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1. INTRODUCTION AND STATEMENT OF RESULTS

The classical Pitt’s lemma [32] asserts that L£(¢p, ;) = K(£p,£,) for 1 <
g < p < 4oo (for p < ¢ the canonical inclusion ¢, en ¢, is not compact).
Pelczynski [31] extends this result to N-linear forms to show that the norm
|| - || cannot be uniformly approximated by polynomials in a class of spaces
that includes the £, for 1 < p < +o00 and c¢q. However, the core of Pelczynski’s
ideas seems to be the so-called 7, continuity (see below) of multilinear forms,
and from that their weak sequential continuity.

Several authors have obtained different extensions of the results of Pitt
and Pelczynski: Emmanuele [17], Aron-Globenik [4], Gonzalo-Jaramillo [22],
Dimant-Zalduendo [14], Alencar-Floret [2], Ausekle-Oja [6]; and there are
many other papers dealing with different aspects of the result [11, 15, 16, 29,
34, 35, 36]... Apparently, the most general form of the result, from now on
called Pelczynski-Pitt theorem, was obtained by Alencar and Floret in [2],
and it connects the three main topics involved in the problem:

PROPOSITION 1. Let 1 < p;,q < +o00. The following are equivalent:
(1) Every N-linear map £y, X --- X £y, — £, is sequentially weak to norm
continuous.
(2) Every N-linear map £y, X --- X £y, — £, is compact.
1 1 1

(4) The space of multilinear forms LN ( £y, ,£yy;¢,) is reflexive.

*This research has been supported in part by the project MTM2004-02635.
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The weak-to-norm sequential continuity of multilinear forms is in fact the
common point in most of the previous papers, although not always explicitly
considered. Moreover, the weak-to-norm sequential continuity of multilinear
forms is connected with several problems in Banach space theory such as:

e The impossibility of uniformly approximating the norm by polynomials
(Pelczynski [31], see also Kurzwell [27]).

e The existence of bases of monomials in spaces of polynomials or mul-
tilinear forms (Alencar [1], Dimant-Zalduendo [14], Dimant-Dineen [13]
and Ryan [34]).

e Interpolation with polynomials in infinite dimensional spaces -namely,
given a bounded sequence (z,) € X and (a,) € lo does there exist
a polynomial P € P(™X) such that P(z,) = a,? (Valdivia [35] and
Dineen [15, 16]). See also Aron-Globevnik [4] and Gémez-Jaramillo [19]
for other types of interpolation.

e Several approximation problems in infinite dimension (Aron-Prolla [5]
and Llavona [30]).

e The embedding of /., in spaces of polynomials or multilinear forms
(Dineen [16] y [36]).

e The reflexivity of spaces of polynomials and operators (Alencar [1],
Gonzalo-Jaramillo [22], see also [2, 6, 14, 18, 34, 35]).

The weak-strong continuity of N-linear mappings was studied in [2] redis-
covering Pelcynski’s notion of 7,-convergence. Recall that for 0 < a <1 a
sequence (z,) is sad to be 7,-convergent to 0 if there is a constant C' > 0 such
that for all finite subsets B C N one has

| >
neB

A different tool introduced by Gonzalo [20] were the lower index [(X) and
the upper index u(X) of a space X: A sequence (z,) is said to admit an
upper p-estimate (resp. a lower p-estimate) if for some constant C' and all
finite sequences of scalars (r,) one has || 7z, < Cl[(ry)l, (resp. >).
A Banach space X is said to admit an upper p-estimate (resp. a lower ¢-
estimate) if every normalized weakly null sequence contains a subsequence

< C|B°.
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admitting an upper p-estimate (resp. a lower g-estimate). The definitions of
the indices I(X) and u(X) are as follows:

[(X) =sup{p > 1: X admits upper p-estimates}

u(X) = inf{q < 400 : X admits lower g -estimates}.

The relationships between the 7,-convergence, upper and lower index can
be seen in [2, 21]. Several authors, such as Gonzalo-Jaramillo [22], Dimant-
Zalduendo [14] and others [21, 23, 35] use the lower and upper estimates to
study the weak-to-norm continuity of N-linear forms. Finally, other authors
[6, 11, 26, 29] use implicitly in their papers these notions.

Let us denote by £V (X) the space of all N-linear forms on X, by LY. .(X)
the space of all weakly sequentially continuous N-linear forms on X and by
KN (X) the space of all compact N-linear forms on X. Recall that a multi-
linear form is said to be weakly sequentially continuous when it transforms
weakly Cauchy sequences into convergent sequences; and compact if the image
of the unit ball is a relatively compact set. Probably the basic fact connect-
ing estimates and weakly sequentially continuous polynomials is: If X admits
an upper p-estimate then £LN(X) = LN (X), for all N < p ([2] or [22]).
Nevertheless, the following example was obtained in [8, Theorem 4.1].

ExAMPLE. There exists a space X such that

L2(X) = Lo

(X) = K(X, X7)

and X admits no upper 2-estimate. Moreover, £2(X*) = £2 _.(X*) and X*

wsc
does not admit an upper or lower 2 -estimate.

Thus, neither the upper or lower indices, nor the 7,-convergence give ne-
cessary conditions to have the weak-strong continuity of N-linear maps. Con-
sequently, to obtain a characterization one needs to look for something else.

A close inspection of the papers of Pitt and Pelczyriski, Alencar-Floret [2],
Dimant-Zalduendo [14], Gonzalo-Jaramillo [22] and [6, 11, 29], shows that the
results there obtained just using the estimates of certain sequences inside the
ambient space (it is, on the other hand, clear that if U is a subspace of X then
(U) > 1(X) and u(U) < u(X)); and this “heredity assumption” is precisely
what fails in the previous example. In other words, if one attempts to give a
characterization involving the indices of the space, one must necessarily take
into account the subspaces. This is what we will do, obtaining Theorem 1.
This result is the most natural, and maybe general, form of the Pelcynski-
Pitt theorem. We obtain in passing a unified treatment of the results of
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several authors: Alencar-Floret [2], Ausekle-Oja [6], Defant-Lépez Molina-
Rivera [11, 29].

Throughout the paper Xi,...,Xy,Y shall denote Banach spaces. The
space of all N-linear forms defined on X; X --- x Xy with values in Y
shall be denoted £V (X1,..., Xn;Y); the space of weakly sequentially con-
tinuous N-linear forms shall be denoted L,s.Y (X1,...,Xn;Y), while the
space of compact N-linear forms shall be denoted KCpg™¥ (X1,..., Xn;Y).
We shall indicate the absence of an space by putting it inside brackets; so,
LYY Xy, .., [Xj],...,XN;Y) denotes the space of all N — 1-linear forms
defined on Xy x -+ x X;_; x X1 x -+ x Xy with values in Y. An ele-
ment A € LV (X1,..., Xn;Y) is said to be compact if the image of the unit
ball is a relatively compact set. The space of all compact Y-valued N-linear
forms shall be denoted by LN (X1,...,Xy;Y). When Y = R we simply write
LN(X1,..., Xy) instead of LV (X1,..., Xn;R).

THEOREM 1. Let X1,---, Xy be Banach spaces not containing 1. The
following are equivalent.

(1) For all subspaces U; C X; and all1 < j < N
LN, L) U U = KN (UL [UG) - U U
(2) For all subspaces U; C X;
LNUy,...,.Uy) =LY (Uy,...,Uy)
(3)

1
Xy T Ty

< 1.

(4) For all choices of subspaces U; C X; the space U1®y - - - Uy does not
contain /.

If, moreover, the spaces are reflexive then conditions (1)-(4) are also equivalent
to:

(5) For all subspaces or quotients U; of X;

LN U Ui UF) = KN O U UF)

(6) For all choices of subspaces or quotients U; of X; the space LN (Uy,. ..,
Un) is reflexive.
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It is clear that if U is a subspace of X then [(U) > I(X) and u(U) < u(X).
Thus, condition (3) is equivalent to

(3’) For all subspaces U; of X; one has

1 1
ot <1,
I(Uy) I(Un)

Let us observe that the class of spaces to which Theorem 1 applies is
certainly not empty; assuming for simplicity X; = --- = Xy then condition
(2) means that X must be what was called in [8] an “hereditarily M y-space”
(see next section). Examples of such spaces are all the Banach spaces with
the hereditary Dunford-Pettis property and not containing l; the Lorentz
sequences spaces d(w,p) for N < p (which include, of course, the £, spaces,
and thus Theorem 1 contains the result of Alencar and Floret); certain Orlicz
sequence spaces, Tsirelson’s original space, James’s space, Tsirelson-James
spaces, as well as their vector sums.

The next polynomial version of the previous result are immediate once
one is aware, after Gonzalo’s work [20, 21], that the estimates control the
behaviour of multilinear forms as well as that of polynomials.

PRrROPOSITION 2. Let X be Banach space not containing ¢1. The following
are equivalent.

(1) For all subspaces U C X, and all1 <j < N
PO U = Pe (MU UY)

(2) For all subspace U C X, P(NU) = Pusc(NU).
(3) N <I(X).
(4) For all subspace U C X the space U@s,ﬂ e @sJU does not contain /.

If, moreover, the spaces are reflexive then conditions (1)-(4) are also equivalent
to:

(5) For all subspace or quotient U of X the space P(NU) is reflexive

It is perhaps worth to remark the problem mentioned in [2]: if the reflexiv-
ity of the N-fold tensor product of F is equivalent to the reflexivity of N-fold
symmetric tensor product. The previous results yield:
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COROLLARY 1. The statements (1) and (2) are equivalent; the statements
(3) and (4) are equivalent.

1) For all closed subspaces U of E the space @YU is reflexive.
2
3

4) For all closed subspaces U of E the space 697]:{ ;U does not contain /.

For all closed subspaces U of E the space @ﬁ sU is reflexive.

(1)
(2)
(3) For all closed subspaces U of E the space ®YU does not contain /.
(4)

To prove Theorem 1 we will first reduce the problem to the study of the

space LY (X) of weakly sequentially continuous N-linear forms on X

PropPoOSITION 3. Let Xi,..., Xy be Banach spaces not containing ¢1. The
following are equivalent:

(1) For all j € {1,..., N} one has

LV X LX) XN X)) = KV T (X)L X X))

(2) LN(Xy,..., Xn) =LY

wsc

(Xla"'aXN)'

A couple of remarks before passing to the proof of Proposition 3 and The-
orem 1. About the inductive statement, let us recall that Jiménez and Paya
[26] showed that there exist Banach spaces such that all N — 1 linear, but not
all N-linear, forms between them are compact. Second, that the restriction
“not containing #1” is in some sense necessary if one is trying to characterize
when vector valued multilinear forms on Banach spaces are compact. Indeed,
as we show next, when a Banach space X contains /1, for each infinite di-
mensional separable Banach space Y there exists an homogeneous polynomial
P : X — Y of degree 2 which is a surjection (in particular, it is not compact):
since X contains /; then there exists a quotient map g : X — #o such that
q(ean) = ey. Let (y,) be a dense sequence in the unit ball of Y. The continuous
bilinear form B : ly x ¢ — Y given by B(>_, Anen, Y, ln€n) = Y, MbinYn
yields the bilinear surjection B(q(-),q(-)) from X x X onto Y. This observa-
tion should be compared with the results in [20, 21] about the compactness
of polynomials and with the results in [25] about the existence of nonlinear
smooth surjections between Banach spaces.

In a different line, although important for us since that is the place where
the crucial notion of L-set was introduced, Emmanuele shows in [17] that if X
and Y do not contain #; and £(X,Y™*) = (X, Y*) then X®,Y cannot contain
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Z1. To obtain the converse Emmanuele needs the Approximation Property.
Theorem 1 yields an extension of Emmanuele’s result to spaces of multilinear
forms and shows a way to circumvent the using of the AP (see the final remark
at the end of Section 4).

2. L-SETS AND MULTILINEAR FORMS

Our approach is based on a generalization of Emmanuele’s notion of L-set
(see [17]). Recall that a subset A C X* is said to be an L-set if for every
weakly null sequence (x,) C X one has

lim sup | <z*,z, >|=0.
n—oe T*CA

Emmanuele shows in [17] that a Banach space X does not contain ¢; if
and only if L-sets of X* are relatively compact.

DEFINITION 1. Let X be a Banach space and let N > 1. A bounded
set A C LN(X) is said to be an Ly-set if for every weakly null sequence
(zL,---,zN) c XV one has

n?

. 1 N
nlinéof,‘elﬁ (@, 2, )| = 0.

When N = 1 we just get the notion of L-set. Let us observe that Ly-
sets are not necessarily L-sets with respect to the natural predual (@ NaX )
of LY (X); while one of the main results in [8] implies that not all L-sets in
LN (X) are Ly-sets. The simplest examples of L y-sets are provided by norm
null sequences. Recall from [8] that Banach spaces in which all continuous
N-linear (resp. all continuous multilinear) forms are weakly sequentially con-
tinuous have been called M y-spaces (resp. -spaces). It is implicit in [8] that a
Banach space X is an M y-space if and only if every operator X — £N~1(X)
transforms weakly null sequences into Ly _i-sets.

The hypothesis “X does not contain [;” shall be used via Rosenthal’s
theorem (see [12, 33]|): An infinite dimensional Banach space X does not
contain {1 if and only if every bounded sequence admits a weakly Cauchy
subsequence. It can be seen following the arguments in [3] that it is possible
to replace the condition “the sequence (z),...,zY) is weakly null” in the
definition of Ly-set by “one of the sequences (z?,) is weakly null and the other
are weakly Cauchy”. We are thus ready to obtain the multilinear version of

Emmanuele’s characterization.
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LEMMA 1. A Banach space X does not contain £1 if and only if, for every
N, each Ly-set of LN (X) is relatively compact.

Proof. The proof of the “only if” part, which is the only that needs proof,
goes by induction: if X is a Banach space that does not contain [;, Em-
manuele’s result provides the case N = 1 of our assertion. Assume that the
case N — 1 has already been proved, and let (B),) be a sequence of N-linear
forms on X that form an Ly-set which is not compact. From now on we
shall pass to subsequences without further warning or relabelling. So, we will
assume that | Bp+1 — Bpl|| > ¢ for all n. Let (z,,) be a bounded sequence of X
such that ||Bpi1(2n+1) — Bn(2n41)|| > €. The boundedness of (x,,) allows us
to assume that it is weakly Cauchy and therefore {B),(z,)} is an Ly_1-set of
LN=1(X); by induction, it is relatively compact. Hence we can assume that

li%n [ Br+1(zn41) — Bn(zn)|| = 0.
This will lead us to a contradiction after proving that

lifln | Bn(zn41) — Bn(zn)| = 0.

To this end, take (y.,...,yN~1') € X¥~! a bounded sequence of points
such that | Bo(zns1 — 2n)| > | Balnst — mths- - g 1) - L since (By)
is an Ly-set and the sequences (z,) and (y7,) can be assumed weakly Cauchy
(which, in particular, means that the sequence (Z,11 — %), is weakly null)
then

liﬁn | By (zps1 — xn,y}l, ... ,yfl\]*l)” = 0.

The contradiction now appears since
li};n [ Bnt1(Tn+1) — Bua(Tn+1) + Bn(znt1 — Bu(za)|| = 0,

and
lién | Bn(zn41) — Bn(zn)| = 0.

while
| Bnt1(®n+1) — Bn(zni1)| > e i
A related additional information is that Gutiérrez [24] shows that if Cy
denotes the class of completely continuous operators then a Banach space X
does not contain ¢; if and only if for all (some) N > 2, Coo(X, LV 71(X)) =
L(X, cN=1(X)).
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3. THE PELCZYNSKI-PITT THEOREM REVISITED

Proof of Proposition 3. We shall make the proof when X; = X for all
1 < i < N; in this case condition (2) can be reformulated as

(2’) X is an M y-space.

Condition (1) is £V ~1(X; X*) = KVN~1(X; X*) and we will show that the
two are equivalent to

(1) L(X, LN (X)) = K(X, LY (X))

That (2) is equivalent to (1’) is now easy: X is an M y-space if and only if
every operator X — L£V~1(X) transforms weakly null sequences into Ly _1-
sets, which have to be relatively compact by Lemma 1. When X does not
contain [y this means that all those operators are compact. The equivalence
between (1) and (1’) follows from the well-known fact (see [31, 34]) that the
natural isomorphism between £V (X;Y) and £ ((/55 NaX, Y) transforms com-
pact N-linear forms into compact operators; and taking into account the nat-
ural isomorphism between £(X,Y™) and L(Y, X*) given by transposition. I

Proof of Theorem 1. The equivalence between (1) and (2) has been proved
in Proposition 1.
(2) = (3) Assume that ﬁ + -+ m > 1 and let us show the exist-
ence of a non-weakly sequentially continuous N-linear form defined on some
subspaces of the X;. There is no loss of generality assuming that for each
1 < k < N there exists a basic normalized weakly null sequence (z¥), C X}
so that (zF), admits an upper I(X})-estimate. It is possible to find for each
k a sequence (fX), C X} biorthogonal to (z%), such that the sequence of its
restrictions (f¥|[(z%),])n admits a lower I(Xy)* -estimate. Using Holder’s in-
equality (reasoning as in [22]) one obtains that (fﬁl[(:v}l)n])”’ ces (f,]LVH(%V)n})n
admits a lower 1-estimate. Thus, the following N-linear form

Alurs-yun) =Y faluw) - f (un)
n=1

is well defined and continuous on the closed linear span [(z},)5] % - - x [(z2)n],
and it is not weakly sequentially continuous.
(3) = (2) It can be deduced from [21] -or found, explicit, in [14]- that if

<1

X T T iy

then £V (X1, -, Xn) = LY. (X1,---, XN).
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(2) = (4): Following Choi and Kim (see [10, Th. 3.1], where the proof is made
for the symmetric tensor product), it is not hard to show that X; Rn - Qr XN
does not contain I; if and only if for every bounded sequence (z), ..., zY) the
sequence (r} ® --- ® zV) contains a weakly Cauchy subsequence. Now, if X;
does not contain /; every sequence (z,) contains a weakly Cauchy subsequence
(say, itself). The sequence (z., ®---® ) must be weakly Cauchy since every

scalar N-linear form is weakly sequentially continuous.

The implication (4) = (1) has been essentially proved by Valdivia, and can
be found in [35, Prop. 7]. The word “essentially” here means that Valdivia’s
result was obtained for reflexive spaces, which in practice means “working
with weakly convergent sequences”. Getting the result for Banach spaces not
containing [; means to work with weakly Cauchy sequences; something that,
as we remarked already, presents no further difficulty in the context of this
paper.

Since the upper estimates pass to quotients in the case of reflexive spaces
(see [20]), the last two equivalences can be obtained without difficulty.

It is worth to remark that a reflexive Banach space X with the approx-
imation property is an M y-space if and only if the space LV (X) is reflexive.
Since ¢y and the ¢, spaces, p # 2, admit a subspace without the approxima-
tion property it follows the existence, for each N, of M y-spaces Z, without
the approximation property, and such that £V (Z) is reflexive. In particu-

lar, for some subspace H of ¢y the space é\afyH does not contain /i, while
L(H,H*) =K(H,H*). 1

4. MULTILINEAR FORMS BETWEEN /,, ORLICZ AND
LORENTZ SEQUENCE SPACES

For this section it is only required from the reader a nodding acquaintance
with the basic definitions of Lorentz sequence spaces d(w, p) constructed with
a suitable sequence w and a parameter p, and Orlicz sequence spaces ljs
constructed with a suitable function M. For the convenience of the reader,
let us recall the results of Ausekle and Oja [6]:

PROPOSITION 4. Let X be a subspace of £, and let Y be a subspace of
d(w,q). If p>q and w ¢ £),—q) then L(X,Y) = K(X,Y).

PROPOSITION 5. Let X be a subspace of d(w,p) and let Y be a subspace
of bar. Ifp > Bas then L(X,Y) = K(X,Y).
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(in this proposition Bj; denotes the upper Boyd index of the Orlicz function
M) These results can be extended as follows:

PROPOSITION 6. Let X be a subspace of £, and let Y be a subspace of
d(w,q). Let N € N. Ifp > Nqand w ¢ £/, ng) then LN (X,Y) = KN (X,Y).

Proof. In[22, Th. 2.5] it is proved (for polynomials, but the proof easily ex-
tends to the multilinear case) that Nu(d(w,q)) < I(l,) implies LN (XV;Y) =
LN (XN;Y) for all the subspaces X C I, and Y C d(w,q); in our case,
that is enough. On the other hand, a combination of either [20] or [22] and
[26] yields that I(I,) = p and that if we set r = inf{s € [1,00] : w € I}
then u(d(w,q)) = r*q. Hence, what we want to obtain is the inequality
Nu(d(w,q)) < p, or else Nr*q < p. Since p > Nq one has

Nrig<p & r*<N£q S rmg<(r—1p & r>

— Ng’
p q I

Observe that with this approach [, can be replaced by suitable d(n,p)
since I(d(n,p)) = p. Also, observe that the result is optimal: since the space
d(w, q) contains complemented copies of [, (see [28, p.177]), when p < Nq then
it is enough to apply Proposition 3 to obtain that £N(l,,...,l,;d(w,q)) #
KN(lpy .. Ly d(w, q)).

PROPOSITION 7. Let X be a subspace of d(w,p) and let Y be a subspace
of Lyr. If p> NBas then LN (X,Y) = KN (X,Y).

Proof. Tt is enough to prove that Nu(Y) < I(X). In this case one has
u(lpr) = B and I(d(w, p)) = p; therefore

NBy <p & Nu(Y)<Il(X)=p.
1

Again, the result is optimal: since [j; contains complemented copies of
l, for ¢ = By (see [28, p.143]), when p < Nfjs then the Alencar-Floret
Proposition 1 to obtain that

LY(d(w. q),...,d(w,p);lar) # LY (d(w.p), ..., d(w. q); lar).

The polynomial versions are obtained with the same techniques:
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PROPOSITION 8. Let X be a subspace of £, and let Y be a subspace

of d(w,q). let N € N. Ifp > Nq and w & £,/,_ng) then PVNX,Y) =
Pr(NX,Y).

PROPOSITION 9. Let X be a subspace of d(w,p) and let Y be a subspace

of Lpr. If p> NBy then P(VX,Y) = P (V X, Y).
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