On BVPs in $l^{\infty}(A)$

GERD HERZOG, ROLAND LEMMERT

Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany e-mail: Gerd.Herzog@math.uni-karlsruhe.de, Roland.Lemmert@math.uni-karlsruhe.de

(Presented by W. Okrasinski)

AMS Subject Class. (2000): 34B15, 34G20

Received October 6, 2004

1. INTRODUCTION

Let $A \neq \emptyset$ be a set, and let $l^{\infty}(A)$ denote the real Banach space of all bounded functions $x = (x_{\alpha})_{\alpha \in A} : A \to \mathbb{R}$, endowed with the supremum norm $|| \cdot ||$. Let $l^{\infty}(A)$ be ordered by the cone

$$K = \{ x : x_{\alpha} \ge 0 \ (\alpha \in A) \},\$$

that is $x \leq y : \Leftrightarrow y - x \in K$. Inequalities for functions with values in $l^{\infty}(A)$ are always intended pointwise.

For two functions $v, w: [0,1] \to l^{\infty}(A)$ with $v \leq w$ we consider

$$S(v,w) = \{(t,x) \in (0,1) \times l^{\infty}(A) : v(t) \le x \le w(t) \ (t \in (0,1))\},\$$

and a function $f: S(v, w) \times l^{\infty}(A) \to l^{\infty}(A)$. We will assume that v, w is a pair of generalized upper and lower functions, that f is continuous and satisfies a Nagumo condition, that f is quasimonotone increasing in its second variable, and that f is diagonally depending on the third variable.

Under these conditions we will prove the existence of a maximal and a minimal solution of the boundary value problem

$$u''(t) + f(t, u(t), u'(t)) = 0, \quad u(0) = u(1) = 0.$$

2. Extremal solutions of scalar BVPs

For a function $u: [0,1] \to \mathbb{R}$ let

$$D_{-}u(t), \ D^{-}u(t) \ (t \in (0,1]), \ D_{+}u(t), \ D^{+}u(t) \ (t \in [0,1])$$

denote the Dini derivatives of u, and for $t \in (0, 1)$ let

$$D_2 u(t) := \liminf_{h \to 0} \frac{u(t+h) - 2u(t) + u(t-h)}{h^2},$$
$$D^2 u(t) := \limsup_{h \to 0} \frac{u(t+h) - 2u(t) + u(t-h)}{h^2}$$

denote the Schwarz derivatives of u.

Now, let $v, w : [0, 1] \to \mathbb{R}, v \le w$,

$$S(v,w) = \big\{ (t,x) \in (0,1) \times \mathbb{R} : v(t) \le x \le w(t) \ (t \in (0,1)) \big\},\$$

and $f:S(v,w)\times \mathbb{R}\to \mathbb{R}$ be given, and consider the scalar boundary value problem

$$u''(t) + f(t, u(t), u'(t)) = 0, \quad u(0) = u(1) = 0.$$
 (1)

We employ the following notion for lower and upper functions to (1):

The function $v : [0,1] \to \mathbb{R}$ is called lower function for (1), if it is Lipschitz continuous, if we have $v(0) \leq 0$, $v(1) \leq 0$, $D^-v(t) \leq D_+v(t)$ ($t \in (0,1)$), and if for each $t \in (0,1)$ such that v'(t) exists we have

$$D^{2}v(t) + f(t, v(t), v'(t)) \ge 0.$$

Analogously $w : [0,1] \to \mathbb{R}$ is called upper function for (1), if it is Lipschitz continuous, if $w(0) \ge 0$, $w(1) \ge 0$, $D_-w(t) \ge D^+w(t)$ ($t \in (0,1)$), and if for each $t \in (0,1)$ such that w'(t) exists we have

$$D_2w(t) + f(t, w(t), w'(t)) \le 0.$$

The function f satisfies a Nagumo condition with respect to v and w, if there exists a continuous function $q: [0, \infty) \to (0, \infty)$ with

$$\int_0^\infty \frac{s}{q(s)} \ ds = \infty,$$

such that

$$|f(t,x,p)| \le q(|p|) \quad ((t,x,p) \in S(v,w) \times \mathbb{R}).$$

The following Nagumo type theorem [10] is due to Akŏ [1] Theorem 1.1. Our concept of lower and upper functions is a simplification of the concept of lower and upper functions in the sense of Akŏ. We will give a proof of Theorem 1 for this reason.

THEOREM 1. Let $v, w : [0, 1] \to \mathbb{R}$ with $v \le w$ and $f : S(v, w) \times \mathbb{R} \to \mathbb{R}$ be such that f is continuous and satisfies a Nagumo condition with respect to v and w, and that v, w are lower and upper functions for (1), respectively. Then (1) has a minimal and a maximal solution in $C([0, 1], \mathbb{R}) \cap C^2((0, 1), \mathbb{R})$ (whose graph is in S(v, w)).

Remark. Extremal solutions for boundary value problems have been studied by several authors for various equations, boundary conditions and generalizations of lower and upper functions, see for example [3] Chapter 5., [9], [11] and the references given there.

As an immediate consequence of Theorem 1 we will obtain monotone dependence of the extremal solutions on f. Consider a second boundary value problem

$$u''(t) + g(t, u(t), u'(t)) = 0, \quad u(0) = u(1) = 0.$$
(2)

THEOREM 2. Under the assumptions of Theorem 1 let $g: S(v, w) \times \mathbb{R} \to \mathbb{R}$ be continuous, satisfy a Nagumo condition with respect to v and w, let $v, w: [0,1] \to \mathbb{R}$ be a lower and upper functions for (2), respectively, and let $f(t, x, p) \leq g(t, x, p)$ on $S(v, w) \times \mathbb{R}$. Then the maximal (minimal) solution of (1) is \leq the maximal (minimal) solution of (2).

3. The main result

Let $v, w : [0,1] \to l^{\infty}(A), v \leq w$ and for each $\alpha \in A$ let a function $f_{\alpha} : S(v, w) \times \mathbb{R} \to \mathbb{R}$ be given, such that

$$f(t, x, p) = \left(f_{\alpha}(t, x, p_{\alpha})\right)_{\alpha \in A}$$

defines a function $f: S(v, w) \times l^{\infty}(A) \to l^{\infty}(A)$.

If $x \mapsto f(t, x, p)$ is continuous on $\{x : v(t) \le x \le w(t)\}$ for each $(t, p) \in (0, 1) \times l^{\infty}(A)$, then the function f is quasimonotone increasing in its second variable, in the sense of Volkmann [13], if and only if

$$(t, x, p), (t, y, p) \in S(v, w) \times l^{\infty}(A), \ x \le y, \ \alpha \in A, \ x_{\alpha} = y_{\alpha}$$
$$\Rightarrow f_{\alpha}(t, x, p_{\alpha}) \le f_{\alpha}(t, y, p_{\alpha}),$$

compare [12].

We consider the boundary value problem

$$u''(t) + f(t, u(t), u'(t)) = 0, \quad u(0) = u(1) = 0$$
(3)

in $l^{\infty}(A)$.

Now, $v : [0,1] \to l^{\infty}(A)$ is called lower function for (3), if it is Lipschitz continuous, if we have $v(0) \leq 0$, $v(1) \leq 0$, and if it has the following properties for each coordinate $\alpha \in A$: $D^-v_{\alpha}(t) \leq D_+v_{\alpha}(t)$ $(t \in (0,1))$, and for each $t \in (0,1)$ such that $v'_{\alpha}(t)$ exists we have

$$D^2 v_{\alpha}(t) + f_{\alpha}(t, v(t), v'_{\alpha}(t)) \ge 0.$$

The definition of an upper function $w: [0,1] \to l^{\infty}(A)$ is now obvious.

We say that f satisfies a Nagumo condition with respect to v and w, if there exists a continuous function $q: [0, \infty) \to (0, \infty)$ with

$$\int_0^\infty \frac{s}{q(s)} \, ds = \infty,$$

such that for each $\alpha \in A$

$$|f_{\alpha}(t,x,r)| \le q(|r|) \quad ((t,x,r) \in S(v,w) \times \mathbb{R}).$$

Remark. A Nagumo condition in particular implies that $f(S(v, w) \times B)$ is bounded for each bounded subset $B \subseteq l^{\infty}(A)$. It is a notable fact that in contrast to the finite dimensional case $(|A| < \infty)$ and in contrast to the case of monotone functions, a continuous quasimonotone increasing function defined on an order interval may be unbounded. An example is $g : [0,1]^{\mathbb{N}} \to l^{\infty}(\mathbb{N})$ defined by

$$g(x) = \left(\frac{1-x_n}{x_n + \sum_{k=1}^{\infty} (1-x_k)/2^k}\right)_{n \in \mathbb{N}}.$$

We have

THEOREM 3. Let $v, w : [0,1] \to l^{\infty}(A)$ with $v \leq w$ and $f_{\alpha} : S(v,w) \times \mathbb{R} \to \mathbb{R}$ ($\alpha \in A$) be such that $f : S(v,w) \times l^{\infty}(A) \to l^{\infty}(A)$, $f(t,x,p) = (f_{\alpha}(t,x,p_{\alpha}))_{\alpha \in A}$ is continuous, quasimonotone increasing in its second variable, satisfies a Nagumo condition with respect to v and w, and that v, w are lower and upper functions for (3), respectively. Then (3) has a minimal and a maximal solution in $C([0,1], l^{\infty}(A)) \cap C^2((0,1), l^{\infty}(A))$ (whose graph is in S(v,w)).

Remarks. 1. We will prove Theorem 3 by a variant of Tarski's fixed point Theorem. For existence results of solutions of boundary value problems in \mathbb{R}^n involving quasimonotonicity and upper and lower functions see [6], [7] and the

16

references given there.

2. For existence results of extremal solutions for initial value problems of first order equations in $l^{\infty}(A)$ see [4], [8] and the references given there.

4. Proof of Theorem 1

We make use of Nagumo's Lemma [5, Chapter VII, Lemma 5.1]:

PROPOSITION 1. Let $q : [0, \infty) \to (0, \infty)$ be continuous, let $z \in C([0, 1], \mathbb{R}) \cap C^2((0, 1), \mathbb{R}), z(0) = z(1) = 0$, and let

$$\max_{t \in [0,1]} z(t) - \min_{t \in [0,1]} z(t) \le \int_0^L \frac{s}{q(s)} ds$$

Then $|z''(t)| \le q(|z'(t)|)$ $(t \in (0,1))$ implies $|z'(t)| \le L$ $(t \in (0,1))$.

Extend f to $(0,1) \times \mathbb{R}^2$ by

$$\widetilde{f}(t, x, p) = \begin{cases} f(t, w(t), p) - \frac{x - w(t)}{1 + x - w(t)} & (x > w(t)) \\ f(t, v(t), p) + \frac{v(t) - x}{1 + v(t) - x} & (x < v(t)) \end{cases}$$

and choose $L\geq 0$ such that

$$\int_0^L \frac{s}{q(s)} ds \ge \max_{t \in [0,1]} w(t) - \min_{t \in [0,1]} v(t).$$

Without loss of generality L is a Lipschitz constant for both v and w. Next, let $S : \mathbb{R} \to \mathbb{R}$ be continuous such that $0 \leq S(p) \leq 1$ $(p \in \mathbb{R})$, and

$$S(p) = 1 \ (|p| \le L), \quad S(p) = 0 \ (|p| \ge L + 1).$$

 Set

$$F(t,x,p) = S(p)\widetilde{f}(t,x,p) \quad ((t,x,p) \in (0,1) \times \mathbb{R}^2).$$

Then

$$|F(t, x, p)| \le q(|p|) + 1,$$

 \mathbf{so}

$$|F(t, x, p)| \le \max\{q(|p|) + 1 : |p| \le L + 1\}.$$

Thus, F is continuous and bounded on $(0,1) \times \mathbb{R}^2$. By Scorzà Dragoni's theorem there is a solution of

$$u''(t) + F(t, u(t), u'(t)) = 0, \quad u(0) = u(1) = 0,$$

which turns out to be in S(v, w): If there was $t \in (0, 1)$ such that u(t) > w(t), there would exist an interval $[t_1, t_2] \subseteq [0, 1]$ such that

$$u(t_1) = w(t_1), \quad u(t_2) = w(t_2), \quad u(t) > w(t) \quad (t \in (t_1, t_2)).$$

The function w - u would then have a negative minimum there, say for $t = t_0$, where evidently

$$D^{-}(w-u)(t_{0}) = D^{-}w(t_{0}) - u'(t_{0}) \le 0,$$

$$D_{+}(w-u)(t_{0}) = D_{+}w(t_{0}) - u'(t_{0}) \ge 0,$$

$$D_{2}(w-u)(t_{0}) = D_{2}w(t_{0}) - u''(t_{0}) \ge 0.$$
(4)

But then

$$D^+w(t_0) \ge D_+w(t_0) \ge u'(t_0) \ge D^-w(t_0) \ge D_-w(t_0) \ge D^+w(t_0),$$

where the last inequality holds according to the definition of an upper function. So w is differentiable at t_0 with $w'(t_0) = u'(t_0)$. This implies $|u'(t_0)| \leq L$, thus

$$u''(t_0) = -F(t_0, u(t_0), u'(t_0)) = -\tilde{f}(t_0, u(t_0), u'(t_0))$$

= $-f(t_0, w(t_0), w'(t_0)) + \frac{u(t_0) - w(t_0)}{1 + u(t_0) - w(t_0)}$
> $-f(t_0, w(t_0), w'(t_0)) \ge D_2 w(t_0),$

which contradicts (4).

The inequality $v(t) \leq w(t)$ is proven along the same lines. Therefore

$$|u''(t)| = |S(u'(t))f(t, u(t), u'(t))| \le q(|u'(t)|) \quad (t \in (0, 1)),$$

and according to Proposition 1 $|u'(t)| \leq L$, thus S(u'(t)) = 1 $(t \in (0, 1))$.

To show that there is a maximal and a minimal solution, note that for each solution $u : [0,1] \to \mathbb{R}$ of $(1), u' : (0,1) \to \mathbb{R}$ can be extended to [0,1]such that $u \in C^1([0,1],\mathbb{R})$, and that the set of all solutions to (1) is a compact

19

subset of $C^1([0,1],\mathbb{R})$, as Proposition 1 implies $|u'(t)| \leq L$ $(t \in (0,1))$ for each solution. Set

 $\overline{u}(t) = \max\{u(t) : u \text{ is a solution of } (1)\}.$

Then \overline{u} is Lipschitz continuous with constant L, and to each $t_0 \in (0, 1)$ there is a solution u_0 of (1) satisfying $u_0(t_0) = \overline{u}(t_0)$. Because of $u_0 \leq \overline{u}$ it follows

$$D_+\overline{u}(t_0) \ge u_0'(t_0) \ge D^-\overline{u}(t_0), \quad D_2\overline{u}(t_0) \ge u_0''(t_0),$$

and, in case \overline{u} is differentiable at t_0 ,

$$\overline{u}'(t_0) = u_0'(t_0).$$

Therefore,

$$D^{2}\overline{u}(t_{0}) \ge D_{2}\overline{u}(t_{0}) \ge u_{0}''(t_{0}) = -f(t, u_{0}(t_{0}), u_{0}'(t_{0})) = -f(t, \overline{u}(t_{0}), \overline{u}'(t_{0})).$$

Summing up, \overline{u} is a lower function for (1), and by the first part of the proof, there is a solution of (1) between \overline{u} and w, which must be \overline{u} . So \overline{u} is the maximal solution.

The existence of a minimal solution \underline{u} follows by similar reasoning.

5. Proof of Theorem 2

Let \overline{u} and \overline{U} be the maximal solution of (1) and (2), respectively. Then, for $t \in (0, 1)$ we get

$$\overline{u}''(t) + g(t, \overline{u}(t), \overline{u}'(t)) \ge \overline{u}''(t) + f(t, \overline{u}(t), \overline{u}'(t)) = 0,$$

and therefore \overline{u} is a lower function of (2). Thus, (2) has a solution between \overline{u} and w, in particular $\overline{u}(t) \leq \overline{U}(t) \leq w(t)$. Analogously, for the minimal solutions \underline{u} and \underline{U} we have

$$0 = \underline{U}''(t) + g(t, \underline{U}(t), \underline{U}'(t)) \ge \underline{U}''(t) + f(t, \underline{U}(t), \underline{U}'(t)),$$

thus \underline{U} is an upper function of (1), and therefore $v(t) \leq \underline{u}(t) \leq \underline{U}(t)$.

6. Proof of Theorem 3

We make use of a fixed point Theorem of Bourbaki [2].

PROPOSITION 2. Let $\Omega \neq \emptyset$ be an ordered set, and let $T : \Omega \to \Omega$ be monotone increasing.

- 1. If sup C exists for each chain $\emptyset \neq C \subseteq \Omega$, and if there is $\omega_0 \in \Omega$, $\omega_0 \leq T\omega_0$, then T has a smallest fixed point in the set $\{\omega \in \Omega : \omega_0 \leq \omega\}$.
- 2. If $\inf C$ exists for each chain $\emptyset \neq C \subseteq \Omega$, and if there is $\omega_1 \in \Omega$, $T\omega_1 \leq \omega_1$, then T has a greatest fixed point in the set $\{\omega \in \Omega : \omega \leq \omega_1\}$.

Let $L \ge 0$ be such that for each $\alpha \in A$

$$\int_0^L \frac{s}{q(s)} ds \ge \max_{t \in [0,1]} w_\alpha(t) - \min_{t \in [0,1]} v_\alpha(t),$$

and set

$$M = \sup \left\{ \left| \left| f(t, x, p) \right| \right| : (t, x, p) \in S(v, w) \times [-L, L]^{\mathbb{N}} \right\}.$$

Note that $M < \infty$ since $f(S(v, w) \times [-L, L]^{\mathbb{N}})$ is bounded, as a consequence of Nagumo's condition.

We consider the following subset Ω of $C^1([0,1], l^{\infty}(A))$:

$$\{\omega: \omega(0) = \omega(1) = 0, ||\omega'(t)|| \le L, ||\omega'(t) - \omega'(s)|| \le M||t - s|| \ (t, s \in [0, 1])\}$$

By standard reasoning $\sup C$ and $\inf C$ exist for each chain $\emptyset \neq C \subseteq \Omega$ (but Ω is not a lattice). First note that each solution of (3) is in Ω , by the choice of L and M, and by continuous extension of $u': (0,1) \to l^{\infty}(A)$ to [0,1].

We define a mapping T the following way:

Let $\omega : [0,1] \to l^{\infty}(A)$ be continuous with $v \leq \omega \leq w$ (not necessarily $\omega \in \Omega$), $\alpha \in A$,

$$S_{\alpha}(v,w) := \{(t,\xi) \in (0,1) \times \mathbb{R} : v_{\alpha}(t) \le \xi \le w_{\alpha}(t)\},$$
$$(Q_{\alpha}(x,\xi))_{\beta} = \begin{cases} x_{\beta} & \beta \neq \alpha \\ \xi & \beta = \alpha \end{cases} \quad (x \in l^{\infty}(A), \xi \in \mathbb{R}),$$

and let $g_{\alpha}: S_{\alpha}(v, w) \times \mathbb{R} \to \mathbb{R}$ be defined by

$$g_{\alpha}(t,\xi,r) = f_{\alpha}(t,Q_{\alpha}(\omega(t),\xi),r).$$

Each function $Q_{\alpha} : l^{\infty}(A) \times \mathbb{R} \to l^{\infty}(A)$ is Lipschitz continuous, hence each g_{α} is continuous.

Consider the scalar boundary value problems

$$u_{\alpha}''(t) + g_{\alpha}(t, u_{\alpha}(t), u_{\alpha}'(t)) = 0, \quad u_{\alpha}(0) = u_{\alpha}(1) = 0.$$
(5)

Now, Theorem 1 applies to (5), since v_{α}, w_{α} are lower and upper functions for (5), respectively. For example if $t \in (0, 1)$ and $v'_{\alpha}(t)$ exists, then the quasimonotonicity of f implies

$$D^2 v_{\alpha}(t) + f_{\alpha}(t, Q_{\alpha}(\omega(t), v_{\alpha}(t)), v_{\alpha}'(t)) \ge D^2 v_{\alpha}(t) + f_{\alpha}(t, v(t), v_{\alpha}'(t)) \ge 0.$$

Hence (5) has a maximal solution \overline{u}_{α} and according to Proposition 1 we have $|\overline{u}_{\alpha}'(t)| \leq L$, and therefore $|\overline{u}_{\alpha}''(t)| \leq M$ $(t \in (0, 1))$. Thus, $T\omega := (\overline{u}_{\alpha})_{\alpha \in A} \in \Omega$, and in particular $T(\Omega) \subseteq \Omega$.

Moreover $\omega \leq \tilde{\omega}$ implies

$$f_{\alpha}(t, Q_{\alpha}(\omega(t), \xi), r) \leq f_{\alpha}(t, Q_{\alpha}(\widetilde{\omega}(t), \xi), r)$$

since f is quasimonotone increasing. Therefore $T\omega \leq T\tilde{\omega}$ according to Theorem 2, and in particular T is monotone increasing on Ω .

To see that $\Omega \neq \emptyset$ note that $Tw \in \Omega$.

Next, consider $\omega_1 := Tw \leq w$. Then $T\omega_1 \leq \omega_1$ and Proposition 2 proves the existence of a greatest fixed point z of T in $\{\omega \in \Omega : \omega \leq \omega_1\}$, which is a solution of (3), since Tz = z means that the maximal solution of

$$u_{\alpha}''(t) + f_{\alpha}(t, Q_{\alpha}(z(t), u_{\alpha}(t)), u_{\alpha}'(t)) = 0, \quad u_{\alpha}(0) = u_{\alpha}(1) = 0$$

is $u_{\alpha} = z_{\alpha}$, hence $Q_{\alpha}(z(t), u_{\alpha}(t)) = z(t)$.

Finally z is the greatest solution of (3) between v and w: Let y be any solution of (3). In particular $y \in \Omega$ and $y \leq w$. We have

$$y''_{\alpha}(t) + f_{\alpha}(t, y(t), y'_{\alpha}(t)) = 0, \quad y_{\alpha}(0) = y_{\alpha}(1) = 0,$$

thus, y_{α} is a solution of

$$u''_{\alpha}(t) + f_{\alpha}(t, Q_{\alpha}(y(t), u_{\alpha}(t)), u'_{\alpha}(t)) = 0, \quad u_{\alpha}(0) = u_{\alpha}(1) = 0,$$

whereas $(Ty)_{\alpha}$ is the greatest solution of this boundary value problem. This proves $y \leq Ty$. Set $\omega_0 := y$. Again, by means of Proposition 2 there is a (smallest) fixed point \tilde{z} of T in $\{\omega \in \Omega : \omega_0 \leq \omega\}$. From $\tilde{z} \leq w$ we obtain $\tilde{z} \leq Tw = \omega_1$. Therefore, \tilde{z} is a fixed point of T in $\{\omega \in \Omega : \omega \leq \omega_1\}$. In particular $y \leq \tilde{z} \leq z$.

Analogously one can prove the existence of a minimal solution of (3) between v and w.

G. HERZOG, R. LEMMERT

7. A UNIQUENESS CONDITION

Let Ψ be a continuous positive linear functional on $l^{\infty}(A)$ with the following property:

$$x \ge 0, \ \Psi(x) = 0 \ \Rightarrow \ x = 0.$$

Assume that v, w and f are as in Theorem 3, and that there are continuous functions $k, l : (0, 1) \to \mathbb{R}$ such that:

1. The differential inequality z''(t) + k(t)|z'(t)| + l(t)z(t) < 0 has a positive solution $z \in C([0,1], \mathbb{R}) \cap C^2((0,1), \mathbb{R});$

2. For $(t, x, p), (t, \tilde{x}, \tilde{p}) \in S(v, w) \times l^{\infty}(A)$ with $x \leq \tilde{x}$

$$\Psi(f(t,\widetilde{x},\widetilde{p}) - f(t,x,p)) \le k(t)|\Psi(\widetilde{p} - p)| + l(t)\Psi(\widetilde{x} - x).$$

Let $\underline{u}, \overline{u}$ be the minimal and maximal solution of (3) according to Theorem 3, and set $h = \varphi(\overline{u} - \underline{u})$. Then, by means of 2., we have

$$h''(t) + k(t)|h'(t)| + l(t)h(t) \ge 0, \quad h(0) = h(1) = 0$$

By means of 1., standard reasoning proves $h(t) \leq 0$, hence h(t) = 0 ($t \in [0, 1]$), and therefore $\overline{u} = \underline{u}$. In particular (3) is uniquely solvable between v and w.

8. An example

First note that our results hold for $[a, b] \subseteq \mathbb{R}$ instead of [0, 1] and for general boundary values instead of 0, as usual, by application of an affine transformation.

Let $A = \mathbb{Z}$. Let $g : \mathbb{R} \to \mathbb{R}$ be continuous, monotone increasing, $g(0) \ge 0$, and let $h = (h_n) : (-1,1) \to K$ be continuous and bounded: $||h(t)|| \le c$ $(t \in (-1,1))$.

Consider the boundary value problem

$$u_n''(t) + h_n(t)g(u_{n+1}(t) - 2u_n(t) + u_{n-1}(t)) - (u_n'(t))^2 = 0,$$
(6)

$$u_n(a) = \xi_n, \quad u_n(b) = \eta_n \tag{7}$$

in $l^{\infty}(\mathbb{Z})$. Let $e = (1)_{n \in \mathbb{Z}}$, and let $v, w : [-1, 1] \to l^{\infty}(\mathbb{Z})$ and $f : S(v, w) \times l^{\infty}(\mathbb{Z}) \to l^{\infty}(\mathbb{Z})$ be defined by $v(t) = -\max\{||\xi||, ||\eta||\}e$ $(t \in [-1, 1]),$

$$w(t) = \begin{cases} (\max\{||\xi||, ||\eta||\} + \sqrt{cg(0)}(1+t))e & (t \in [-1, 0]), \\ (\max\{||\xi||, ||\eta||\} + \sqrt{cg(0)}(1-t))e & (t \in [0, 1]), \end{cases}$$

and

$$f_n(t, x, p_n) = h_n(t)g(x_{n+1} - 2x_n + x_{n-1}) - (p_n)^2.$$

Then, the transformed functions satisfy the assumptions of Theorem 3, in particular (6), (7) is solvable in $l^{\infty}(\mathbb{Z})$ for each choice of $\xi, \eta \in l^{\infty}(\mathbb{Z})$.

References

- AKŎ, K., Subfunctions for ordinary differential equations III, Funkcial. Ekvac., 11 (1968), 111-129.
- [2] BOURBAKI, N., "Éléments de Mathématique I: Théorie des Ensembles, Fascicule de Résultats", Hermann & Cie., Paris, 1939.
- [3] CARL, S., HEIKKILÄ, S., "Nonlinear Differential Equations in Ordered Spaces", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 111, Boca Raton, FL: Chapman & Hall/CRC, 2000.
- [4] CHALJUB-SIMON, A., LEMMERT, R., SCHMIDT, S., VOLKMANN, P., Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, *General inequalities* 6, Proc. 6th Int. Conf., Oberwolfach/Germany, 1990, ISNM 103 (1992), 307–320.
- [5] HARTMAN, P., "Ordinary Differential Equations", John Wiley and Sons Inc, New York-London-Sydney, 1964.
- [6] HERZOG, G., The Dirichlet problem for quasimonotone systems of second order equations, *Rocky Mountain J. Math.*, 34 (2004), 195–204.
- [7] LAKSHMIKANTHAM, V., VATSALA, S.A., Quasi-solutions and monotone method for systems of boundary value problems, J. Math. Anal. Appl., 79 (1981), 38-47.
- [8] LEMMERT, R., REDHEFFER, R.M., VOLKMANN, P., Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, General inequalities, 5 (Oberwolfach, 1986), 381–390.
- [9] LEPIN, A., PONOMAREV, V., On a singular boundary value problem for a second order ordinary differential equation, *Nonlinear Anal.*, 42 (6) (2000), Ser. A: Theory Methods, 949–960.
- [10] NAGUMO, M., Über die Differentialgleichung y'' = f(x, y, y'), Proc. Phys.-Math. Soc. Japan, III. Ser., **19** (1937), 861–866.
- [11] SCHMITT, K., Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal., 2 (1978), 263-309.
- [12] UHL, R., Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces, Proc. Amer. Math. Soc., 126 (1998), 1999–2003.
- [13] VOLKMANN, P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z., 127 (1972), 157–164.