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1. INTRODUCTION

Let A # 0 be a set, and let [°°(A) denote the real Banach space of all
bounded functions z = (z4)aca : A — R, endowed with the supremum norm
|- |]. Let [°°(A) be ordered by the cone

K={z:24>0(a€A)},

that is z < y & y — 2 € K. Inequalities for functions with values in [*°(A)
are always intended pointwise.
For two functions v, w : [0, 1] — [*°(A) with v < w we consider

S(v,w) = {(t,z) € (0,1) x I®(A) : v(t) <z <w(t) (t € (0,1))},

and a function f : S(v,w)x[>°(A) — [*°(A). We will assume that v, w is a pair
of generalized upper and lower functions, that f is continuous and satisfies a
Nagumo condition, that f is quasimonotone increasing in its second variable,
and that f is diagonally depending on the third variable.

Under these conditions we will prove the existence of a maximal and a
minimal solution of the boundary value problem

u”(t) + f(t,u(t),u'(t)) =0, u(0)=u(l)=0.

2. EXTREMAL SOLUTIONS OF SCALAR BVDPs

For a function w : [0,1] — R let

D_u(t), D~ u(t) (t€(0,1]), Diu(t), DV u(t) (t€]0,1))

13
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denote the Dini derivatives of u, and for ¢t € (0, 1) let

Dyu(t) = liin_%(r)lf u(t +h) — 21;1(;) +u(t —h) 7

—9 _
Du(t) = lim sup L) = 20lt) +ult = h)
h—0 h2

denote the Schwarz derivatives of w.
Now, let v,w : [0,1] = R, v < w,

Sw,w) ={(t,z) € (0,1) x R:v(t) <z <w(t) (t€(0,1))},

and f : S(v,w) x R — R be given, and consider the scalar boundary value
problem
u(t) + f(tu(®), ' (t) =0, u(0) =wu(l)=0. (1)

We employ the following notion for lower and upper functions to (1):

The function v : [0, 1] — R is called lower function for (1), if it is Lipschitz
continuous, if we have v(0) < 0, v(1) <0, D~ wv(t) < Dyv(t) (t € (0,1)), and
if for each t € (0, 1) such that v'(t) exists we have

D?u(t) + f(t,v(t),v'(t)) > 0.

Analogously w : [0,1] — R is called upper function for (1), if it is Lipschitz
continuous, if w(0) > 0, w(1) > 0, D_w(t) > D w(t) (t € (0,1)), and if for
each t € (0,1) such that w'(t) exists we have

Dow(t) + f(t,w(t),w' (t)) <0.

The function f satisfies a Nagumo condition with respect to v and w, if there
exists a continuous function ¢ : [0, 00) — (0, 00) with

such that
|f(t, 2z p)| < a(lpl) (£ 2,p) € S(v,w) X R).

The following Nagumo type theorem [10] is due to Ako [1] Theorem 1.1. Our
concept of lower and upper functions is a simplification of the concept of lower
and upper functions in the sense of Akd. We will give a proof of Theorem 1
for this reason.
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THEOREM 1. Let v,w : [0,1] = R with v < w and f : S(v,w) x R = R
be such that f is continuous and satisfies a Nagumo condition with respect
to v and w, and that v, w are lower and upper functions for (1), respectively.
Then (1) has a minimal and a maximal solution in C([0,1],R) N C2((0,1),R)
(whose graph is in S(v,w)).

Remark. Extremal solutions for boundary value problems have been stud-
ied by several authors for various equations, boundary conditions and gener-
alizations of lower and upper functions, see for example [3] Chapter 5., [9],
[11] and the references given there.

As an immediate consequence of Theorem 1 we will obtain monotone de-
pendence of the extremal solutions on f. Consider a second boundary value
problem

u’(t) + g(t,u(t), v/ (t)) =0, u(0)=u(l)=0. (2)

THEOREM 2. Under the assumptions of Theorem 1 let g : S(v,w) x R —
R be continuous, satisfy a Nagumo condition with respect to v and w, let
v,w : [0,1] — R be a lower and upper functions for (2), respectively, and let
flt,z,p) < g(t,z,p) on S(v,w) x R. Then the maximal (minimal) solution of
(1) is < the maximal (minimal) solution of (2).

3. THE MAIN RESULT

Let v,w : [0,1] — [*°(A), v < w and for each @ € A let a function
fa i S(v,w) x R — R be given, such that

ft.2.p) = (faltizpa))

defines a function f : S(v,w) x I*°(A) — [*°(A).

If z — f(t,x,p) is continuous on {z : v(t) < x < w(t)} for each (¢,p) €
(0,1) x {°°(A), then the function f is quasimonotone increasing in its second
variable, in the sense of Volkmann [13], if and only if

€A

(t,z,p), (t,y,p) € S(v,w) x I¥(A), <y, « € A, Ta =Ya

= fa(t’xvpa) < fa(t7y7p04))
compare [12].
We consider the boundary value problem

u”(t) + f(t,u(t), v (t)) =0, u(0)=u(l)=0 (3)
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in [*(A).

Now, v : [0,1] — [°°(A) is called lower function for (3), if it is Lipschitz
continuous, if we have v(0) < 0, v(1) < 0, and if it has the following properties
for each coordinate av € A: D7 v,(t) < Diva(t) (t € (0,1)), and for each
t € (0,1) such that v/, (t) exists we have

D2 (t) 4 falt,v(t), vl (1)) > 0.

The definition of an upper function w : [0, 1] — I*°(A) is now obvious.
We say that f satisfies a Nagumo condition with respect to v and w, if
there exists a continuous function ¢ : [0, 00) — (0, 00) with

such that for each o € A
[falt,z,m)[ < q(r]) ((t,2,7) € S(v,w) x R).

Remark. A Nagumo condition in particular implies that f(S(v,w) x B)
is bounded for each bounded subset B C [*°(A). It is a notable fact that in
contrast to the finite dimensional case (|A| < co) and in contrast to the case of
monotone functions, a continuous quasimonotone increasing function defined
on an order interval may be unbounded. An example is g : [0, 1]N — [°°(N)
defined by

@ = (s )

g\r) = 0 .
Ty + Zk:l(l - xk)/zk neN

We have

THEOREM 3. Let v,w : [0,1] — [*°(A) with v < w and f, : S(v,w) X
R — R (a € A) be such that f : S(v,w) x I*®(A) — [*(A), f(t,z,p) =
(fa(t,,pa))aca is continuous, quasimonotone increasing in its second vari-
able, satisfies a Nagumo condition with respect to v and w, and that v, w are
lower and upper functions for (3), respectively. Then (3) has a minimal and
a maximal solution in C([0,1],1%°(A)) N C%((0,1),1°(A)) (whose graph is in
S(v,w)).

Remarks. 1. We will prove Theorem 3 by a variant of Tarski’s fixed point
Theorem. For existence results of solutions of boundary value problems in R™
involving quasimonotonicity and upper and lower functions see [6], [7] and the
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references given there.
2. For existence results of extremal solutions for initial value problems of first
order equations in [*°(A) see [4], [8] and the references given there.

4. PROOF OF THEOREM 1

We make use of Nagumo’s Lemma [5, Chapter VII, Lemma 5.1]:

PROPOSITION 1. Letq : [0,00) — (0,00) be continuous, let z € C(]0,1],R)
NC?((0,1),R), 2(0) = z(1) = 0, and let

L
max z(t) — min z(t) < / 7 ds.
te[0,1] t€[0,1] o q(s)

Then |2"(t)| < q(|2'(t)|) (t € (0,1)) implies |2'(t)| < L (t € (0,1)).

Extend f to (0,1) x R? by

) ) - 50 (> ()
flt,z,p) = o(t) —
0. + s (o< o(e)

and choose L > 0 such that

L
S

——ds > t) — min v(t).
/0 =) = Zox ) — min o)

Without loss of generality L is a Lipschitz constant for both v and w. Next,
let S: R — R be continuous such that 0 < S(p) <1 (p € R), and

Sp)=1 (Ipl <L), Sk =0 (lp|>L+1).

Set
F(t,z,p) = S(p)f(t,z,p) ((t,2,p) € (0,1) x R?).
Then
[F(t,z,p)| < q(lp]) + 1,

|F'(t,z,p)| < max{q(|p|]) +1:|p| < L+ 1}.
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Thus, F is continuous and bounded on (0,1) x R2. By Scorza Dragoni’s
theorem there is a solution of

u'(t) + F(t,u(t),u'(t)) =0, u(0)=u(l)=0,

which turns out to be in S(v,w): If there was ¢ € (0, 1) such that u(t) > w(t),
there would exist an interval [t1,t2] C [0, 1] such that

u(tl) = w(tl), u(tg) = w(tg), u(t) > w(t) (t S (tl,tg)).

The function w —u would then have a negative minimum there, say for ¢t = ¢,
where evidently

IN

D™ (w —u)(tg) = D™ w(ty) — u'(to)
D (w —wu)(to) = Dyw(to) — u'(to)
Dg(w — u)(to) = Dgw(to) — u”(to) >

v

0
0,
0

But then

Dt w(tg) > Diw(te) > u'(to) > D™ w(te) > D_w(to) > DT w(ty),

where the last inequality holds according to the definition of an upper function.
So w is differentiable at to with w’(¢o) = u/(to). This implies |u'(t9)| < L, thus

u(to) = —F (to, u(to), v (to)) = —f (to, ulto), v/ (to))

- st 5

> —f(to, w(to), w'(to)) > Daw(to),

which contradicts (4).
The inequality v(t) < w(t) is proven along the same lines.
Therefore

[ (&) = 15w/ () £ (£ ut), v ()] < q(lW'(B)]) (¢ € (0,1)),

and according to Proposition 1 |u/(¢)| < L, thus S(v/(t)) =1 (¢t € (0,1)).

To show that there is a maximal and a minimal solution, note that for
each solution wu : [0,1] — R of (1), v/ : (0,1) — R can be extended to [0,1]
such that u € C*([0,1],R), and that the set of all solutions to (1) is a compact
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subset of C1([0, 1], R), as Proposition 1 implies |u'(t)| < L (t € (0,1)) for each
solution. Set
u(t) = max{u(t) : u is a solution of (1)}.

Then u is Lipschitz continuous with constant L, and to each ¢y € (0,1)
there is a solution wug of (1) satisfying wuo(to) = u(to). Because of uy < u it
follows

D.a(to) > ug(to) > D™ (to),  Doti(to) > ug(to),

and, in case w is differentiable at %,
@' (to) = ug(to)-
Therefore,
D?u(to) > Daulto) > ug(to) = — f(t, uo(to), ug(to)) = — f (¢, u(to), @ (to))-

Summing up, @ is a lower function for (1), and by the first part of the proof,
there is a solution of (1) between u and w, which must be w. So @ is the
maximal solution.

The existence of a minimal solution u follows by similar reasoning.

5. PROOF OF THEOREM 2

Let w and U be the maximal solution of (1) and (2), respectively. Then,
for t € (0,1) we get

a'(t) +g(t,ut),w (1)) = a'(t) + f(¢,u(t), @ () = 0,

and therefore w is a lower function of (2). Thus, (2) has a solution between
u and w, in particular u(t) < U(t) < w(t). Analogously, for the minimal
solutions v and U we have

0=U"(t) +g(t,Ut),U'(t) = U"(t) + f(t, U), U (1)),

thus U is an upper function of (1), and therefore v(t) < u(t) < U(t).
6. PROOF OF THEOREM 3

We make use of a fixed point Theorem of Bourbaki [2].

PROPOSITION 2. Let 2 # () be an ordered set, and let T : Q@ — Q be
monotone increasing.
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1. If sup C exists for each chain ) # C C €, and if there is wy € £,
wo < Two, then T has a smallest fixed point in the set {w € Q : wy < w}.

2. If inf C exists for each chain ) # C C , and if there is w1 € €,
Twi < wi, then T has a greatest fixed point in the set {w € Q :w < w1 }.

Let L > 0 be such that for each o € A

S

L
2 ds> o(t) — min vy(t),
) as 2 mas wefe) = i va )

and set
M =sup {||f(t,2,p)|| : (t,2,p) € S(v,w) x [~L, L]" }.

Note that M < oo since f(S(v,w) x [~L, L]Y) is bounded, as a consequence

of Nagumo’s condition.
We consider the following subset © of C1([0,1],1°°(A)):

{w:w(0) =w() =0, [lW'®) < L, ||'(t) = ' (s)I] < M|t = s|| (t,5 € [0,1])}

By standard reasoning sup C' and inf C exist for each chain () # C C Q (but
(2 is not a lattice). First note that each solution of (3) is in €2, by the choice
of L and M, and by continuous extension of v’ : (0,1) — [*°(A) to [0,1].

We define a mapping T' the following way:

Let w : [0,1] — I°°(A) be continuous with v < w < w (not necessarily
weN),acA,

and let gq : So(v,w) x R — R be defined by

9a(t,€,7) = fa(t, Qa(w(t),§),r).

Each function @ : [*°(A) x R — [*°(A) is Lipschitz continuous, hence each
Jo is continuous.
Consider the scalar boundary value problems

Ua(t) + galt, ua(t), ug(t)) = 0,  ua(0) = ua(l) =0. (5)
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Now, Theorem 1 applies to (5), since v,,w, are lower and upper functions
for (5), respectively. For example if ¢ € (0,1) and v/ () exists, then the
quasimonotonicity of f implies

D?va(t) + fa(t, Qa(w(t), va(t)), va(t) = D*va(t) + falt, v(t), vi(t)) = 0.

Hence (5) has a maximal solution %, and according to Proposition 1 we have
[a,,(t)| < L, and therefore |[ul,(t)| < M (t € (0,1)). Thus, Tw := (Un)aca € 2,
and in particular 7'(2) C Q.

Moreover w < @ implies

fa(t,Qa(w(t),£),7) < falt,Qa(@(t),§),7)

since f is quasimonotone increasing. Therefore Tw < Tw according to The-
orem 2, and in particular 7" is monotone increasing on €.

To see that Q # () note that Tw € Q.

Next, consider wy := Tw < w. Then Tw; < w; and Proposition 2 proves
the existence of a greatest fixed point z of T'in {w € @ : w < w;}, which is a
solution of (3), since Tz = z means that the maximal solution of

Ug () + falt, Qa(2(t), ua(t), un (1) = 0,  ua(0) = ua(l) =0

is U = 24, hence Qq(2(t), uq(t)) = 2(t).
Finally z is the greatest solution of (3) between v and w: Let y be any
solution of (3). In particular y € 2 and y < w. We have

yg(t) + fa(ta y(t)a y;(t)) =0, ya(o) - ya(l) =0,

thus, ¥y, is a solution of

u/o/z(t) + foa(ta Qa(y(t)vua<t))7u/oz(t)) =0, ua(o) = ua(l) =0,

whereas (T'y),, is the greatest solution of this boundary value problem. This
proves y < Ty. Set wp := y. Again, by means of Proposition 2 there is a
(smallest) fixed point z of T in {w € Q : wp < w}. From z < w we obtain
Z < Tw = w;. Therefore, z is a fixed point of T'in {w € @ : w < w;}. In
particular y <z < z.

Analogously one can prove the existence of a minimal solution of (3)
between v and w.
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7. A UNIQUENESS CONDITION

Let ¥ be a continuous positive linear functional on (*°(A) with the follow-
ing property:
x>0, ¥(x)=0 = z=0.

Assume that v, w and f are as in Theorem 3, and that there are continuous
functions &, : (0,1) — R such that:

1. The differential inequality 2”(t) + k(¢t)|2'(t)| + {(t)z(t) < 0 has a positive
solution z € C([0,1],R) N C?((0,1),R);

2. For (t,z,p), (t,z,p) € S(v,w) x [*(A) withz <7

(f(t,7,p) = ft,2,p)) < k@Y —p)| +1()¥(T - 2).

Let u,u be the minimal and maximal solution of (3) according to The-
orem 3, and set h = ¢(u — u). Then, by means of 2., we have

R"(t) + k(@)W (t)| + 1(t)h(t) >0, h(0)=h(1)=0

By means of 1., standard reasoning proves h(t) < 0, hence h(t) =0 (¢t € [0,1]),
and therefore @ = u. In particular (3) is uniquely solvable between v and w.

8. AN EXAMPLE

First note that our results hold for [a,b] C R instead of [0,1] and for
general boundary values instead of 0, as usual, by application of an affine
transformation.

Let A=7. Let g : R — R be continuous, monotone increasing, g(0) > 0,

>
and let h = (h,) @ (—1,1) — K be continuous and bounded: [|h(t)|] < ¢
(te (—1,1)).
Consider the boundary value problem
U (8) + hn (1) g (n1(t) = 2un () + un—1(1)) = (u,(t))* = 0, (6)

un(a) = &n,  un(b) = nn (7

in I*°(Z). Let e = (1)pez, and let v,w : [—1,1] — [*°(Z) and f : S(v,w) x
1°(Z) — 1°(Z) be defined by v(t) = —max{|l¢], Inll}e (¢ € [~1,1]),

{ (max{][&]]; [nl]} + /eg(0) (1 +#))e (¢ € [-1,0]),
(max{][&]]; [nl[} + /cg(0)(1 = ))e (¢ € [0,1]),

w(t) =



and
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fn(t, 2, pn) = hn(t)g(Tng1 — 200 + 2p1) — (pn)Q-

Then, the transformed functions satisfy the assumptions of Theorem 3, in
particular (6), (7) is solvable in [*°(Z) for each choice of £, 1 € I*°(Z).
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