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This collection is dedicated to the memory of Hans Hahn.

1. INTRODUCTION

The name of Hans Hahn (1879-1934), an Austrian mathematician, a Pro-
fessor of Chernivtsi (1909-1916), Bonn (1916-1921) and Vienna (1921-1934)
Universities is well known among mathematicians mainly due to the famous
Hahn-Banach Theorem on extensions of linear functionals. Much less known
is the fact that H. Hahn independently of S. Banach proved another basic prin-
ciple of Functional Analysis - the uniform boundedness principle. Some other
well-known results due to H. Hahn are: the Hahn decomposition theorem,
the Vitali-Hahn-Saks theorem in Measure Theory, the Hahn-Mazurkiewicz
theorem on continuous images of the unit segment in Topology, the Hahn em-
bedding theorem in the Theory of Partially Ordered Sets. The notions of local
connectivity and reflexivity introduced by Hahn also play an important role
in modern mathematics. H. Hahn was a very versatile mathematician. His
scientific heritage contains papers in Calculus of Variations, Real Functions
Theory, Functional Analysis, Topology, History and Philosophy of Mathem-
atics.

In honour of the memory of Hans Hahn, mathematicians from Cherni-
vtsi National University (Ukraine) organized regular conferences, beginning
in 1984. The first and the second conferences dedicated to the memory of
H. Hahn were held in Chernivtsi in 1984 and 1994, respectively.
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Around 120 mathematicians from different countries participated in the
3-rd Conference. For the first time a Problem Section was organized during
which a number of problems in Functional Analysis and Function Theory were
posed. Under some correction by the Editors, these problems were placed into
the base of the note.

This Problem section is divided into independent parts, each of which has
its own authors.

2. ON THE EXTENSION OF z-LINEAR MAPS

J. M. F. Castillo

Departamento de Matemdticas, Universidad de FExtremadura,
06071 Badajoz, Spain, e-mail: castilloQunex.es

In the spirit of the Hahn-Banach extension theorem for linear continuous
functionals on Banach spaces, let us consider the problem of the extension of
z-linear functionals on Banach spaces. Recall that a functional f : X ~ R
(this notation is to stress the fact that these are, in general, non-linear maps)
is said to be z-linear if there is a constant C' such that for all finite families
T1,...,Tn € X one has

Hif(wﬂ —f(Zanz-) < Ciuxiu (1)
=1 i=1 i=1

The infimum of the constant C' above is called the z-linearity constant of
f and denoted Z(f). Observe that a z-linear functional need not be either
bounded, linear or continuous. It may sound surprising but every z-linear
functional f defined on a subspace X of a Banach space X7 can be extended
to a z-linear functional f on the whole space, although it is not clear that
Z(f) = Z(f) can also be reached.

The connection with the Hahn-Banach theorem appears after realizing
that to get the extension result for z-linear maps one relies on the following
result: Every z-linear map f : X ~ R admits a linear map £ : X — R
such that ||f — ¢|| < Z(f). This is nothing different from a rewording of the
Hahn-Banach theorem (called “nonlinear Hahn-Banach theorem” in [1], since
it admits an independent proof) as the following final remainder pieces of the
puzzle show: z-linear maps between two Banach spaces f : X ~ Y correspond
with exact sequences 0 — Y — E — X — 0 (i.e., with Banach spaces E such
that E/Y = X). And z-linear maps admitting a linear map ¢ : X — Y such
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that ||f — ¢|| < 400 correspond with exact sequences 0 - Y — E — X — 0
that split (i.e., with Banach spaces E such that Y is complemented in E and
E/Y = X). Since the Hahn-Banach theorem says that every exact sequence
0 R — F — X — 0 in which F is a Banach space splits, every z-linear
map fX ~ R has a linear map at finite distance, and can therefore be written
as f = £+ b where b is a bounded map in the sense that ||b(z)| < M|z|| for
some constant M.

The extension result follows now taking a bounded projection m : X1 — X
and then a linear projection L : X1 — X and setting F' = bm + £L. This is
a z-linear map F': X ~ R that extends f. The problem of such rude way of
extension is that Z(F) can be much larger than Z(f).

The balance between the properties is quite delicate: everything can fail if
R is replaced by another (infinite dimensional) Banach space or f is asked to
be simply quasi-linear, which means that (1) just holds for couples of points
(instead of finite families). As an example of the former assertion, the Kalton-
Peck map [3] F» : la ~ I -which is perfectly z-linear- cannot be extended to
L1]0,1]; as an example of the latter, Ribe’s map [6] R : [ ~ R -which is just
quasi-linear but not z-linear- cannot be extended to C|0, 1].

PrOBLEM 2.1. Why?
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3. A TYPE OF BASES

V.M. Kadets

Department of Mathematics, Kharkov National University, Univ. Sq., 1,
Kharkov, Ukraine, e-mail: anna.m.vishnyakova@univer.kharkov.ua

DEFINITION 3.1. A biorthogonal system {e,, e} }>°; for a Banach space
X is said to be an almost basis if the identity operator is a limiting point for
the sequence of partial sum operators S, (z) = > 1 ex(x)ey in the topology of
pointwise convergence.

PROBLEM 3.2. Does every separable Banach space have an almost basis?

4. AN ISOMORPHISM PROBLEM FOR SPACES OF ANALYTIC FUNCTIONS

S.V. Kislyakov
POMI, Fontanka str. 27, St. Petersburg, Russia, e-mail: skis@pdmi.ras.ru

The problem I want to present is not new. I formulate it just to recall that
in the Banach space theory some basic objects have not yet been distinguished
isomorphically. (By the way, a challenging couple of such objects is formed
by the spaces of one time continuously differentiable functions on the square
and on the 3-cube.)

Consider a compact subset K of the complex plane. Various sup-norm
spaces of analytic functions can be associated with it. For instance, we may
consider the space C'4(K) of all functions continuous on K and analytic on the
interior of K, the closure P(K) of the analytic polynomials (i.e. polynomials
of a complex variable) in the norm of C'(K), or the similar closure R(K) of all
rational functions with poles off K. Let X be any of these spaces. It is known
that X is not linearly homeomorphic to any C(S)-space unless X = C(K)
(note that sometimes R(K) = C(K)); see [1].

PROBLEM 4.1. Does there exist a compact set K C C such that some of
the above spaces X is a proper subset of C'(K) and is not isomorphic to the
disc-algebra C'4?

We remind the reader that the disc-algebra is the space Ca({z : |2z| < 1}).
The result of Wojtaszczyk saying that the disc-algebra is isomorphic to the
co-sum of countably many copies of it (see [2]) and conformal mapping theory
suggest that such a K (if it exists) must be of rather sophisticated structure.
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5. ON THE EXTENSIONS OF HOLDER-LIPSCHITZ MAPS

G. Lancien ', B. Randrianantoanina®

L Département de Mathématiques, Université de Franche-Comté, 16 Route de
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If (X,d) and (Y, p) are metric spaces, a € (0,1] and K > 0 , we say that
amap f: X — Y is a-Holder with constant K (or in short (K, «a)-Holder) if

Ve,y € X, p(f(z), f(y) < Kd(z,y)®.

We refer to [2] for background and more information about Holder maps.

In [12] and [9] the following notation was introduced: for C' > 1, Bo(X,Y)
denotes the set of all a € (0, 1] such that any (K, a)-Ho6lder function f from
a subset of X into Y can be extended to a (CK, «)-Holder function from X
into Y. If C = 1, such an extension is called an isometric extension. When
C > 1, it is called an isomorphic extension. If a (CK, «)-Holder extension
exists for all C' > 1, we say that f can be almost isometrically extended. Thus
the following sets are defined:

AXY)=Bi(X,Y), BX,Y)= ] Bc(X)Y), AX,Y)= ) Bc(X,Y).
c>1 Cc>1

The study of these sets goes back to a classical result of Kirszbraun [8]
asserting that if H is a Hilbert space, then 1 € A(H, H). This was extended
by Griinbaum and Zarantonello [4] who showed that A(H, H) = (0, 1]. Then
the complete description of A(LP,L?) for 1 < p,q < oo relies on works by
Minty [11] and Hayden, Wells and Williams [5] (see also the book of Wells
and Williams [14] for a very nice exposition of the subject). More recently, K.
Ball [1] introduced a very important notion of non linear type or cotype and
used it to prove a general extension theorem for Lipschitz maps. Building on
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this work, Naor [12] and Naor, Peres, Schramm and Sheffield [13] described
completely the sets B(LP, L?) for 1 < p,q < oo.

In [9] we studied A(X,Y) and A(X,Y), when X is a Banach space and
Y is a space of continuous functions on a compact space equipped with the
supremum norm. (This can also be viewed as a non linear generalization of
the results of Lindenstrauss and Pelczynski [10] and of Johnson and Zippin
[6, 7] on the extension of linear operators with values in C'(K) spaces.) We
showed that for any finite dimensional space X, A(X,C(K)) = (0,1] and
A(X,C(K)) is either (0, 1] or (0,1) and we gave examples of both occurrences.
To our knowledge, this is the first example of Banach spaces X and Y such
that A(X,Y) is not closed in (0,1] and also such that A(X,Y) # A(X,Y).

This leads us to a number of questions concerning the above defined sets:

PROBLEM 5.1. Is A(X,Y) always closed? If yes, is A(X,Y) = A(X,Y)?

PROBLEM 5.2. Is B(X,Y) always closed? Is Be (X, Y)d:efﬂ5>0 Boye(X,Y)
always closed? If yes, is Bo(X,Y) = Be(X,Y)? Or, more generally, is
BC(X7Y) C BC(X’Y)?

PROBLEM 5.3. Is the collection of sets Bo(X,Y') continuous with respect
to C7

PROBLEM 5.4. Does there always exist C' >0 so that B(X,Y)=B¢(X,Y)?
(It is so in the examples that we know.)

Brudnyi and Shvartsman [3] proved that if Y is a Banach space then the
set B(X,Y) is always a subinterval of (0, 1] with the left endpoint equal to 0
(see also Naor [12]). Naor asked whether the same is true for the set A(X,Y).
It is also natural to ask

PROBLEM 5.5. Do the sets Bo(X,Y) or Bo(X,Y) have to be intervals?
If yes, does the left endpoint have to be 07

We note that all the above questions make sense in the setting when X and
Y are assumed to be either metric spaces or Banach spaces, and the answers
may differ in these two settings.
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6. METRIC APPROXIMATION PROPERTIES

A. Limal, E. Oja?

! Department of Mathematics, Agder University College, Serviceboks 422,
4604 Kristiansand, Norway, e-mail: Asvald.Lima@Qhia.no

2 Faculty of Mathematics and Computer Science, Tartu University, J. Liivi 2,
EFE-50409 Tartu, Estonia, e-mail: eve.ojaQut.ee

Let X and Y be Banach spaces. We denote by £(X,Y) the Banach space
of bounded linear operators from X to Y, and by F(X,Y) and K(X,Y) its
subspaces of finite rank operators and compact operators.

Recall that a Banach space X is said to have the metric approximation
property (MAP) if for every compact set K in X and every € > 0, there is
an operator T' € Br(x x) (the closed unit ball) such that ||Tz — x| < ¢ for
all z € K. Recall that X is said to have the metric compact approximation
property (MCAP) if for every compact set K in X and every € > 0, there is
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an operator T' € By(x,x) such that | Tz — z|| < e for all x € K.

Since finite rank operators are compact, the MCAP is formally weaker than
the MAP. It really is weaker: Willis [5] has constructed a separable reflexive
Banach space with the MCAP but without the MAP.

Let us consider the trace mapping V from the projective tensor product
X*®.X to F(X, X)*, the dual space of F(X, X), defined by

(Vu)(T) = trace(Tu), uwe€ X*®,X, TeF(X,X),
that is, if u = Y7 | 2% ® xy, then (Vu)(T) = Y07 | «f(Txy). The following

n=1

well-known criterion of the MAP is due to Grothendieck [1].

THEOREM 6.1. (Grothendieck) A Banach space X has the MAP if and
only if the trace mapping V : X*®,X — F(X, X)* is isometric.

It is not known whether the similar result holds for the MCAP.

PROBLEM 6.2. Does X have the MCAP if and only if the trace mapping
V:X*®,X — K(X, X)* is isometric?

The following criterion holds for the general version of the metric approx-
imation property defined by any operator ideal A (in the sense of Pietsch),
studied, for instance, by Reinov [4] and Grgnbaek and Willis [2]. A Banach
space X is said to have the metric A-approximation property (M-A-AP) if for
every compact set K in X and every € > 0, there is an operator T € B 4(x x)
such that ||Tx — z|| < e for all x € K. Clearly, the MAP coincides with the
M-F-AP and the MCAP coincides with the M-K-AP.

Below, A(X, X) is always equipped with the norm topology from £(X, X).
Thus the trace mapping V : X*®,X — A(X, X)* has norm one. We regard
X as a subspace of X**. Thus the identity operator Ix on X is also considered
as the embedding.

THEOREM 6.3. (see [3]) Let A be an operator ideal. A Banach space X
has the M-A-AP if and only if Ix € V*(Byx, x)-+) for the trace mapping
VX0 X — AX, X)*.

Theorem 6.3 indicates a simple reason why the “if” part in Theorem 6.1
works for the M-A-AP for all operator ideals A.

COROLLARY 6.4. (see [3]) Let X be a Banach space and let A be an op-
erator ideal. If the trace mapping V : X*©,X — A(X, X)* is isometric, then
X has the M-A-AP.
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Proof. Since V* : A(X,X)™ — L(X,X*) is the conjugate of an into
isometry, for every T € (X, X*), in particular for T' = Ix, there exists ¢ €
A(X, X)*™ satisfying V*¢ = T and ||| = [|T||. Hence, Ix € V*(B4(x,x));
meaning that X has the M-A-AP.

PROBLEM 6.5. Let A be an operator ideal containing KC and let a Banach
space X have the M-A-AP. Is then the trace mapping V : X*®, X — A(X, X)*
isometric?
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7. CONNECTIONS BETWEEN JOINT AND SEPARATE PROPERTIES OF
FUNCTIONS OF SEVERAL VARIABLES

V.K. Maslyuchenko

Department of Mathematics, Chernivtsi National University, str.
Kotsiubyns’kogo 2, Chernivtsi, 58012, Ukraine, e-mail: vmasl@chnu.cv.ua

1. We start with probably the most known problem in this concern which
is due to M. Talagrand [5] in 1985. By the author’s view, this problem is quite
difficult.

By C(f) we denote the set of all points of continuity of a function f.

PROBLEM 7.1. Does there exist a Baire space X, a compact Y and a
separately continuous function f: X x Y — R for which C(f) = (?

Comment. In [2] it was constructed a completely regular Baire space
X, a countably compact space Y and a separately continuous everywhere
discontinuous function f : X x Y — R which takes values in the two-point
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set {0,1}. Moreover, the space X in this construction is a-favourable in the
Choquet’s game and the space Y can be chosen to be T-compact, i.e. for
which for an arbitrary open covering of Y of cardinality < 7 there exists a
finite sub-covering. Besides, in [2] it is found a topology 7 on [0, 1] such that
for the topological space X ([0,1],7) and a compact Y = SN\ N there exists
a separately continuous everywhere discontinuous function f: X xY — R. A
question whether the space X from this construction is Baire remains open.

2. Recall that a topological space Y is called co-Namioka if for each Baire
space X and each separately continuous function f : X x Y — R there
exists a dense Gg-set A in X such that A x Y C C(f). Metrizable, Eberlein,
Corson and (more general) Valdivia compacts, and also a Tikhonov cube of
an arbitrary weight are co-Namioka. A function f : X xY — Z is called
horizontally almost separately continuous if it is continuous with respect to the
second variable and the set {y € Y : f, = f(-,y) is continuous} is dense in Y.
We say that a topological space Y is a Hahn space with respect to a topological
space Z if for each topological space X and each horizontally almost separately
continuous function f : X XY — Z theset Cy (f) = {z € X : {z}xY C C(f)}
is residual in X. A topological space Y is called a Hahn space if it is so with
respect to any metrizable space Z. Metrizable compacts and, more general
the second countable spaces are Hahn spaces but the Tikhonov cube [0, 1][0’”
is not a Hahn space even with respect to R (see [3]). A. Bouziad [1] showed
that Eberlein, Corson and Valdivia compacts are Hahn spaces.

PrROBLEM 7.2. Characterize those co-Namioka compacts which are Hahn
spaces (with respect to R).

3. Upon some additional conditions on spaces X,Y and Z every separ-
ately continuous function f : X x Y — Z is quasi-continuous and point-wise
discontinuous (i.e. C(f) is dense in X x Y'). To this concern, it would be
interesting to solve the following problems.

PrROBLEM 7.3. Do there exist topological spaces X and Y such that every
separately continuous function f : X x Y — R is point-wise discontinuous
and simultaneously there is a separately continuous function fo: X xY — R
which is not quasi-continuous?

PROBLEM 7.4. Do there exist topological spaces X and Y such that every
separately continuous function f: X x Y — R is quasi-continuous and simul-
taneously there is a separately continuous function fy: X x Y — R which is
not point-wise discontinuous?
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4. The following problem which is due to V.V. Mykhaylyuk and O.V.
Sobchuk [4] turned out quite complicated and up today is unsolved, in spite
of attempts of mathematicians from Chernivtsi, Lviv and Paris.

PROBLEM 7.5. Does every function f : [0,1]2 — R for which all vertical
sections f* = f(z,-) are continuous and all horizontal sections f, = f(-,y)
belong to the first Baire class is a point-wise limit of a sequence of separately
continuous functions f, : [0,1]> — R?
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8. EXTENSIONS OF OPERATORS

Y. Moreno Salguero !, A.M. Plichko?

! Departamento de Matemdticas, Universidad de Extremadura,
06071 Badajoz, Spain, e-mail: ymoreno@Qunex.es
2 Instytut Matematyki, Politechnika Krakowska, ul. Warszawska 24,
Krakow, Poland, e-mail: aplichko@Qusk.pk.edu.pl

Throughout this section X, Y and E, are assumed to be finite dimensional
normed spaces.

DEFINITION 8.1. Let us say that an X has b-extension property, 1 < b <
0, if for each subspace Y’ of X and each T' € L(Y, X)) there exists an extension
T € L(X) with [|T|| <b|T.

For example, /5 and ¢ have 1-extension property for each n € N. Our first
problem is whether these examples are unique in the following sense.
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PRrROBLEM 8.2. Let E, has b-extension property and dim E,, = n for each
n € N. Whether

sup min{d(En,Zg), d(En,cg)} < 007

DEFINITION 8.3. We say that an X has b-automorphic property, 1 < b <
oo, if for each subspace Y of X and each injective T' € L(Y, X) there exists
an injective extension 7' € £(X) with ||T|||T~|| < b||T||| T~

Of course, 5 has 1-automorphic property for each n € N.

PROBLEM 8.4. Whether ¢j has b-automorphic property for each n € N
and some b > 17

PROBLEM 8.5. Let E, has b-automorphic property and dim E, = n for
each n € N. Whether
supd(Ey, l5) < oo?

n

9. ON ALMOST ISOMETRIC BANACH SPACES WHICH ARE NOT ISOMETRIC

E. Odell

Department of Mathematics, The University of Texas at Austin, 1 University
Station C1200, Austin, TX, USA., e-mail: odell@math.utexas.edu

We use the following notations for Banach spaces: X ~ Y means that X
and Y are isomorphic and X = Y means that X and Y are isometric. For a
Banach space X weset I(X)={Y: Y ~ X}.

Recall that the Banach-Mazur distance between Banach spaces X and Y
is defined as

d(X,Y) =inf{||T|||IT"Y: T:X — Y is an isomorphism}.

Obviously, if X = Y then d(X,Y) = 1. It is a well known fact that the
converse is not true in general.

PrOBLEM 9.1. Does for every separable infinite dimensional Banach space
X there exist Banach spaces Y, Z € I(X) such that d(Y,Z) =1 and Y 2 Z7?
This is true for X =cg or X =¢,, 1 < p < oo, for example.
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PROBLEM 9.2. Describe the separable infinite dimensional Banach spaces
X having the following property: for each Banach space Y the condition
d(X,Y) =1 1implies Y = X.

G. Godefroy pointed out to us that ¢ is such a space. Evidently the spaces
¢, and L, also have this property.

10. ON A PROPERTY OF BASES

E. Odell

Department of Mathematics, The University of Texas at Austin, 1 University
Station C1200, Austin, TX, USA, e-mail: odell@math.utexas.edu

OBSERVATION. Let (e;){° be a normalized monotone basis of a Banach
space X having the following property: for each C' > 1 there is a constant
D > 1 such that for every normalized monotone basis (z;) of any Banach
space, if i1 < -+ < i, and (2;)j_; is C-equivalent to (e;)] then

n oo
[ aszs| < X ase]
=1 =1

for any scalars (a;);2,. Then (e;) is equivalent to the unit vector basis of cg.

PrROBLEM 10.1. Let (¢;)$° be a normalized monotone subsymmetric basis
of a Banach space X having the following property: for each C' > 1 there is a
constant D > 1 such that every normalized weakly null sequence (z;) in any
Banach space admits a subsequence (y;)5° C (z;)7° such that if i; < --- <y
and (yi;)j—; is C-equivalent to (e;)} then

n oo
[$ o] =[S o]
j=1 j=1

for any scalars (a;)$°. Is (e;) equivalent to the unit vector basis of ¢ or £,? If
not then characterize these bases.

The fact that ¢; has this property is due to Argyros, Mercourakis and
Tsarpalias [1]. ¢, fails this property for 1 < p < oo.
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11. UNIQUENESS OF HAHN-BANACH EXTENSIONS OF FUNCTIONALS
ON COMPACT OPERATORS

E. Oja', M. Poldvere?
L Faculty of Mathematics and Computer Science, Tartu University,
J. Litvi 2, EE-50409 Tartu, Estonia, e-mail: eve.ojaQut.ee

2 Institute of Pure Mathematics, Tartu University, J. Liivi 2,
50904 Tartu, Estonia, e-mail: mart.poldvere@ut.ee

Let X be a Banach space and let Y C X be a closed subspace.

DEFINITION 11.1. (R. R. Phelps [4], 1960) The subspace Y has property
U in X if every functional g € Y* has a unique Hahn-Banch extension f € X*
(i.e. there is exactly one f € X* satisfying f|y = ¢ and || f|| = ||g]]).

DEFINITION 11.2. (G. Godefroy, N.J. Kalton, P.D. Saphar [1],1993) The
subspace Y is an ideal in X if there exists a bounded linear projection P on
X* such that ||P|| =1 and kerP =Y+:= {f € X*: fly =0}.

DEFINITION 11.3. (E.M. Alfsen, E.G. Effros, 1972, see [2]) The subspace
Y is an M-ideal in X if Y is an ideal in X with respect to an ideal projection
P such that, for all f € X*,

I =1PFI+11f =PI
DEFINITION 11.4. (A. Lima, 1977, see [2]) The subspace Y is a semi M-
ideal in X if whenever g € X* is such that ||g|y|| = ||g|, and h € Y+, then
lg + Al = llgll + (1R

Clearly, Y is an M-ideal in X if and only if it is both an ideal and a semi
M-ideal in X; and if Y is a semi M-ideal in X, then it has property U in X.

The following problems concern property U for the subspace K(X) of
compact operators in the Banach space L(X) of all bounded linear operators
on X. (Property U for K(X) in L(X) has been studied e.g. in [3] and [5].)

PROBLEM 11.5. Does there exist a Banach space X such that K(X) has
property U in L(X) without being an ideal in L(X)?

The same question is open for semi M-ideals.

PROBLEM 11.6. Does there exist a Banach space X such that K(X) is a
semi M-ideal in L(X) without being an M-ideal in L(X)?
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It is known that K (X) is an M-ideal in L(X) if and only if K(X) is an
M-ideal in span (K (X)U{Ix}), the linear span of K (X) and Ix, the identity
operator on X (see e.g. [2]).

PROBLEM 11.7. Does K(X) have property U in L(X) if K(X) has prop-
erty U in span(K (X) U {Ix})?
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12. NORM-ATTAINING OPERATORS

M.I. Ostrovskii
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Let X be a Banach space, L(X) the space of all bounded linear operators
on X. We say that A € L(X) attains its norm if there exists z € X such that
||z|| = 1 and ||Az|| = ||A]|. The following problem sounds as a classical one.
Nevertheless, to the best of my knowledge, it is still open.

PROBLEM 12.1. Does there exist an infinite dimensional Banach space X
such that each A € L(X) attains its norm?

RELATED RESULTS AND OBSERVATIONS:

(1) R. C. James’s characterization of reflexivity implies that if X is such that
each A € L(X) attains its norm, then X and L(X) are reflexive spaces. (To
show that L(X) is reflexive, we use the identification L(X) = (X&,X*)*.
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Recall that this identification is valid for any reflexive X without any approx-
imation property assumptions.)

(2) J. R. Holub [2] proved that if X has the approximation property, then the
reflexivity of L(X) implies that X is finite dimensional.

(3) N. J. Kalton [3, Theorem 2| proved that L(X) cannot be reflexive for
nonseparable X.

(4) Hence the only possible candidates for X in the problem are separable re-
flexive spaces without 1-complemented infinite-dimensional subspaces having
the approximation property.

(5) Some related results and observations can be found in [1] (see p. 693), [4],
and [5].
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13. WEAK EMBEDDINGS OF Lj
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Recall that an operator T' € L(X,Y) between Banach spaces X and Y is
said to be an (isomorphic) embedding provided ||Tz| > d||z|| for some § > 0
and each x € X. We shall discuss the following three weaker notions.

DEFINITION 13.1. (H.P. Lotz, N.T. Peck, H. Porta, 1979) An injective
operator T' € L(X,Y) is called a semi-embedding if T'Bx is closed.

DEFINITION 13.2. (J. Bourgain, H.P. Rosenthal, 1983) An injective oper-
ator T € L(X,Y) is called a Gs-embedding if TK is a Gs-set for each closed
bounded K C X.
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DEFINITION 13.3. (H.P. Rosenthal, 1981) An injective operator T' €
L(L1,X) is called a sign-embedding if ||Tz|| > §||z| for some § > 0 and
every sign « € Ly (sign means that x takes values from {—1,0,1}).

The most interesting case is when the domain space is L; and we shall
consider only it in the sequel. It is said that L; semi-embeds (or sign-embeds,
or “other type”-embeds) in a Banach space X provided there exists a semi-
embedding (sign-embedding, or respectively “other type” embedding) 1" €
L(L1,X).

The connections between these notions can be described as follows.

(i) Every semi-embedding is automatically a Gs-embedding [1] and no
other implication is true [2]. Hence, if L; semi-embeds in X then L; Gs-
embeds in X.

(ii) If Ly Gs-embeds in X then L; sign-embeds in X [3]. Hence, if L,
semi-embeds in X then L; sign-embeds in X.

(iii) There exists a Banach space X which contains no subspace isomorphic
to Ly such that L; semi-embeds in X [4]. Hence, all three notions of weak
embedding are in fact weaker than the notion of isomorphic embedding even
passing to subspaces.

PROBLEM 13.4. A) Suppose that L; sign-embeds in X. Does L; Gs-
embed in X7

B) Suppose that L1 Gs-embeds in X. Does L semi-embed in X7
C) Suppose that L sign-embeds in X. Does L; semi-embed in X7

For more details we refer to [2].
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14. GREEDY APPROXIMATION BASES

P. Wojtaszczyk
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Let (z,,)7° be a normalized basis for a Banach space X and (z},)7° be
its biorthogonal functionals. Given x € X and m € N, we define greedy
approximation m-th partial sum by putting

Gm(z) = Z Ty (T)Tn
neA

where A is a subset of the integers with |A| = m such that |z} (z)| > |z%(z)]
for each n € A and s ¢ A. Sometimes the set A is not uniquely defined but
then we take any A.

DEFINITION 14.1. A normalized basis (z,)7° for a Banach space X is
called to be C-greedy (1 < C' < o) if

|z —Gm(z)|| < C inf{Ha; — ZajxjH Al =m, aj € R}
JeEA

for each z € X.

It can be shown that this definition does not depend on the choice of A in
case there is any ambiguity (see [2]). A basis which is C-greedy for some C' is
called greedy.

PROBLEM 14.2. Find an example of a 1-greedy non-symmetric basis.

It is known that the Haar system is a greedy basis for L, where 1 < p < oo
(see [1]). Recently I have shown (unpublished) that L, are the only such
rearrangement invariant spaces, that is we have

THEOREM 14.3. Let X be a rearrangement invariant function space on
[0,1] such that the Haar system is a greedy basis in X. Then X = L[0, 1] for
some 1 < p < oo (maybe with equivalent norm).

It is easy to show that symmetric basis is greedy. It is known that natural
rearrangement invariant spaces (different from Hilbert space) do not have
symmetric basis. This suggest the following

PROBLEM 14.4. Does the Lorentz space L, , have a greedy basis if p # ¢7
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15. SUBSPACES OF BIDUALS

D. Yost
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PrROBLEM 15.1. If X is an infinite-dimensional Banach space, does X**
contain an infinite-dimensional reflexive subspace?

Clearly not every Banach space contains an infinite-dimensional reflexive
subspace; ¢g is an obvious counterexample. Nor does every dual space; £; is a
splendid counterexample. But for biduals, who knows?

This is the case for every example of a Banach space known today, but
there is no clear reason why it should always be true. This may be considered
the latest in a sequence of progressively weaker questions, for each of which
counterexamples have been found.

Perhaps it all began with the question of whether every infinite-dimensional
Banach space contains an isomorphic copy of either c¢o or £, for some finite
value of p. This was eventually disproved by Tsirelson. His example was
reflexive, even super-reflexive.

A weaker question is whether every infinite-dimensional Banach space con-
tains an isomorphic copy of either ¢y, £1 or an infinite-dimensional reflexive
subspace. Recall the result of James, that this is so in every Banach space
with an unconditional basis. For general Banach spaces, a counterexample
was eventually found by Gowers.

Note that cj* and ¢7* both contain infinite dimensional Hilbert spaces.
Thus our question is a weakening of the preceding question. The space of
Gowers may also turn to be a counterexample for our question but it is unclear
at this stage.
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16. ON m-CONVEX COMPACTS IN R"
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DEFINITION 16.1. A compact K C R" is called to be m-convex (m < n)
if for each x € R™ \ K there exists an m-plane T'(z) such that x € T'(x) and
T(xz)NK =0.

PROBLEM 16.2. Does there exist a homeomorphic embedding of K = S»
to R* with 2-convex range?

PROBLEM 16.3. Let K C R” be a compact. Suppose that for each hyper-
plane T' C R™ the intersection TN K is (m —1)-convex. Find a condition on K
which together with the above one would be sufficient for K to be m-convex.



