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1. Introduction

Let A 6= ∅ be a set, and let l∞(A) denote the real Banach space of all
bounded functions x = (xα)α∈A : A → R, endowed with the supremum norm
|| · ||. Let l∞(A) be ordered by the cone

K = {x : xα ≥ 0 (α ∈ A)},
that is x ≤ y :⇔ y − x ∈ K. Inequalities for functions with values in l∞(A)
are always intended pointwise.

For two functions v, w : [0, 1] → l∞(A) with v ≤ w we consider

S(v, w) =
{
(t, x) ∈ (0, 1)× l∞(A) : v(t) ≤ x ≤ w(t) (t ∈ (0, 1))

}
,

and a function f : S(v, w)×l∞(A) → l∞(A). We will assume that v, w is a pair
of generalized upper and lower functions, that f is continuous and satisfies a
Nagumo condition, that f is quasimonotone increasing in its second variable,
and that f is diagonally depending on the third variable.

Under these conditions we will prove the existence of a maximal and a
minimal solution of the boundary value problem

u′′(t) + f(t, u(t), u′(t)) = 0, u(0) = u(1) = 0.

2. Extremal solutions of scalar BVPs

For a function u : [0, 1] → R let

D−u(t), D−u(t) (t ∈ (0, 1]), D+u(t), D+u(t) (t ∈ [0, 1))
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denote the Dini derivatives of u, and for t ∈ (0, 1) let

D2u(t) := lim inf
h→0

u(t + h)− 2u(t) + u(t− h)
h2

,

D2u(t) := lim sup
h→0

u(t + h)− 2u(t) + u(t− h)
h2

denote the Schwarz derivatives of u.
Now, let v, w : [0, 1] → R, v ≤ w,

S(v, w) =
{
(t, x) ∈ (0, 1)× R : v(t) ≤ x ≤ w(t) (t ∈ (0, 1))

}
,

and f : S(v, w) × R → R be given, and consider the scalar boundary value
problem

u′′(t) + f(t, u(t), u′(t)) = 0, u(0) = u(1) = 0. (1)

We employ the following notion for lower and upper functions to (1):
The function v : [0, 1] → R is called lower function for (1), if it is Lipschitz

continuous, if we have v(0) ≤ 0, v(1) ≤ 0, D−v(t) ≤ D+v(t) (t ∈ (0, 1)), and
if for each t ∈ (0, 1) such that v′(t) exists we have

D2v(t) + f(t, v(t), v′(t)) ≥ 0.

Analogously w : [0, 1] → R is called upper function for (1), if it is Lipschitz
continuous, if w(0) ≥ 0, w(1) ≥ 0, D−w(t) ≥ D+w(t) (t ∈ (0, 1)), and if for
each t ∈ (0, 1) such that w′(t) exists we have

D2w(t) + f(t, w(t), w′(t)) ≤ 0.

The function f satisfies a Nagumo condition with respect to v and w, if there
exists a continuous function q : [0,∞) → (0,∞) with

∫ ∞

0

s

q(s)
ds = ∞,

such that
|f(t, x, p)| ≤ q(|p|) ((t, x, p) ∈ S(v, w)× R).

The following Nagumo type theorem [10] is due to Akǒ [1] Theorem 1.1. Our
concept of lower and upper functions is a simplification of the concept of lower
and upper functions in the sense of Akǒ. We will give a proof of Theorem 1
for this reason.
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Theorem 1. Let v, w : [0, 1] → R with v ≤ w and f : S(v, w) × R → R
be such that f is continuous and satisfies a Nagumo condition with respect
to v and w, and that v, w are lower and upper functions for (1), respectively.
Then (1) has a minimal and a maximal solution in C([0, 1],R) ∩C2((0, 1),R)
(whose graph is in S(v, w)).

Remark. Extremal solutions for boundary value problems have been stud-
ied by several authors for various equations, boundary conditions and gener-
alizations of lower and upper functions, see for example [3] Chapter 5., [9],
[11] and the references given there.

As an immediate consequence of Theorem 1 we will obtain monotone de-
pendence of the extremal solutions on f . Consider a second boundary value
problem

u′′(t) + g(t, u(t), u′(t)) = 0, u(0) = u(1) = 0. (2)

Theorem 2. Under the assumptions of Theorem 1 let g : S(v, w)× R→
R be continuous, satisfy a Nagumo condition with respect to v and w, let
v, w : [0, 1] → R be a lower and upper functions for (2), respectively, and let
f(t, x, p) ≤ g(t, x, p) on S(v, w)×R. Then the maximal (minimal) solution of
(1) is ≤ the maximal (minimal) solution of (2).

3. The main result

Let v, w : [0, 1] → l∞(A), v ≤ w and for each α ∈ A let a function
fα : S(v, w)× R→ R be given, such that

f(t, x, p) =
(
fα(t, x, pα)

)
α∈A

defines a function f : S(v, w)× l∞(A) → l∞(A).
If x 7→ f(t, x, p) is continuous on {x : v(t) ≤ x ≤ w(t)} for each (t, p) ∈

(0, 1)× l∞(A), then the function f is quasimonotone increasing in its second
variable, in the sense of Volkmann [13], if and only if

(t, x, p), (t, y, p) ∈ S(v, w)× l∞(A), x ≤ y, α ∈ A, xα = yα

⇒ fα(t, x, pα) ≤ fα(t, y, pα),

compare [12].
We consider the boundary value problem

u′′(t) + f(t, u(t), u′(t)) = 0, u(0) = u(1) = 0 (3)
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in l∞(A).
Now, v : [0, 1] → l∞(A) is called lower function for (3), if it is Lipschitz

continuous, if we have v(0) ≤ 0, v(1) ≤ 0, and if it has the following properties
for each coordinate α ∈ A: D−vα(t) ≤ D+vα(t) (t ∈ (0, 1)), and for each
t ∈ (0, 1) such that v′α(t) exists we have

D2vα(t) + fα(t, v(t), v′α(t)) ≥ 0.

The definition of an upper function w : [0, 1] → l∞(A) is now obvious.
We say that f satisfies a Nagumo condition with respect to v and w, if

there exists a continuous function q : [0,∞) → (0,∞) with
∫ ∞

0

s

q(s)
ds = ∞,

such that for each α ∈ A

|fα(t, x, r)| ≤ q(|r|) ((t, x, r) ∈ S(v, w)× R).

Remark. A Nagumo condition in particular implies that f(S(v, w) × B)
is bounded for each bounded subset B ⊆ l∞(A). It is a notable fact that in
contrast to the finite dimensional case (|A| < ∞) and in contrast to the case of
monotone functions, a continuous quasimonotone increasing function defined
on an order interval may be unbounded. An example is g : [0, 1]N → l∞(N)
defined by

g(x) =
(

1− xn

xn +
∑∞

k=1(1− xk)/2k

)

n∈N
.

We have

Theorem 3. Let v, w : [0, 1] → l∞(A) with v ≤ w and fα : S(v, w) ×
R → R (α ∈ A) be such that f : S(v, w) × l∞(A) → l∞(A), f(t, x, p) =
(fα(t, x, pα))α∈A is continuous, quasimonotone increasing in its second vari-
able, satisfies a Nagumo condition with respect to v and w, and that v, w are
lower and upper functions for (3), respectively. Then (3) has a minimal and
a maximal solution in C([0, 1], l∞(A)) ∩ C2((0, 1), l∞(A)) (whose graph is in
S(v, w)).

Remarks. 1. We will prove Theorem 3 by a variant of Tarski’s fixed point
Theorem. For existence results of solutions of boundary value problems in Rn

involving quasimonotonicity and upper and lower functions see [6], [7] and the
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references given there.
2. For existence results of extremal solutions for initial value problems of first
order equations in l∞(A) see [4], [8] and the references given there.

4. Proof of Theorem 1

We make use of Nagumo’s Lemma [5, Chapter VII, Lemma 5.1]:

Proposition 1. Let q : [0,∞) → (0,∞) be continuous, let z ∈ C([0, 1],R)
∩C2((0, 1),R), z(0) = z(1) = 0, and let

max
t∈[0,1]

z(t)− min
t∈[0,1]

z(t) ≤
∫ L

0

s

q(s)
ds.

Then |z′′(t)| ≤ q(|z′(t)|) (t ∈ (0, 1)) implies |z′(t)| ≤ L (t ∈ (0, 1)).

Extend f to (0, 1)× R2 by

f̃(t, x, p) =





f(t, w(t), p)− x− w(t)
1 + x− w(t)

(x > w(t))

f(t, v(t), p) +
v(t)− x

1 + v(t)− x
(x < v(t))

and choose L ≥ 0 such that
∫ L

0

s

q(s)
ds ≥ max

t∈[0,1]
w(t)− min

t∈[0,1]
v(t).

Without loss of generality L is a Lipschitz constant for both v and w. Next,
let S : R→ R be continuous such that 0 ≤ S(p) ≤ 1 (p ∈ R), and

S(p) = 1 (|p| ≤ L), S(p) = 0 (|p| ≥ L + 1).

Set
F (t, x, p) = S(p)f̃(t, x, p) ((t, x, p) ∈ (0, 1)× R2).

Then
|F (t, x, p)| ≤ q(|p|) + 1,

so
|F (t, x, p)| ≤ max{q(|p|) + 1 : |p| ≤ L + 1}.
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Thus, F is continuous and bounded on (0, 1) × R2. By Scorzà Dragoni’s
theorem there is a solution of

u′′(t) + F (t, u(t), u′(t)) = 0, u(0) = u(1) = 0,

which turns out to be in S(v, w): If there was t ∈ (0, 1) such that u(t) > w(t),
there would exist an interval [t1, t2] ⊆ [0, 1] such that

u(t1) = w(t1), u(t2) = w(t2), u(t) > w(t) (t ∈ (t1, t2)).

The function w−u would then have a negative minimum there, say for t = t0,
where evidently

D−(w − u)(t0) = D−w(t0)− u′(t0) ≤ 0,

D+(w − u)(t0) = D+w(t0)− u′(t0) ≥ 0,

D2(w − u)(t0) = D2w(t0)− u′′(t0) ≥ 0. (4)

But then

D+w(t0) ≥ D+w(t0) ≥ u′(t0) ≥ D−w(t0) ≥ D−w(t0) ≥ D+w(t0),

where the last inequality holds according to the definition of an upper function.
So w is differentiable at t0 with w′(t0) = u′(t0). This implies |u′(t0)| ≤ L, thus

u′′(t0) = −F (t0, u(t0), u′(t0)) = −f̃(t0, u(t0), u′(t0))

= −f(t0, w(t0), w′(t0)) +
u(t0)− w(t0)

1 + u(t0)− w(t0)
> −f(t0, w(t0), w′(t0)) ≥ D2w(t0),

which contradicts (4).
The inequality v(t) ≤ w(t) is proven along the same lines.
Therefore

|u′′(t)| = |S(u′(t))f(t, u(t), u′(t))| ≤ q(|u′(t)|) (t ∈ (0, 1)),

and according to Proposition 1 |u′(t)| ≤ L, thus S(u′(t)) = 1 (t ∈ (0, 1)).
To show that there is a maximal and a minimal solution, note that for

each solution u : [0, 1] → R of (1), u′ : (0, 1) → R can be extended to [0, 1]
such that u ∈ C1([0, 1],R), and that the set of all solutions to (1) is a compact
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subset of C1([0, 1],R), as Proposition 1 implies |u′(t)| ≤ L (t ∈ (0, 1)) for each
solution. Set

u(t) = max{u(t) : u is a solution of (1)}.
Then u is Lipschitz continuous with constant L, and to each t0 ∈ (0, 1)

there is a solution u0 of (1) satisfying u0(t0) = u(t0). Because of u0 ≤ u it
follows

D+u(t0) ≥ u′0(t0) ≥ D−u(t0), D2u(t0) ≥ u′′0(t0),

and, in case u is differentiable at t0,

u′(t0) = u′0(t0).

Therefore,

D2u(t0) ≥ D2u(t0) ≥ u′′0(t0) = −f(t, u0(t0), u′0(t0)) = −f(t, u(t0), u′(t0)).

Summing up, u is a lower function for (1), and by the first part of the proof,
there is a solution of (1) between u and w, which must be u. So u is the
maximal solution.

The existence of a minimal solution u follows by similar reasoning.

5. Proof of Theorem 2

Let u and U be the maximal solution of (1) and (2), respectively. Then,
for t ∈ (0, 1) we get

u′′(t) + g(t, u(t), u′(t)) ≥ u′′(t) + f(t, u(t), u′(t)) = 0,

and therefore u is a lower function of (2). Thus, (2) has a solution between
u and w, in particular u(t) ≤ U(t) ≤ w(t). Analogously, for the minimal
solutions u and U we have

0 = U ′′(t) + g(t, U(t), U ′(t)) ≥ U ′′(t) + f(t, U(t), U ′(t)),

thus U is an upper function of (1), and therefore v(t) ≤ u(t) ≤ U(t).

6. Proof of Theorem 3

We make use of a fixed point Theorem of Bourbaki [2].

Proposition 2. Let Ω 6= ∅ be an ordered set, and let T : Ω → Ω be
monotone increasing.
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1. If supC exists for each chain ∅ 6= C ⊆ Ω, and if there is ω0 ∈ Ω,
ω0 ≤ Tω0, then T has a smallest fixed point in the set {ω ∈ Ω : ω0 ≤ ω}.

2. If inf C exists for each chain ∅ 6= C ⊆ Ω, and if there is ω1 ∈ Ω,
Tω1 ≤ ω1, then T has a greatest fixed point in the set {ω ∈ Ω : ω ≤ ω1}.

Let L ≥ 0 be such that for each α ∈ A

∫ L

0

s

q(s)
ds ≥ max

t∈[0,1]
wα(t)− min

t∈[0,1]
vα(t),

and set

M = sup
{ ||f(t, x, p)|| : (t, x, p) ∈ S(v, w)× [−L,L]N

}
.

Note that M < ∞ since f(S(v, w) × [−L,L]N) is bounded, as a consequence
of Nagumo’s condition.

We consider the following subset Ω of C1([0, 1], l∞(A)):

{ω : ω(0) = ω(1) = 0, ||ω′(t)|| ≤ L, ||ω′(t)− ω′(s)|| ≤ M ||t− s|| (t, s ∈ [0, 1])}

By standard reasoning supC and inf C exist for each chain ∅ 6= C ⊆ Ω (but
Ω is not a lattice). First note that each solution of (3) is in Ω, by the choice
of L and M , and by continuous extension of u′ : (0, 1) → l∞(A) to [0, 1].

We define a mapping T the following way:
Let ω : [0, 1] → l∞(A) be continuous with v ≤ ω ≤ w (not necessarily

ω ∈ Ω), α ∈ A,

Sα(v, w) := {(t, ξ) ∈ (0, 1)× R : vα(t) ≤ ξ ≤ wα(t)},

(Qα(x, ξ))β =

{
xβ β 6= α

ξ β = α
(x ∈ l∞(A), ξ ∈ R),

and let gα : Sα(v, w)× R→ R be defined by

gα(t, ξ, r) = fα(t,Qα(ω(t), ξ), r).

Each function Qα : l∞(A) × R → l∞(A) is Lipschitz continuous, hence each
gα is continuous.

Consider the scalar boundary value problems

u′′α(t) + gα(t, uα(t), u′α(t)) = 0, uα(0) = uα(1) = 0. (5)
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Now, Theorem 1 applies to (5), since vα, wα are lower and upper functions
for (5), respectively. For example if t ∈ (0, 1) and v′α(t) exists, then the
quasimonotonicity of f implies

D2vα(t) + fα(t,Qα(ω(t), vα(t)), v′α(t)) ≥ D2vα(t) + fα(t, v(t), v′α(t)) ≥ 0.

Hence (5) has a maximal solution uα and according to Proposition 1 we have
|u′α(t)| ≤ L, and therefore |u′′α(t)| ≤ M (t ∈ (0, 1)). Thus, Tω := (uα)α∈A ∈ Ω,
and in particular T (Ω) ⊆ Ω.

Moreover ω ≤ ω̃ implies

fα(t,Qα(ω(t), ξ), r) ≤ fα(t,Qα(ω̃(t), ξ), r)

since f is quasimonotone increasing. Therefore Tω ≤ T ω̃ according to The-
orem 2, and in particular T is monotone increasing on Ω.

To see that Ω 6= ∅ note that Tw ∈ Ω.
Next, consider ω1 := Tw ≤ w. Then Tω1 ≤ ω1 and Proposition 2 proves

the existence of a greatest fixed point z of T in {ω ∈ Ω : ω ≤ ω1}, which is a
solution of (3), since Tz = z means that the maximal solution of

u′′α(t) + fα(t,Qα(z(t), uα(t)), u′α(t)) = 0, uα(0) = uα(1) = 0

is uα = zα, hence Qα(z(t), uα(t)) = z(t).
Finally z is the greatest solution of (3) between v and w: Let y be any

solution of (3). In particular y ∈ Ω and y ≤ w. We have

y′′α(t) + fα(t, y(t), y′α(t)) = 0, yα(0) = yα(1) = 0,

thus, yα is a solution of

u′′α(t) + fα(t,Qα(y(t), uα(t)), u′α(t)) = 0, uα(0) = uα(1) = 0,

whereas (Ty)α is the greatest solution of this boundary value problem. This
proves y ≤ Ty. Set ω0 := y. Again, by means of Proposition 2 there is a
(smallest) fixed point z̃ of T in {ω ∈ Ω : ω0 ≤ ω}. From z̃ ≤ w we obtain
z̃ ≤ Tw = ω1. Therefore, z̃ is a fixed point of T in {ω ∈ Ω : ω ≤ ω1}. In
particular y ≤ z̃ ≤ z.

Analogously one can prove the existence of a minimal solution of (3)
between v and w.
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7. A uniqueness condition

Let Ψ be a continuous positive linear functional on l∞(A) with the follow-
ing property:

x ≥ 0, Ψ(x) = 0 ⇒ x = 0.

Assume that v, w and f are as in Theorem 3, and that there are continuous
functions k, l : (0, 1) → R such that:
1. The differential inequality z′′(t) + k(t)|z′(t)| + l(t)z(t) < 0 has a positive
solution z ∈ C([0, 1],R) ∩ C2((0, 1),R);

2. For (t, x, p), (t, x̃, p̃) ∈ S(v, w)× l∞(A) with x ≤ x̃

Ψ(f(t, x̃, p̃)− f(t, x, p)) ≤ k(t)|Ψ(p̃− p)|+ l(t)Ψ(x̃− x).

Let u, u be the minimal and maximal solution of (3) according to The-
orem 3, and set h = ϕ(u− u). Then, by means of 2., we have

h′′(t) + k(t)|h′(t)|+ l(t)h(t) ≥ 0, h(0) = h(1) = 0

By means of 1., standard reasoning proves h(t) ≤ 0, hence h(t) = 0 (t ∈ [0, 1]),
and therefore u = u. In particular (3) is uniquely solvable between v and w.

8. An example

First note that our results hold for [a, b] ⊆ R instead of [0, 1] and for
general boundary values instead of 0, as usual, by application of an affine
transformation.

Let A = Z. Let g : R→ R be continuous, monotone increasing, g(0) ≥ 0,
and let h = (hn) : (−1, 1) → K be continuous and bounded: ||h(t)|| ≤ c
(t ∈ (−1, 1)).

Consider the boundary value problem

u′′n(t) + hn(t)g(un+1(t)− 2un(t) + un−1(t))− (u′n(t))2 = 0, (6)

un(a) = ξn, un(b) = ηn (7)

in l∞(Z). Let e = (1)n∈Z, and let v, w : [−1, 1] → l∞(Z) and f : S(v, w) ×
l∞(Z) → l∞(Z) be defined by v(t) = −max{||ξ||, ||η||}e (t ∈ [−1, 1]),

w(t) =

{
(max{||ξ||, ||η||}+

√
cg(0)(1 + t))e (t ∈ [−1, 0]),

(max{||ξ||, ||η||}+
√

cg(0)(1− t))e (t ∈ [0, 1]),
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and
fn(t, x, pn) = hn(t)g(xn+1 − 2xn + xn−1)− (pn)2.

Then, the transformed functions satisfy the assumptions of Theorem 3, in
particular (6), (7) is solvable in l∞(Z) for each choice of ξ, η ∈ l∞(Z).
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(1972), 157 – 164.


