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VCurso Espacios de Banach y Operadores.

Laredo, Agosto de 2003.

Representation of Operators with Martingales and

the Radon-Nikodým Property
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The Radon-Nikodým property was introduced to describe those Banach
spaces X for which all operators acting between L1 and X have a represent-
ation function. These spaces can be characterized in terms of martingales, as
those spaces in which every uniformly bounded martingale converges. In the
present work we study some classes of operators defined upon their behaviour
with respect to the convergence of such martingales. We prove that an oper-
ator preserves the non-convergence of uniformly bounded martingales if and
only if all of its compact perturbations have Asplund cokernel.

In the following, X, Y and Z will be Banach spaces, and L(X, Y ) will
be the class of all bounded linear operators acting between X and Y . Σ will
stand for the Lebesgue σ-field on the unit interval [0, 1], and µ will be the
Lebesgue measure on Σ.

Definition 1. [3] Let Σ0 be a subset of Σ. It is said that Σ0 is a sub-
σ-field of Σ if it is a σ-field in its own right. Given a µ-measurable function
f ∈ L1(X), its conditional expectation with respect to Σ0 is a µ|Σ0-measurable
function f0 such that ∫

E
f dµ =

∫

E
f0 dµ

for every E ∈ Σ0.
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Even though the existence of such a conditional expectation is not clear
from the definition, it can be proven [3] that it exists irrespectively of the
function and the sub-σ-field chosen. We denote it by

f0 = EΣ0(f).

For a fixed sub-σ-field Σ0, the mapping EΣ0 is a bounded linear operator
from L1(X) to itself.

Definition 2. Let (Σn)n∈N be an increasing sequence of sub-σ-fields of Σ
and let (fn)n∈N be a sequence of functions where each fn is µ|Σn-measurable
(and hence µ-measurable). The sequence (fn, Σn)n∈N is called a martingale if

fn = EΣn(fm)

whenever m > n.

If there is no possible confusion about the family of sub-σ-fields involved,
we will just say that (fn)n∈N is a martingale.

The easiest way to construct a martingale is to take any increasing se-
quence (Σn)n∈N of sub-σ-fields of Σ, pick a µ-measurable function f ∈ L1(X)
and then define fn = EΣn(f). It is immediate to see that the sequence ob-
tained this way is indeed a martingale. Martingales that can be built this way
are called convergent martingales.

Martingales are known to be a useful tool in the study of operators from L1

into X. In fact, they can be seen as an extension of the notion of represent-
ation function. Let us recall that an operator T ∈ L(L1, X) is said to be
representable if there exists a function g ∈ L∞(X) such that

T (f) =
∫

fg dµ

for every f ∈ L1, in which case g is called the representation function of T .
Unless X has the Radon-Nikodým property, not all operators in L(L1, X) are
representable, and this is the reason why martingales can aid in their study,
since they can play the role of a representation function without imposing any
special property on X to exist. The following results back up this statement.

Proposition 3. Let (fn, Σn)n∈N be a uniformly bounded martingale in X
such that

⋃
n∈NΣn generates Σ as a σ-field. Then there exists an operator

A ∈ L(L1, X) such that

A(χE) = lim
n

∫

E
fn dµ
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for every E ∈ Σ, whose norm is bounded by supn∈N ‖f‖∞.

Whenever this situation arises, that is, whenever an operator A ∈ L(L1, X)
admits a uniformly bounded martingale (fn, Σn)n∈N such that

A(χE) = lim
n

∫

E
fn dµ

for every E ∈ Σ, we will say that (fn, Σn)n∈N is a representation martingale
for A. Note that the representation martingale must be unique for a given
family (Σn)n∈N.

Going the other way, which means getting a martingale from an operator,
is also possible, albeit with some restrictions on the σ-fields involved.

Proposition 4. Let A ∈ L(L1, X) be an operator and let (Σn)n∈N be an
increasing family of sub-σ-fields of Σ where every Σn is finite and

⋃
n∈NΣn gen-

erates Σ as a σ-field. Then there exist functions (fn)n∈N such that (fn, Σn)n∈N
is a representation martingale for A.

So it can be seen that any operator lends itself to having a representation
martingale, at least for the right choice of σ-fields. It should be noted that
this is not overly restrictive, because the existence of just one such family
of σ-fields is enough for our purposes; for instance, Σn could be the (finite)
σ-field spawned by the 2n n-order dyadic intervals in [0, 1].

Now that we have defined what a representation martingale is, the natural
question to ask is what relationship it holds with representation functions.
For the first thing, it is clear that, given an operator A with representation
function g, the constant martingale (g, Σ)n∈N represents g. Furthermore, given
any increasing family (Σn)n∈N of sub-σ-fields of Σ, the convergent martingale
(EΣn(g),Σn)n∈N also represents A. In fact, we have the following:

Theorem 5. Let A ∈ L(L1, X) be an operator and let (fn, Σn)n∈N be
a representation martingale for A. Then A is representable if and only if
(fn,Σn)n∈N converges, in which case its limit is the representation function
for A.

Just as representation of operators is the key to the definition of Radon-
Nikodým spaces, we can also define some operator classes based on represent-
ation martingales. Let us recall that a Banach space X is said to have the
Radon-Nikodým property if every operator in L(L1, X) is representable; X is
said to be Asplund if X∗ has the Radon-Nikodým property. Since any operator
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must preserve martingales (if (fn, Σn)n∈N is a martingale, so is (Tfn,Σn)n∈N),
we will define a couple of operator classes based on their behaviour with con-
vergent martingales. These classes are:

RN(X,Y ) = {T ∈ L(X, Y ) : T takes any uniformly bounded martingale
into a convergent martingale}

RN+(X,Y ) = {T ∈ L(X, Y ) : T preserves non-convergence of uniformly
bounded martingales}

The class RN is an operator ideal, in the sense of Pietsch [6]; on the other
hand, the structure of RN+ is that of an operator semigroup, as described
in [1]. An operator in RN+ is used, for instance, to prove that the class of
separable L1-spaces not containing a copy of L1 has no universal element [2].

Our interest now will be in finding a perturbative characterization for the
class RN+(X,Y ). By a perturbative characterization we mean the assertion
that an operator belongs to this class if and only if every of its compact per-
turbations has some related property, in our case the Radon-Nikodým prop-
erty. Typical examples of operators having a perturbative characterization
include Fredholm and semi-Fredholm operators [5] and tauberian operators
[4]. These examples also show that such a characterization is important be-
cause it summarizes the essential behaviour of the operators in the class. In
our case, we have the following:

Proposition 6. Let T ∈ L(X, Y ) be an operator. Then:

(i) If T ∈ RN+(X, Y ), then N(T ) has the Radon-Nikodým property.

(ii) If T ∈ RN+(X, Y ) and A ∈ RN(X, Y ), then T + A ∈ RN+(X,Y ).

(iii) If T is compact, then T ∈ RN(X,Y ).

By combining these facts, it can be seen that for any operator T ∈
RN+(X,Y ) it holds that N(T +K) has the Radon-Nikodým property for every
compact perturbation K. The question now is whether the opposite holds,
and we can give a partial affirmative answer, when the operator involved is a
conjugate operator. The Radon-Nikodým property is more tractable in dual
spaces, where it has been studied intensively [7], [8].

How do representation martingales help in this task? Although a rep-
resentation martingale may have a rather general form, in practice, as said
earlier, we will just restrict ourselves to a specific subset of them, namely those
whose underlying σ-fields are spawned by the dyadic intervals.
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To this end, let us define In
i =

[
(i−1)/2n, i/2n

)
and χn

i = χIn
i

for every
n ∈ N and 1 ≤ i ≤ 2n, and let Σn be the (finite) σ-field spawned by (In

i )2
n

i=1.
Then any µ|Σn-measurable function f will take the form f =

∑2n

i=1 xiχ
n
i for

some x1, . . . , x2n ∈ X. Moreover, the conditional expectation of any µ|Σn+1-
measurable function f =

∑2n+1

i=1 xiχ
n+1
i with respect to Σn will be

EΣn(f) =
2n∑

i=1

x2i−1 + x2i

2
χn

i ,

so a martingale on (Σn)n∈N can be identified with a family (xn
i )n,i in X, where

n ∈ N and 1 ≤ i ≤ 2n, which satisfies that every

xn
i =

xn+1
2i−1 + xn

2i

2
.

Such a family is called a tree in X.

Proposition 7. Let T ∈ L(X, Y ) be an operator such that T ∗ /∈
RN+(Y ∗, X∗) and let λ > 1. Then there exist α > 0 and a bounded tree
(zn

i )n,i ⊆ Y ∗ such that the difference sequence

dn
i = zn+1

2i − zn+1
2i−1

is a basic sequence with basis constant less than λ and whose coordinate
functionals (bn

i )n,i ⊆ Y satisfy, for every n, i,

α/2 < ‖dn
i ‖ < 3;

‖T ∗dn
i ‖ < α/4n;

1/3 < ‖bn
i ‖ < 12/α.

It must be noted that the subspace spawned by (dn
i )n,i lacks the Radon-

Nikodým property, since it contains the shifted tree (zn
i − z0

1)n,i, which is
bounded and α/4-separated [3].

Now the path is clear to our main result:

Theorem 8. Let T ∈ L(X, Y ) be an operator such that T ∗ /∈
RN+(Y ∗, X∗). Then there exists a nuclear operator K ∈ L(X,Y ) such that
N(T ∗ −K∗) does not have the Radon-Nikodým property.
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The proof is as follows: Using the sequences (bn
i )n,i and (dn

i )n,i provided
by Proposition 7, the operator K can be defined as

K(x) =
∑

n,i

〈T ∗dn
i , x〉bn

i .

It is immediate to prove that K is nuclear and that K∗(dn
i ) = T ∗(dn

i ) for
every n and i, so N(T ∗ −K∗) contains the subspace spawned by (dn

i )n,i and,
therefore, cannot have the Radon-Nikodým property.

As a corollary, we obtain the following:

Corollary 9. Let T ∈ L(X,Y ) be an operator. The following are equi-
valent:

(i) T ∗ ∈ RN+;

(ii) A ∈ RN(Z, Y ∗) whenever T ∗A ∈ RN(Z, X∗);

(iii) N(T ∗ + K) has the Radon-Nikodým property for every compact oper-
ator K ∈ L(Y ∗, X∗);

(iv) Y/R(T + K) is Asplund for every compact operator K ∈ L(X,Y ).

It is clear from the definition and the remarks after Proposition 6 that (i)
implies (ii) and also that (ii) implies (iii). The fact that (iii) implies (iv) comes
from N(T ∗+K∗) being (isomorphic to) the dual of Y/R(T + K). Lastly, (iv)
implies (i) because of the previous theorem.
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