On BVPs in $l^{\infty}(A)$

Gerd Herzog, Roland Lemmert
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany
e-mail: Gerd.Herzog@math.uni-karlsruhe.de, Roland.Lemmert@math.uni-karlsruhe.de

(Presented by W. Okrasinski)

AMS Subject Class. (2000): 34B15, 34G20
Received October 6, 2004

1. Introduction

Let $A \neq \emptyset$ be a set, and let $l^{\infty}(A)$ denote the real Banach space of all bounded functions $x=\left(x_{\alpha}\right)_{\alpha \in A}: A \rightarrow \mathbb{R}$, endowed with the supremum norm $\|\cdot\|$. Let $l^{\infty}(A)$ be ordered by the cone

$$
K=\left\{x: x_{\alpha} \geq 0(\alpha \in A)\right\}
$$

that is $x \leq y: \Leftrightarrow y-x \in K$. Inequalities for functions with values in $l^{\infty}(A)$ are always intended pointwise.

For two functions $v, w:[0,1] \rightarrow l^{\infty}(A)$ with $v \leq w$ we consider

$$
S(v, w)=\left\{(t, x) \in(0,1) \times l^{\infty}(A): v(t) \leq x \leq w(t)(t \in(0,1))\right\}
$$

and a function $f: S(v, w) \times l^{\infty}(A) \rightarrow l^{\infty}(A)$. We will assume that v, w is a pair of generalized upper and lower functions, that f is continuous and satisfies a Nagumo condition, that f is quasimonotone increasing in its second variable, and that f is diagonally depending on the third variable.

Under these conditions we will prove the existence of a maximal and a minimal solution of the boundary value problem

$$
u^{\prime \prime}(t)+f\left(t, u(t), u^{\prime}(t)\right)=0, \quad u(0)=u(1)=0
$$

2. Extremal solutions of scalar BVPs

For a function $u:[0,1] \rightarrow \mathbb{R}$ let

$$
D_{-} u(t), D^{-} u(t) \quad(t \in(0,1]), \quad D_{+} u(t), D^{+} u(t) \quad(t \in[0,1))
$$

denote the Dini derivatives of u, and for $t \in(0,1)$ let

$$
\begin{aligned}
& D_{2} u(t):=\liminf _{h \rightarrow 0} \frac{u(t+h)-2 u(t)+u(t-h)}{h^{2}}, \\
& D^{2} u(t):=\limsup _{h \rightarrow 0} \frac{u(t+h)-2 u(t)+u(t-h)}{h^{2}}
\end{aligned}
$$

denote the Schwarz derivatives of u.
Now, let $v, w:[0,1] \rightarrow \mathbb{R}, v \leq w$,

$$
S(v, w)=\{(t, x) \in(0,1) \times \mathbb{R}: v(t) \leq x \leq w(t)(t \in(0,1))\},
$$

and $f: S(v, w) \times \mathbb{R} \rightarrow \mathbb{R}$ be given, and consider the scalar boundary value problem

$$
\begin{equation*}
u^{\prime \prime}(t)+f\left(t, u(t), u^{\prime}(t)\right)=0, \quad u(0)=u(1)=0 . \tag{1}
\end{equation*}
$$

We employ the following notion for lower and upper functions to (1):
The function $v:[0,1] \rightarrow \mathbb{R}$ is called lower function for (1), if it is Lipschitz continuous, if we have $v(0) \leq 0, v(1) \leq 0, D^{-} v(t) \leq D_{+} v(t)(t \in(0,1))$, and if for each $t \in(0,1)$ such that $v^{\prime}(t)$ exists we have

$$
D^{2} v(t)+f\left(t, v(t), v^{\prime}(t)\right) \geq 0
$$

Analogously $w:[0,1] \rightarrow \mathbb{R}$ is called upper function for (1), if it is Lipschitz continuous, if $w(0) \geq 0, w(1) \geq 0, D_{-} w(t) \geq D^{+} w(t)(t \in(0,1))$, and if for each $t \in(0,1)$ such that $w^{\prime}(t)$ exists we have

$$
D_{2} w(t)+f\left(t, w(t), w^{\prime}(t)\right) \leq 0 .
$$

The function f satisfies a Nagumo condition with respect to v and w, if there exists a continuous function $q:[0, \infty) \rightarrow(0, \infty)$ with

$$
\int_{0}^{\infty} \frac{s}{q(s)} d s=\infty
$$

such that

$$
|f(t, x, p)| \leq q(|p|) \quad((t, x, p) \in S(v, w) \times \mathbb{R})
$$

The following Nagumo type theorem [10] is due to Akǒ [1] Theorem 1.1. Our concept of lower and upper functions is a simplification of the concept of lower and upper functions in the sense of Akǒ. We will give a proof of Theorem 1 for this reason.

THEOREM 1. Let $v, w:[0,1] \rightarrow \mathbb{R}$ with $v \leq w$ and $f: S(v, w) \times \mathbb{R} \rightarrow \mathbb{R}$ be such that f is continuous and satisfies a Nagumo condition with respect to v and w, and that v, w are lower and upper functions for (1), respectively. Then (1) has a minimal and a maximal solution in $C([0,1], \mathbb{R}) \cap C^{2}((0,1), \mathbb{R})$ (whose graph is in $S(v, w)$).

Remark. Extremal solutions for boundary value problems have been studied by several authors for various equations, boundary conditions and generalizations of lower and upper functions, see for example [3] Chapter 5., [9], [11] and the references given there.

As an immediate consequence of Theorem 1 we will obtain monotone dependence of the extremal solutions on f. Consider a second boundary value problem

$$
\begin{equation*}
u^{\prime \prime}(t)+g\left(t, u(t), u^{\prime}(t)\right)=0, \quad u(0)=u(1)=0 \tag{2}
\end{equation*}
$$

Theorem 2. Under the assumptions of Theorem 1 let $g: S(v, w) \times \mathbb{R} \rightarrow$ \mathbb{R} be continuous, satisfy a Nagumo condition with respect to v and w, let $v, w:[0,1] \rightarrow \mathbb{R}$ be a lower and upper functions for (2), respectively, and let $f(t, x, p) \leq g(t, x, p)$ on $S(v, w) \times \mathbb{R}$. Then the maximal (minimal) solution of (1) is \leq the maximal (minimal) solution of (2).

3. The main Result

Let $v, w:[0,1] \rightarrow l^{\infty}(A), v \leq w$ and for each $\alpha \in A$ let a function $f_{\alpha}: S(v, w) \times \mathbb{R} \rightarrow \mathbb{R}$ be given, such that

$$
f(t, x, p)=\left(f_{\alpha}\left(t, x, p_{\alpha}\right)\right)_{\alpha \in A}
$$

defines a function $f: S(v, w) \times l^{\infty}(A) \rightarrow l^{\infty}(A)$.
If $x \mapsto f(t, x, p)$ is continuous on $\{x: v(t) \leq x \leq w(t)\}$ for each $(t, p) \in$ $(0,1) \times l^{\infty}(A)$, then the function f is quasimonotone increasing in its second variable, in the sense of Volkmann [13], if and only if

$$
\begin{aligned}
(t, x, p),(t, y, p) & \in S(v, w) \times l^{\infty}(A), x \leq y, \alpha \in A, x_{\alpha}=y_{\alpha} \\
& \Rightarrow f_{\alpha}\left(t, x, p_{\alpha}\right) \leq f_{\alpha}\left(t, y, p_{\alpha}\right)
\end{aligned}
$$

compare [12].
We consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}(t)+f\left(t, u(t), u^{\prime}(t)\right)=0, \quad u(0)=u(1)=0 \tag{3}
\end{equation*}
$$

in $l^{\infty}(A)$.
Now, $v:[0,1] \rightarrow l^{\infty}(A)$ is called lower function for (3), if it is Lipschitz continuous, if we have $v(0) \leq 0, v(1) \leq 0$, and if it has the following properties for each coordinate $\alpha \in A: D^{-} v_{\alpha}(t) \leq D_{+} v_{\alpha}(t)(t \in(0,1))$, and for each $t \in(0,1)$ such that $v_{\alpha}^{\prime}(t)$ exists we have

$$
D^{2} v_{\alpha}(t)+f_{\alpha}\left(t, v(t), v_{\alpha}^{\prime}(t)\right) \geq 0
$$

The definition of an upper function $w:[0,1] \rightarrow l^{\infty}(A)$ is now obvious.
We say that f satisfies a Nagumo condition with respect to v and w, if there exists a continuous function $q:[0, \infty) \rightarrow(0, \infty)$ with

$$
\int_{0}^{\infty} \frac{s}{q(s)} d s=\infty
$$

such that for each $\alpha \in A$

$$
\left|f_{\alpha}(t, x, r)\right| \leq q(|r|) \quad((t, x, r) \in S(v, w) \times \mathbb{R})
$$

Remark. A Nagumo condition in particular implies that $f(S(v, w) \times B)$ is bounded for each bounded subset $B \subseteq l^{\infty}(A)$. It is a notable fact that in contrast to the finite dimensional case $(|A|<\infty)$ and in contrast to the case of monotone functions, a continuous quasimonotone increasing function defined on an order interval may be unbounded. An example is $g:[0,1]^{\mathbb{N}} \rightarrow l^{\infty}(\mathbb{N})$ defined by

$$
g(x)=\left(\frac{1-x_{n}}{x_{n}+\sum_{k=1}^{\infty}\left(1-x_{k}\right) / 2^{k}}\right)_{n \in \mathbb{N}} .
$$

We have
Theorem 3. Let $v, w:[0,1] \rightarrow l^{\infty}(A)$ with $v \leq w$ and $f_{\alpha}: S(v, w) \times$ $\mathbb{R} \rightarrow \mathbb{R}(\alpha \in A)$ be such that $f: S(v, w) \times l^{\infty}(A) \rightarrow l^{\infty}(A), f(t, x, p)=$ $\left(f_{\alpha}\left(t, x, p_{\alpha}\right)\right)_{\alpha \in A}$ is continuous, quasimonotone increasing in its second variable, satisfies a Nagumo condition with respect to v and w, and that v, w are lower and upper functions for (3), respectively. Then (3) has a minimal and a maximal solution in $C\left([0,1], l^{\infty}(A)\right) \cap C^{2}\left((0,1), l^{\infty}(A)\right)$ (whose graph is in $S(v, w))$.

Remarks. 1. We will prove Theorem 3 by a variant of Tarski's fixed point Theorem. For existence results of solutions of boundary value problems in \mathbb{R}^{n} involving quasimonotonicity and upper and lower functions see [6], [7] and the
references given there.
2. For existence results of extremal solutions for initial value problems of first order equations in $l^{\infty}(A)$ see [4], [8] and the references given there.

4. Proof of Theorem 1

We make use of Nagumo's Lemma [5, Chapter VII, Lemma 5.1]:
Proposition 1. Let $q:[0, \infty) \rightarrow(0, \infty)$ be continuous, let $z \in C([0,1], \mathbb{R})$ $\cap C^{2}((0,1), \mathbb{R}), z(0)=z(1)=0$, and let

$$
\max _{t \in[0,1]} z(t)-\min _{t \in[0,1]} z(t) \leq \int_{0}^{L} \frac{s}{q(s)} d s
$$

Then $\left|z^{\prime \prime}(t)\right| \leq q\left(\left|z^{\prime}(t)\right|\right)(t \in(0,1))$ implies $\left|z^{\prime}(t)\right| \leq L(t \in(0,1))$.
Extend f to $(0,1) \times \mathbb{R}^{2}$ by

$$
\tilde{f}(t, x, p)=\left\{\begin{array}{cl}
f(t, w(t), p)-\frac{x-w(t)}{1+x-w(t)} & (x>w(t)) \\
f(t, v(t), p)+\frac{v(t)-x}{1+v(t)-x} & (x<v(t))
\end{array}\right.
$$

and choose $L \geq 0$ such that

$$
\int_{0}^{L} \frac{s}{q(s)} d s \geq \max _{t \in[0,1]} w(t)-\min _{t \in[0,1]} v(t) .
$$

Without loss of generality L is a Lipschitz constant for both v and w. Next, let $S: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that $0 \leq S(p) \leq 1(p \in \mathbb{R})$, and

$$
S(p)=1 \quad(|p| \leq L), \quad S(p)=0 \quad(|p| \geq L+1) .
$$

Set

$$
F(t, x, p)=S(p) \widetilde{f}(t, x, p) \quad\left((t, x, p) \in(0,1) \times \mathbb{R}^{2}\right)
$$

Then

$$
|F(t, x, p)| \leq q(|p|)+1
$$

so

$$
|F(t, x, p)| \leq \max \{q(|p|)+1:|p| \leq L+1\} .
$$

Thus, F is continuous and bounded on $(0,1) \times \mathbb{R}^{2}$. By Scorzà Dragoni's theorem there is a solution of

$$
u^{\prime \prime}(t)+F\left(t, u(t), u^{\prime}(t)\right)=0, \quad u(0)=u(1)=0,
$$

which turns out to be in $S(v, w)$: If there was $t \in(0,1)$ such that $u(t)>w(t)$, there would exist an interval $\left[t_{1}, t_{2}\right] \subseteq[0,1]$ such that

$$
u\left(t_{1}\right)=w\left(t_{1}\right), \quad u\left(t_{2}\right)=w\left(t_{2}\right), \quad u(t)>w(t) \quad\left(t \in\left(t_{1}, t_{2}\right)\right) .
$$

The function $w-u$ would then have a negative minimum there, say for $t=t_{0}$, where evidently

$$
\begin{align*}
& D^{-}(w-u)\left(t_{0}\right)=D^{-} w\left(t_{0}\right)-u^{\prime}\left(t_{0}\right) \leq 0, \\
& D_{+}(w-u)\left(t_{0}\right)=D_{+} w\left(t_{0}\right)-u^{\prime}\left(t_{0}\right) \geq 0, \\
& D_{2}(w-u)\left(t_{0}\right)=D_{2} w\left(t_{0}\right)-u^{\prime \prime}\left(t_{0}\right) \geq 0 . \tag{4}
\end{align*}
$$

But then

$$
D^{+} w\left(t_{0}\right) \geq D_{+} w\left(t_{0}\right) \geq u^{\prime}\left(t_{0}\right) \geq D^{-} w\left(t_{0}\right) \geq D_{-} w\left(t_{0}\right) \geq D^{+} w\left(t_{0}\right),
$$

where the last inequality holds according to the definition of an upper function. So w is differentiable at t_{0} with $w^{\prime}\left(t_{0}\right)=u^{\prime}\left(t_{0}\right)$. This implies $\left|u^{\prime}\left(t_{0}\right)\right| \leq L$, thus

$$
\begin{aligned}
u^{\prime \prime}\left(t_{0}\right) & =-F\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)=-\widetilde{f}\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right) \\
& =-f\left(t_{0}, w\left(t_{0}\right), w^{\prime}\left(t_{0}\right)\right)+\frac{u\left(t_{0}\right)-w\left(t_{0}\right)}{1+u\left(t_{0}\right)-w\left(t_{0}\right)} \\
& >-f\left(t_{0}, w\left(t_{0}\right), w^{\prime}\left(t_{0}\right)\right) \geq D_{2} w\left(t_{0}\right),
\end{aligned}
$$

which contradicts (4).
The inequality $v(t) \leq w(t)$ is proven along the same lines.
Therefore

$$
\left|u^{\prime \prime}(t)\right|=\left|S\left(u^{\prime}(t)\right) f\left(t, u(t), u^{\prime}(t)\right)\right| \leq q\left(\left|u^{\prime}(t)\right|\right) \quad(t \in(0,1)),
$$

and according to Proposition $1\left|u^{\prime}(t)\right| \leq L$, thus $S\left(u^{\prime}(t)\right)=1(t \in(0,1))$.
To show that there is a maximal and a minimal solution, note that for each solution $u:[0,1] \rightarrow \mathbb{R}$ of $(1), u^{\prime}:(0,1) \rightarrow \mathbb{R}$ can be extended to $[0,1]$ such that $u \in C^{1}([0,1], \mathbb{R})$, and that the set of all solutions to (1) is a compact
subset of $C^{1}([0,1], \mathbb{R})$, as Proposition 1 implies $\left|u^{\prime}(t)\right| \leq L(t \in(0,1))$ for each solution. Set

$$
\bar{u}(t)=\max \{u(t): u \text { is a solution of }(1)\} .
$$

Then \bar{u} is Lipschitz continuous with constant L, and to each $t_{0} \in(0,1)$ there is a solution u_{0} of (1) satisfying $u_{0}\left(t_{0}\right)=\bar{u}\left(t_{0}\right)$. Because of $u_{0} \leq \bar{u}$ it follows

$$
D_{+} \bar{u}\left(t_{0}\right) \geq u_{0}^{\prime}\left(t_{0}\right) \geq D^{-} \bar{u}\left(t_{0}\right), \quad D_{2} \bar{u}\left(t_{0}\right) \geq u_{0}^{\prime \prime}\left(t_{0}\right),
$$

and, in case \bar{u} is differentiable at t_{0},

$$
\bar{u}^{\prime}\left(t_{0}\right)=u_{0}^{\prime}\left(t_{0}\right) .
$$

Therefore,

$$
D^{2} \bar{u}\left(t_{0}\right) \geq D_{2} \bar{u}\left(t_{0}\right) \geq u_{0}^{\prime \prime}\left(t_{0}\right)=-f\left(t, u_{0}\left(t_{0}\right), u_{0}^{\prime}\left(t_{0}\right)\right)=-f\left(t, \bar{u}\left(t_{0}\right), \bar{u}^{\prime}\left(t_{0}\right)\right) .
$$

Summing up, \bar{u} is a lower function for (1), and by the first part of the proof, there is a solution of (1) between \bar{u} and w, which must be \bar{u}. So \bar{u} is the maximal solution.

The existence of a minimal solution \underline{u} follows by similar reasoning.

5. Proof of Theorem 2

Let \bar{u} and \bar{U} be the maximal solution of (1) and (2), respectively. Then, for $t \in(0,1)$ we get

$$
\bar{u}^{\prime \prime}(t)+g\left(t, \bar{u}(t), \bar{u}^{\prime}(t)\right) \geq \bar{u}^{\prime \prime}(t)+f\left(t, \bar{u}(t), \bar{u}^{\prime}(t)\right)=0,
$$

and therefore \bar{u} is a lower function of (2). Thus, (2) has a solution between \bar{u} and w, in particular $\bar{u}(t) \leq \bar{U}(t) \leq w(t)$. Analogously, for the minimal solutions \underline{u} and \underline{U} we have

$$
0=\underline{U}^{\prime \prime}(t)+g\left(t, \underline{U}(t), \underline{U}^{\prime}(t)\right) \geq \underline{U}^{\prime \prime}(t)+f\left(t, \underline{U}(t), \underline{U}^{\prime}(t)\right),
$$

thus \underline{U} is an upper function of (1), and therefore $v(t) \leq \underline{u}(t) \leq \underline{U}(t)$.

6. Proof of Theorem 3

We make use of a fixed point Theorem of Bourbaki [2].
Proposition 2. Let $\Omega \neq \emptyset$ be an ordered set, and let $T: \Omega \rightarrow \Omega$ be monotone increasing.

1. If $\sup C$ exists for each chain $\emptyset \neq C \subseteq \Omega$, and if there is $\omega_{0} \in \Omega$, $\omega_{0} \leq T \omega_{0}$, then T has a smallest fixed point in the set $\left\{\omega \in \Omega: \omega_{0} \leq \omega\right\}$.
2. If $\inf C$ exists for each chain $\emptyset \neq C \subseteq \Omega$, and if there is $\omega_{1} \in \Omega$, $T \omega_{1} \leq \omega_{1}$, then T has a greatest fixed point in the set $\left\{\omega \in \Omega: \omega \leq \omega_{1}\right\}$.

Let $L \geq 0$ be such that for each $\alpha \in A$

$$
\int_{0}^{L} \frac{s}{q(s)} d s \geq \max _{t \in[0,1]} w_{\alpha}(t)-\min _{t \in[0,1]} v_{\alpha}(t)
$$

and set

$$
M=\sup \left\{\|f(t, x, p)\|:(t, x, p) \in S(v, w) \times[-L, L]^{\mathbb{N}}\right\}
$$

Note that $M<\infty$ since $f\left(S(v, w) \times[-L, L]^{\mathbb{N}}\right)$ is bounded, as a consequence of Nagumo's condition.

We consider the following subset Ω of $C^{1}\left([0,1], l^{\infty}(A)\right)$:
$\left\{\omega: \omega(0)=\omega(1)=0,\left\|\omega^{\prime}(t)\right\| \leq L,\left\|\omega^{\prime}(t)-\omega^{\prime}(s)\right\| \leq M\|t-s\|(t, s \in[0,1])\right\}$
By standard reasoning $\sup C$ and $\inf C$ exist for each chain $\emptyset \neq C \subseteq \Omega$ (but Ω is not a lattice). First note that each solution of (3) is in Ω, by the choice of L and M, and by continuous extension of $u^{\prime}:(0,1) \rightarrow l^{\infty}(A)$ to $[0,1]$.

We define a mapping T the following way:
Let $\omega:[0,1] \rightarrow l^{\infty}(A)$ be continuous with $v \leq \omega \leq w$ (not necessarily $\omega \in \Omega), \alpha \in A$,

$$
\begin{aligned}
& S_{\alpha}(v, w):=\left\{(t, \xi) \in(0,1) \times \mathbb{R}: v_{\alpha}(t) \leq \xi \leq w_{\alpha}(t)\right\}, \\
& \left(Q_{\alpha}(x, \xi)\right)_{\beta}=\left\{\begin{array}{cc}
x_{\beta} & \beta \neq \alpha \\
\xi & \beta=\alpha
\end{array} \quad\left(x \in l^{\infty}(A), \xi \in \mathbb{R}\right),\right.
\end{aligned}
$$

and let $g_{\alpha}: S_{\alpha}(v, w) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g_{\alpha}(t, \xi, r)=f_{\alpha}\left(t, Q_{\alpha}(\omega(t), \xi), r\right) .
$$

Each function $Q_{\alpha}: l^{\infty}(A) \times \mathbb{R} \rightarrow l^{\infty}(A)$ is Lipschitz continuous, hence each g_{α} is continuous.

Consider the scalar boundary value problems

$$
\begin{equation*}
u_{\alpha}^{\prime \prime}(t)+g_{\alpha}\left(t, u_{\alpha}(t), u_{\alpha}^{\prime}(t)\right)=0, \quad u_{\alpha}(0)=u_{\alpha}(1)=0 . \tag{5}
\end{equation*}
$$

Now, Theorem 1 applies to (5), since v_{α}, w_{α} are lower and upper functions for (5), respectively. For example if $t \in(0,1)$ and $v_{\alpha}^{\prime}(t)$ exists, then the quasimonotonicity of f implies

$$
D^{2} v_{\alpha}(t)+f_{\alpha}\left(t, Q_{\alpha}\left(\omega(t), v_{\alpha}(t)\right), v_{\alpha}^{\prime}(t)\right) \geq D^{2} v_{\alpha}(t)+f_{\alpha}\left(t, v(t), v_{\alpha}^{\prime}(t)\right) \geq 0
$$

Hence (5) has a maximal solution \bar{u}_{α} and according to Proposition 1 we have $\left|\bar{u}_{\alpha}^{\prime}(t)\right| \leq L$, and therefore $\left|\bar{u}_{\alpha}^{\prime \prime}(t)\right| \leq M(t \in(0,1))$. Thus, $T \omega:=\left(\bar{u}_{\alpha}\right)_{\alpha \in A} \in \Omega$, and in particular $T(\Omega) \subseteq \Omega$.

Moreover $\omega \leq \widetilde{\omega}$ implies

$$
f_{\alpha}\left(t, Q_{\alpha}(\omega(t), \xi), r\right) \leq f_{\alpha}\left(t, Q_{\alpha}(\widetilde{\omega}(t), \xi), r\right)
$$

since f is quasimonotone increasing. Therefore $T \omega \leq T \widetilde{\omega}$ according to Theorem 2, and in particular T is monotone increasing on Ω.

To see that $\Omega \neq \emptyset$ note that $T w \in \Omega$.
Next, consider $\omega_{1}:=T w \leq w$. Then $T \omega_{1} \leq \omega_{1}$ and Proposition 2 proves the existence of a greatest fixed point z of T in $\left\{\omega \in \Omega: \omega \leq \omega_{1}\right\}$, which is a solution of (3), since $T z=z$ means that the maximal solution of

$$
u_{\alpha}^{\prime \prime}(t)+f_{\alpha}\left(t, Q_{\alpha}\left(z(t), u_{\alpha}(t)\right), u_{\alpha}^{\prime}(t)\right)=0, \quad u_{\alpha}(0)=u_{\alpha}(1)=0
$$

is $u_{\alpha}=z_{\alpha}$, hence $Q_{\alpha}\left(z(t), u_{\alpha}(t)\right)=z(t)$.
Finally z is the greatest solution of (3) between v and w : Let y be any solution of (3). In particular $y \in \Omega$ and $y \leq w$. We have

$$
y_{\alpha}^{\prime \prime}(t)+f_{\alpha}\left(t, y(t), y_{\alpha}^{\prime}(t)\right)=0, \quad y_{\alpha}(0)=y_{\alpha}(1)=0
$$

thus, y_{α} is a solution of

$$
u_{\alpha}^{\prime \prime}(t)+f_{\alpha}\left(t, Q_{\alpha}\left(y(t), u_{\alpha}(t)\right), u_{\alpha}^{\prime}(t)\right)=0, \quad u_{\alpha}(0)=u_{\alpha}(1)=0,
$$

whereas $(T y)_{\alpha}$ is the greatest solution of this boundary value problem. This proves $y \leq T y$. Set $\omega_{0}:=y$. Again, by means of Proposition 2 there is a (smallest) fixed point \widetilde{z} of T in $\left\{\omega \in \Omega: \omega_{0} \leq \omega\right\}$. From $\widetilde{z} \leq w$ we obtain $\widetilde{z} \leq T w=\omega_{1}$. Therefore, \widetilde{z} is a fixed point of T in $\left\{\omega \in \Omega: \omega \leq \omega_{1}\right\}$. In particular $y \leq \widetilde{z} \leq z$.

Analogously one can prove the existence of a minimal solution of (3) between v and w.

7. A UnIQUENESS CONDITION

Let Ψ be a continuous positive linear functional on $l^{\infty}(A)$ with the following property:

$$
x \geq 0, \Psi(x)=0 \Rightarrow x=0
$$

Assume that v, w and f are as in Theorem 3, and that there are continuous functions $k, l:(0,1) \rightarrow \mathbb{R}$ such that:

1. The differential inequality $z^{\prime \prime}(t)+k(t)\left|z^{\prime}(t)\right|+l(t) z(t)<0$ has a positive solution $z \in C([0,1], \mathbb{R}) \cap C^{2}((0,1), \mathbb{R})$;
2. For $(t, x, p),(t, \widetilde{x}, \widetilde{p}) \in S(v, w) \times l^{\infty}(A)$ with $x \leq \widetilde{x}$

$$
\Psi(f(t, \widetilde{x}, \widetilde{p})-f(t, x, p)) \leq k(t)|\Psi(\widetilde{p}-p)|+l(t) \Psi(\widetilde{x}-x)
$$

Let \underline{u}, \bar{u} be the minimal and maximal solution of (3) according to Theorem 3 , and set $h=\varphi(\bar{u}-\underline{u})$. Then, by means of 2 ., we have

$$
h^{\prime \prime}(t)+k(t)\left|h^{\prime}(t)\right|+l(t) h(t) \geq 0, \quad h(0)=h(1)=0
$$

By means of 1., standard reasoning proves $h(t) \leq 0$, hence $h(t)=0(t \in[0,1])$, and therefore $\bar{u}=\underline{u}$. In particular (3) is uniquely solvable between v and w.

8. An EXAMPLE

First note that our results hold for $[a, b] \subseteq \mathbb{R}$ instead of $[0,1]$ and for general boundary values instead of 0 , as usual, by application of an affine transformation.

Let $A=\mathbb{Z}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, monotone increasing, $g(0) \geq 0$, and let $h=\left(h_{n}\right):(-1,1) \rightarrow K$ be continuous and bounded: $\|h(t)\| \leq c$ $(t \in(-1,1))$.

Consider the boundary value problem

$$
\begin{gather*}
u_{n}^{\prime \prime}(t)+h_{n}(t) g\left(u_{n+1}(t)-2 u_{n}(t)+u_{n-1}(t)\right)-\left(u_{n}^{\prime}(t)\right)^{2}=0 \tag{6}\\
u_{n}(a)=\xi_{n}, \quad u_{n}(b)=\eta_{n} \tag{7}
\end{gather*}
$$

in $l^{\infty}(\mathbb{Z})$. Let $e=(1)_{n \in \mathbb{Z}}$, and let $v, w:[-1,1] \rightarrow l^{\infty}(\mathbb{Z})$ and $f: S(v, w) \times$ $l^{\infty}(\mathbb{Z}) \rightarrow l^{\infty}(\mathbb{Z})$ be defined by $v(t)=-\max \{\|\xi\|,\|\eta\|\} e(t \in[-1,1])$,

$$
w(t)=\left\{\begin{array}{lc}
(\max \{\|\xi\|,\|\eta\|\}+\sqrt{c g(0)}(1+t)) e & (t \in[-1,0]) \\
(\max \{\|\xi\|,\|\eta\|\}+\sqrt{c g(0)}(1-t)) e & (t \in[0,1])
\end{array}\right.
$$

and

$$
f_{n}\left(t, x, p_{n}\right)=h_{n}(t) g\left(x_{n+1}-2 x_{n}+x_{n-1}\right)-\left(p_{n}\right)^{2}
$$

Then, the transformed functions satisfy the assumptions of Theorem 3, in particular (6), (7) is solvable in $l^{\infty}(\mathbb{Z})$ for each choice of $\xi, \eta \in l^{\infty}(\mathbb{Z})$.

References

[1] Akǒ, K., Subfunctions for ordinary differential equations III, Funkcial. Ekvac., 11 (1968), 111-129.
[2] Bourbaki, N., "Éléments de Mathématique I: Théorie des Ensembles, Fascicule de Résultats", Hermann \& Cie., Paris, 1939.
[3] Carl, S., Heikkilä, S., "Nonlinear Differential Equations in Ordered Spaces", Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 111, Boca Raton, FL: Chapman \& Hall/CRC, 2000.
[4] Chaljub-Simon, A., Lemmert, R., Schmidt, S., Volkmann, P., Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, General inequalities 6, Proc. 6th Int. Conf., Oberwolfach/Germany, 1990, ISNM 103 (1992), 307-320.
[5] Hartman, P., "Ordinary Differential Equations", John Wiley and Sons Inc, New York-London-Sydney, 1964.
[6] Herzog, G., The Dirichlet problem for quasimonotone systems of second order equations, Rocky Mountain J. Math., 34 (2004), 195-204.
[7] Lakshmikantham, V., Vatsala, S.A., Quasi-solutions and monotone method for systems of boundary value problems, J. Math. Anal. Appl., 79 (1981), 38-47.
[8] Lemmert, R., Redheffer, R.M., Volkmann, P., Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, General inequalities, 5 (Oberwolfach, 1986), 381-390.
[9] Lepin, A., Ponomarev, V., On a singular boundary value problem for a second order ordinary differential equation, Nonlinear Anal., 42 (6) (2000), Ser. A: Theory Methods, 949-960.
[10] Nagumo, M., Über die Differentialgleichung $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, Proc. Phys.Math. Soc. Japan, III. Ser., 19 (1937), 861-866.
[11] Schmitt, K., Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal., 2 (1978), 263-309.
[12] UHL, R., Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces, Proc. Amer. Math. Soc., 126 (1998), 1999-2003.
[13] Volkmann, P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z., 127 (1972), 157-164.

