspaces of weakly compactly generated spaces, weakly K-analytic,
weakly countably determined). The definitions, basic properties and applica-
tions of these classes can be found for example in the book [4]. A detailed
list of characterizations of these classes, together with the results on duality
of these classes of Banach spaces and the respective classes of compact spaces
which are scattered in the literature, is contained in an unpublished note [9].

2. PRELIMINARIES

We will need the following easy proposition on the relationship of X and
Xg.

PROPOSITION 2.1. Let X be a complex Banach space.

e The identity X onto Xpg is a real-linear, isometric and weak-to-weak
homeomorphic map .

o Define the mapping ¢ : X* — X5, by ¢(£)(z) = Reé(z), z € X, { € X*.
Then ¢ is a real-linear, isometric and weak*-to-weak* homeomorphic
map. Moreover, for each £ € X* and x € X we have {(z) = ¢(&)(x) —

i (&) (iz).

The ‘isometric part’ of the first point is obvious. The ‘isometric part’ of the
second assertion, together with the representation formula, is a standard part
of the proof of complex Hahn-Banach theorem (see e.g. [5, p. 28-29]). The
‘weak’ and ‘weak™’ parts are easy consequences of the representation formula.

While any complex Banach space can be considered as a real one, any real
Banach space has a natural complex counterpart - the complexification (see
e.g. [5, p. 29]). IfY is a real linear space, its complexification Y is the
complex linear space of formal expressions x + iy, x,y € Y, with the obvious
addition and scalar multiplication. If Y is, moreover, a normed space, one can
define a norm on Yo by the formula

|z + iyl = max{llaz + Byl : @, f € R.a® + 7 < 1}

(note that the maximum is attained). It is easy to verify that this is really a
norm on the complex space Y. Further, clearly (Y¢)g is isomorphic to Y x Y.

This definition of complexification is quite natural as it can be (due to the
following proposition) described alternatively: If Y is a real Banach space, we
have a natural isometric inclusion of Y into C((By+,w*),R). Then the norm
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of Y¢ is the subspace norm on Y + ¢Y inherited from C((By-,w"),C). Note
however, that the complexification of some classical real spaces does not give
their usual complex version (e.g. the complexification of the real space ¢ is
not isometric to the complex £;).

PROPOSITION 2.2. Let K be a compact space. Then C(K,C) is isometric
to C(K, R)C .

Proof. The mapping f — Ref 4+ ¢Im f is clearly a linear bijection of
C(K,C) onto C(K,R)¢c. If z € K is arbitrary, then

|[f(2)] = V/(Re f(2))? + (Im f())?
= max{|aRe f(z) + Im f(z)] : o, B € R,a? + B2 < 1}
<|[Ref+ilmf],

and hence ||f|| < ||Re f +4Im f||. The inverse inequality follows immediately
from the following one:

laRe f(z) + BIm f(z)]| < Vo> + 5 - | f(2)].
1

In the following proposition we collect some basic properties of Valdivia
compacta which are proved in [7, Chapter 1].

PRrROPOSITION 2.3. Let K be a compact space.

(1) Any X-subset of K is countably compact and Fréchet-Urysohn (i.e.,
closures are described by limits of converging sequences).

(2) If A is a S-subset of K and C C A is countable, then C C A.

(3) If A C K is a dense countably compact set, then G N A is dense in G
for each Gg set G C K.

(4) Let A, B be two subsets of K which are countably compact and Fréchet-
Urysohn. If AN B is dense in K, then A = B.

(5) If A C K is a dense X-subset of K, then K is the Cech-Stone compact-
ification of A.

A powerful tool to deal with Valdivia compacta is provided by their char-
acterization using the notion of primarily Lindel6f space. Let us recall the
definition. If I' is any set, Lt denotes the one-point lindeltfication of the
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discrete space I'. I.e., Lp = I'U{oc} where points of I" are isolated and neigh-
borhoods of oo are complements of countable subsets of I'. A topological space
is primarily Lindelof if it is a continuous image of a closed subset of L§ for a
set T'.

Note that any primarily Lindelof space is Lindelof and the class of primar-
ily Lindelof spaces is stable to closed subsets, continuous images, countable
products and countable unions (see [1, Section IV.3]).

3. VALDIVIA COMPACTA AND 1-PLICHKO BANACH SPACES

We start this section by a characterization of Valdivia compacta or, more
precisely, of dense Y-subsets generalizing Pol’s theorem from [10] (see [1, Sec-
tion IV.3]). By 7,(A) we denote the topology of pointwise convergence on

A.

THEOREM 3.1. Let K be a compact space and A C K a dense subset.
The following assertions are equivalent.
(1) A is a X-subset of K.
(2) A is countably compact and (C(K,R), 1,(A)) is primarily Lindeldf.
(3) A is countably compact and (C(K,C), 1,(A)) is primarily Lindeldf.
Proof. The equivalence 1<=>2 is proved in [6, Theorem 2.1] (see also [7,

Theorem 2.5]). To show 2<=>3, just note that (C'(K,C), 7,(A)) is canonically
homeomorphic to (C(K,R),7,(A4))?. 1

A Banach space counterpart of the previous theorem is the following one.
Recall that a subset A of a Banach space is absolutely convex if Y ;' | Aiz; € A
whenever z1,...,2, € A and Ai,..., A, are scalars satisfying Y ;" | |\ = 1.

THEOREM 3.2. Let X be a Banach space and A C Bx+ be a weak™* dense
subset. The following assertions are equivalent.

(1) There is a ¥-subspace of X* with A = SN Bx-. (Note that S is neces-
sarily 1-norming.)

(2) A is an absolutely convex -subset of (Bx~,w™).

(3) A is weak* countably compact and (X,0(X, A)) is primarily Lindel6f.

The topology o (X, A) is the weakest topology on X making all functionals
from A continuous.
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Proof. For real spaces the theorem is proved in [6, Theorem 2.3] (see also
[7, Theorem 2.7]). One needs only to observe that an absolutely convex subset
of a real space is just a convex symmetric set.

Let us prove the theorem for X complex.

The implication 1 = 2 is obvious.

For the proof of 2 => 3 we follow the proof of the respective implication of
[7, Theorem 2.7]. Consider the canonical embedding e : X — C((Bx-,w"),C)
defined by e(z)(¢) = &(z). As (C((Bx+,w*),C),7,(A)) is primarily Lindelof
by Theorem 3.1 and e is o(X, A) — 7,(A) homeomorphism, it is enough to
show that e(X) is 7,(A)-closed in C((Bx+,w*),C). Let = be in the 7,(A)-
closure of e¢(X) in C((Bx+,w*),C). Then clearly:

e =(0) =0;
e =|A is affine;

o Z(a€) =aE(¢) foreach a € C, o] =1 and £ € A.

As A is weak* dense in Bx+, we get that = is the restriction of a linear
functional. Hence E € e(X) by the Banach-Dieudonné theorem [5, Corollary
224].

Also the proof of 3 = 1 follows the proof of [7, Theorem 2.7]. By a
result of Gul’ko (see [10, Proposition 1.4] or [1, Proposition IV.3.10]) there is
a continuous one-to-one linear map T} : (C((X,0(X, A)),R),7,) — X(T') for
a set T. Define Tj : (C((X,0(X, A)),C),7,) — C by To(f) = T4(Re f) +
iT3(Im f). Then T} is a continuous one-to-one linear map with range in

Yo(T) ={z €C :{yeTl:z(y) #0} is countable}.

Clearly span A C C((X,0(X,A)),C) and the weak* topology on span A coin-
cide with the topology of pointwise convergence on X. Hence Ty(A) is dense
in Ty(span AN Bx+). However, Ty(A) is a countably compact subset of ¥¢(T)
and hence it is closed in this space (see [7, Lemma 1.8]). It follows that
A =span AN Byx+. It remains to show that span A is a Y-subspace of X*.
By [6, Lemma 2.18] applied to the space Xp we get that (Bx«,w*) is
the Cech-Stone compactification of A. It follows that Ty can be extended
to a linear map T : X* — C' such that Tipy. Is weak*® continuous. By
Proposition 2.3(5) the space T(Bx-) is the Cech-Stone compactification of
T(A) and hence T is one-to-one. By Banach-Dieudonné theorem [5, Corollary
224] the map T is weak™ continuous. Hence for each v € I' there is z, € X
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with T'(&)(y) = &(z4) (see [5, Theorem 55]). Set M = {z, : vy € I'}. Then
span M is dense in X (as T' is one-to-one). Moreover,

span A ={£ € X" : {z € M : {(z) # 0} is countable}.

Indeed, the inclusion C is clear, the inverse one follows from Proposition
2.3(4). This completes the proof. 1

In a similar way we can characterize norming ¥-subspaces.

THEOREM 3.3. Let X be a Banach space and S C X* a norm-closed
norming subspace. Then the following assertions are equivalent.

(1) S is a ¥-subspace of X*.

(2) S is a countable union of weak* countably compact sets and (X, o (X, S))
is primarily Lindelof.

Proof. Up to changing the norm on X by an equivalent one we can suppose
that S is 1-norming.

Then 1 = 2 follows from Theorem 3.2.

Let us show 2 = 1. We have S = |J, .y Sn with each S, weak™ countably
compact. As S is norm closed, by Baire category theorem there is £ € S and
r > 0 such that B(&,7) NS, is norm-dense in B(&,7) N S. As S is a linear
subspace, it follows that SN Bx~ has a norm-dense weak* countably compact
subset D. Then D = SN Bx-. Indeed, if £ € (SN Bx+) \ D, there is a
sequence of d,, € D norm-converging to {. Then the sequence {d,} has no
weak* cluster point in D, a contradiction with weak* countable compactness
of D. We conclude by Theorem 3.2 that S is a ¥-subspace of X*. |1

Now we proceed to the relationships of the complex and real cases.

PROPOSITION 3.4. Let X be a complex Banach space and S C X* be a
linear subspace. Let ¢ : X* — X}, be as in Proposition 2.1.

e If S is 1-norming, then ¢(S) is a 1-norming subspace of X7,.

e If S is norming, then ¢(S) is a norming subspace of X7,

e If S is a ¥-subspace of X*, then ¢(S) is a X-subspace of X,

Proof. The first assertion follows immediately from Proposition 2.1. To
see the second one use the first one together with the fact that S is norming
if and only if it is 1-norming for an equivalent norm.
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Let us show the last assertion. For a subset A C X we denote by span A
(spanp A) the set of all complex (real, respectively) linear combination of the
elements of A.

Let M C X be such that span- M is dense in X and S ={{ € X*: {z €
M : &(z) # 0} is countable}. Set M’ = M U4iM. Then spanp M’ is dense
in X. Further, if £ € X* and z € X, then &(x) = Reé(z) — iRe&(iz) (see
Proposition 2.1). Hence &(z) = 0 if and only if Re{(z) = 0 and Re{(iz) = 0.
Thus

S={¢eX*:{xe M :Re&(z) # 0} is countable},

therefore ¢(S) is a X-subspace of Xj,. 1

THEOREM 3.5. Let X be a complex Banach space. Consider the following
assertions.

(1) X is 1-Plichko.
(2) Xg is 1-Plichko.

3) (Bx+,w*) is a Valdivia compactum.
(3) (Bx~, p

Thenl — 2 — 3. If Bx+ is the weak™ closed convex hull of its weak*
Gs-points, then 1 <> 2.

Proof. The implication 2 = 3 easily follows from the definitions and
Proposition 2.1, 1 = 2 follows from Proposition 3.4.

Finally, suppose that Bx- is the weak™ closed convex hull of it weak™ G-
points. We will show 2 = 1. Let G denote the set of all weak™ Gs-points
of Bx+. Let Xg be 1-Plichko. Then (Bx-,w") has a dense convex symmetric
Y-subset A (see Theorem 3.2). Let a € C be such that |a| = 1. As z — az
is a homeomorphism of (Bx-,w"), a4 is also a (convex symmetric) Y-subset.
By Proposition 2.3 ANaA contains G, hence also conv G, so ANaA is weak™
dense in Bx«. It follows from Proposition 2.3 that A = aA. Thus A is
absolutely convex and, by Theorem 3.2, X is 1-Plichko. 1

It is natural to ask whether the converse implication are valid. It turns out
that the implication 3 = 2 does not hold even if we suppose that (B, w")
has a dense set of G5 points - see Example 3.9 at the end of this section. We
do not know whether 2 = 1 holds in general. The following example shows
that a converse of Proposition 3.4 is false.
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EXAMPLE 3.6. There is a complex Banach space X and M C X with
spanp M dense in X such that the X-subset Sg of X7, defined by M is 1-
norming while the Y-subset S of X* defined by M is not even weak* dense.
Moreover, A = ¢~ 1(Sg) N Bx+ is a convex symmetric X-subset of Bx+ which
is not absolutely convex. (¢ is the map defined in Proposition 2.1.)

Proof. Let X = ¢1(T") (= £,(I",C)) for some uncountable I'. By e,, vy € '
denote the canonical unit vectors. Choose g € I' and set

M = {eqqsieq0} U{ey = ey iy €T\ {0} Udi(ey +ey) sy €T\ {10}}-

Then spanp M is clearly dense in X. Further, X* can be canonically identified
with £oo(T) (= £oo (T, €)).
The Y-subspace of X* defined by M is

S ={&=(&)yer : {z € M : £(x) # 0} is countable}.

Suppose that £ € S. Then there is v € I' \ {7} such that £(e, — e,,)

£(i(ey +ey)) = 0. But {(ey —eyy) = & — &y and £(i(ey +€44)) = i(&y +&y)-
If both these numbers are 0, necessarily &, = 0. Hence

S C {€ € Loo(T) : £(eyy) = O}

The set on the right-hand side is a weak* closed hyperplane, so S is not weak*
dense.
The Y-subspace of X7, defined by M is

Sr=1{{ = (ay +iBy)yer : {x € M : Re&(z) # 0} is countable}.

Let £ = (ay+ify)yer € loo(I') and v € T\ {9 }. Then Re&(ey—e,,) = ay—ary,
and Re&(i(ey + ey,)) = =By — [y, Thus

Sp={¢=(&)yer: {y €T : & #&,} is countable}.

This subspace is clearly 1-norming.
That A = ¢~!(Sg) N Bx- satisfies the required property is obvious. [}

We continue by a result on the relationship of Y and Y.

THEOREM 3.7. Let Y be a real Banach space. If Y is 1-Plichko, Y¢ is
1-Plichko as well.
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Proof. Let M be a subset of Y such that span M is dense in Y and the
Y-subset S defined by M is 1-norming. We can consider Y as a subset of Y¢
(identify each y € Y with y + ¢0). Then Y is a closed real-linear subspace of
Yc. Note also that the original norm on Y coincide with the subspace norm
inherited from Yo. Hence M can be also viewed as a subset of Y. Clearly
span M is dense in Y and thus M defines a 3-subspace of Yi. We are going
to show it is 1-norming.

First note, that Y is isomorphic (not necessarily isometric) to (Y*)c.
Indeed, if £, € Y™, then

(€ +in)(z +iy) = &{(x) —n(y) +iE(y) +n(z)), =z+iy€Ye

defines an element of Y. Conversely, it is easy to see that each element of
Y/ has this form. As M C Y, the X-subspace of Y defined by M is equal to

S+iS={{+in.&ne S}

Now we are going to show that S + ¢S is 1-norming.

Let zg + iyg € Yo be arbitrary. Then there exist real numbers «, 8 with
o? + 82 = 1 such that ||z + iyo||y. = ||azo + Byolly. As S is 1-norming and
S N By is weak™ countably compact, there is £ € S with ||£|| = 1 such that
|€(azo + Pyo)| = llaze + Byolly. Note that this & has norm one also when
considered as an element of Y. Indeed, let = + iy € Y. Choose 7,6 € R
with 42 + 62 = 1 such that |¢(z) + i€ (y)| = |[vé(x) + 6€(y)|. Then

1€(z 4+ iy)| = |€(z) +i&(y)| = [v&(z) + 0 (y)
= |{(yvz + 0y)| < |lyz + dylly < ||z + dy|lve.-

Set £ = (o — iB)¢. Then £ € S +iS and ||€] = 1. Moreover,

|€(zo +1yo)| = [(a —iB)E(zo + iyo)| = (o — iB)(&(wo) + 1€ (yo))|
= |{(amg + Byo) + i€ (ayo — Bzo)| > |{(azo + Byo)| = ||zo + iyoll-

This completes the proof. |

It is not clear whether the converse is true. Amnother open question is
whether Y¢ is 1-Plichko whenever (Y¢)g is 1-Plichko. For C'(K) spaces both
questions have positive answers and hence the conditions (1) and (2) of The-
orem 3.5 are equivalent in this case. It is contained, together with other facts
on C(K) spaces, in the following theorem.
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THEOREM 3.8. Let K be a compact space. Consider the following asser-
tions:
(1) K is Valdivia.
(2¢) C(K,C) is 1-Plichko.
(2(-) C(K,C)p is 1-Plichko.
(2r) C(K,R) is 1-Plichko.
(3) P(K) has a dense convex Y.-subset.
(4c)
(4r) (Bo(kry,w*) is Valdivia.
(5) P(K) is Valdivia.

(Bo(k,c),w”) is Valdivia.

Then the following implications hold:

l = 20=2 =2+~ 3 = ¢

4 4

4r = 5

If K has a dense set of Gs-points, then all these assertions are equivalent.

Proof. By [7, Theorem 5.2] we have 1 =— 2p <—= 3 = 4p = 5.
Further, 2c = 2{, by Theorem 3.5 and 2¢ = 4 is clear.

As P(K) = {¢£ € C(K,C)* : ||€|| <1 & £(1) = 1} and this set is weak™
G5 in Bo(g,c), the implications 2, == 3 and 4¢c == 5 follow from
Proposition 2.3.

The implication 2 = 2 follows from Proposition 2.2 and Theorem 3.7.

If K has a dense set of Gs-points, then 5 = 1 by [7, Theorem 5.3]. I

We do not know whether all the assertions in the previous theorem are
equivalent without the additional assumption.

ExXAMPLE 3.9. There is a complex Banach space X isomorphic to
C([0,w1],C) such that (Bx~,w*) is Valdivia but Xg is not 1-Plichko.

Proof. In [8] a real Banach space Y isomorphic to C([0,w1],R) such that
(By~,w*) is Valdivia but Y is not 1-Plichko is constructed. For the new
example we use the same method:

Note that the dual C([0,w;],C)* is, due to Riesz theorem, identified with
the space M of all complex Radon measures on [0,w;]. Define f : M — C by
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f(p) = p({0}) - [n({0})]. Set

A={peM:|pl <1 & p({w}) = f(n)},
B ={peM:|u([0,w1)) + [f ()] + [u({wi}) = fF(u)| < 1}

Then the following hold.

(a) B is convex and B = B for each a € C, |o| = 1.
(b

)
) B is weak* closed.
(c¢) If Bys denotes the unit ball of M, there is 0 > 0 with By, C B C Byy.
(d)

)

d) A is a dense X-subset of (B, w*).

(e) A is not convex.

Suppose that we already know that (a)-(e) hold. It follows from (a)—(c)
that there is an equivalent norm | - | on C([0,w;],C) such that the respective
dual unit ball is B. Set X = (C([0,w1],C),|-|). The dual unit ball is Valdivia
by (d). Further, B has a dense set of G points (it follows from [4, Theorem
1.1.3] that (C([0,w1]), C) g is Asplund, then use [4, Theorems 1.1.1 and 5.1.12])
and hence A is the unique dense X-subset of B (by Proposition 2.3). Hence,
by (e) (B,w*) has no convex dense X-subset and so Xp is not 1-Plichko (by
Theorem 3.2).

It remains to show the assertions (a)—(e). Except for convexity of B they
are either easy or they can be derived from the results of [8]. As f is clearly
weak* continuous, the assertions (b) and (d) can be proved copying the proof
of [8, Lemma 4] and the assertion (c) follows from the proof of [8, Lemma 3].
If a € C, |af =1, then f(ap) = af(p) for each p € M and hence aB = B.
Finally, A is not convex, as 0 and %50 + %(Ll belong to A but %50 + %(Ll does
not. (Note that §, is the Dirac measure supported by z.)

To show that B is convex we cannot use directly [8, Lemma 1] as it heavily
uses the functions in question are real. In fact, this lemma is false for complex
functions. We will show it using some facts on delta-convex mappings. Let Y
and Z be real normed spaces and F' : Y — Z a mapping. The mapping F' is
said to be delta-convex [14] if there is a continuous convex function f: Y — R
such that f + ( o F' is a continuous convex function on Y for every ( € Z*,
||l = 1. Such a function f is called a control function of F'.

We will need the following result on superpositions of delta-convex map-
pings proved in [14, Proposition 4.1].
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LEMMA 3.10. Let X, Y, Z be real normed spaces, F' : X — Y be delta-
convex with a control function f, G : Y — Z be delta-convex with a control
function g. Suppose further that G and g are Lipschitz on Y with constants
Lg and L.

Then the mapping G o F' is delta-convex on X with a control function
goF+ (La+Lg)f.

Using this lemma we can show the following one.

LEMMA 3.11. Let X and Y be real normed spaces and F : X — Y be
a delta-convex function with a control function f(xz) = | F(z)|. Then the
function H : X XY — R defined by H(z,y) = |F(z)||+ |ly — F(z)| is convex.

Proof. First note that the mapping @ : X x Y — Y defined by Q(z,y) =
y — F(z) is delta-convex with the control function f(z,y) = ||[F(z)]|.

Further, the map G : Y — R defined by G(y) = |ly|| is convex and 1-
Lipschitz. Therefore G is a delta-convex mapping with a control function
g = G. Using Lemma 3.10 we get that the mapping G o Q(z,y) = ||y — F(x)||
is delta-convex with a control function h(z,y) = ||y — F(z)|| + 2||F(z)|]. In
particular, 2H = h + G o () is convex, hence H is convex, too. |

LEMMA 3.12. The function ¥ : C — C defined by ¥(z) = z|z| is delta-
convex with a control function 1(z) = |z|?> (C is considered as the two-
dimensional real Hilbert space).

Proof. First we express ¥ and 1) as maps on R?. Then

U(z,y) = Va2 +y? - (z,), (a,y) €,

Y(z,y) = 2* + 7, (z,y) € R,
To show that ¥ is a delta-convex mapping with a control function v, we will
use the definition. We have to show that ¢+ &0 W is convex for each ¢ € (R?)*
with ||¢]| = 1. Let ¢ € (R%)* be of norm one. Then there are a,b € R with

a? 4+ b? = 1 such that &(z,y) = az + by for (z,y) € R2. Hence we need to
prove that the function

(z,y) — 2 4+ + (az + by) vV 22 + y?

is convex on R? whenever a? + b = 1. Due to symmetry (i.e., up to a choice
of another ortonormal basis) we may suppose a = 1 and b = 0. Hence, it
remains to show that the function

g(zy) = 2 +y* + a/a? + 42
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is convex on R2. The function g is C*® on R? \ {(0,0)} and hence we can
compute the Hess matrix for any point (z,y) except for (0,0). This matrix is
equal to

223 + 3z y? + 2 (a2 +y?)3/2) y?
(2 + 42) 3/ (22 + y2)3/2)
Y 23 + 2 (22 + y2)6/2)
(22 + 2)(3/2) (22 + y2)(3/2)

The determinant is equal to

32$2+2$ /$2+y2+y2_3($+ $2+y2)2
.'L'2+y2 - «T2+y2 .

This expression is nonnegative and for y # 0 it is strictly positive. Further,
3+ 2 (22 + y2)(3/2)

Py
Oy (z,y) = (22 +y2)(3/2)

is also nonnegative and for y # 0 strictly positive. Hence the Hess matrix is
(by the Sylvester rule) positive definite whenever y # 0.

If y =0, then
82g( )_2m3+3xy2+2(m2+y2)(3/2)
op2 Y = (22 1 42)B/2
223 + 2|z|3
is equal to %F’m’ and hence it is nonnegative. Thus, again by the
z

Sylvester rule, the Hess matrix is positive semidefinite.

It follows that the function g is convex on each line noncontaining (0, 0)
and on each half-line starting at (0,0). To complete the proof that g is convex,
it remains to show that the function u(t) = g(tx,ty) is convex on R for
each (z,y) € R%\ {(0,0)}. We already know that any such u is convex on
(—00,0] and on [0, +00). Further, v'(0) = 0 and hence u is convex on R. This
completes the proof. |

Now we are ready to complete the proof of Example 3.9. It follows from
Lemma 3.12 and Lemma 3.11 that the function (w, z) — |2]? + |w — 2|2|| is
convex on C2. As p— (u({0}), u({w1})) is a linear map, the map

po= () + p({wi}) — ()]

is convex on M and hence the set B is clearly convex. |
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4. FINAL REMARKS AND OPEN QUESTIONS

In this section we comment some open questions mentioned above and
give some related problems. First one concerns Theorem 3.8 — are all the
conditions equivalent? This was asked, in fact, already in [7, Question 5.10].
We can sum up the question to the following one.

QUESTION 4.1. Let K be a compact space such that P(K), the space of
all Radon probability measures on K equipped with the weak* topology, is a
Valdivia compactum. Is K Valdivia, too?

Another question is related to Theorem 3.5.

QUESTION 4.2. Let X be a complex Banach space such that Xp is 1-
Plichko. Is X 1-Plichko, too?

Example 3.6 shows that there may exist 1-norming ¥-subspace of X5 such
that ¢~!(S) is not a ¥-subspace of X* (¢ is the mapping from Proposition 2.1).
However, the example is /1 (T") for a set T' and this space is 1-Plichko — the
Y-subspace generated by the standard basis is 1-norming.

In view of Theorem 3.2 the previous question is equivalent to the following
one.

QUESTION 4.3. Let X be a complex Banach space such that (By~,w®)
has a dense convex symmetric X-subset. Does (Bx~,w*) admit another dense
Y-subset A which is convex and satisfies A = A for each a € C, |a| =17

This question inspires some further questions on the algebraic structure of
Valdivia compacta. Namely, let K be a Valdivia compactum and G a group of
homeomorphisms of K. Is there a dense Y-subset A of K which is G-invariant
(i.e., g(A) = A for each g € G)?7 This general question has a negative answer:
Let K = {0,1}! where I has cardinality continuum. Then K is Valdivia. By
[11] there is a minimal homeomorphism h of K (i.e., all orbits of h are dense
in K). Then there is no h-invariant nonempty Y-subset of K. Indeed, if A
is a nonempty h-invariant set, A contains a countable subset dense in K. If
A was a Y-subset, it would be countably closed in K and hence equal to K.
However, K is not Corson, as it is not Fréchet-Urysohn.

Hence we will ask more modestly:

QUESTION 4.4. Let K be a Valdivia compact space and G a finite abelian
group of homeomorphisms of K. Is there a G-invariant dense Y-subspace?
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The positive answer to this question would not solve the previous one, as
the group of homeomorphisms = — az, |a| = 1 is infinite and, moreover, the
previous question deals with convex sets. However, we do not know answer
even to this question and it seems that a positive answer could help to better
understand the previous case. In fact, we do not know answer even to the
following question.

QUESTION 4.5. Let K be a Valdivia compact space and h : K — K be
a homeomorphism such that h o h = idg. Is there an h-invariant dense -
subset?

In particular, the following question is open.

QUESTION 4.6. Let X be a Banach space such that (Bx-,w*) is Valdivia.
Is there a symmetric dense Y-subset of (Bx«,w*)?

Note, that if A is a dense X-subset of K and h a homeomorphism of K
onto K, then h(A) is a dense Y-subset, too. Hence, if K has a unique dense -
subset, it must be h-invariant. It follows that the method used in [7, Example
6.8], [8] and in Theorem 3.9 above to produce convex Valdivia compacta with-
out dense convex Y-subsets, cannot be used to produce counterexamples to
the mentioned questions, as all these examples are convex Valdivia compacta
with a unique non-convex dense Y-subsets.

The following isomorphic version of Question 4.2 seems to be open, too.

QUESTION 4.7. Let X be a complex Banach space such that Xp is Plichko.
Is X Plichko, too?

Another question concerns the complexification.

QUESTION 4.8. Suppose that Y is a real space such that Yo is 1-Plichko.
Is Y 1-Plichko, too?

The converse is true by Theorem 3.7. If Yo is 1-Plichko, then (Y¢)g is
1-Plichko by Theorem 3.5. It is clear that Y is a 1-complemented subspace of
(Yo)r. Hence the last question is a particular case of [7, Question 4.45(ii)].

Added in proof. T. Banakh and W. Kubi$ recently showed that Question
4.1 has a negative answer. They constructed a non-Valdivia compact space
K such that the space C(K) is 1-Plichko.
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