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0. Introduction

The use of ordinal indices in Banach space theory dates back to the origins
of the subject and can be found in S. Banach’s famous book [14]. Interest in
such indices was rejuvenated just over 35 years ago with a paper by Szlenk [50].
Since then a number of ordinal indices have been constructed which measure
the complexity of various aspects of the structure of a separable Banach space
X. Typically a property (P ) is considered and X has (P ) corresponds to
the index of X is ω1, the first uncountable ordinal, while if X fails (P ) then
its index is an ordinal α < ω1. One advantage to this approach is that X
can be indirectly shown to have (P ) by showing that its index exceeds every
α < ω1. Another advantage is that, presuming the index to be an isomorphic
invariant, one can often construct an uncountable number of nonisomorphic
spaces (failing (P )) by showing that for all α < ω1 there exists Xα of countable
index exceeding α. Other results are of the type that if the index of X is large
enough then X admits a substructure of a certain degree of complexity and
this may yield other consequences.

In section 2 we discuss Bourgain’s `1 index, I(X). I(X) = ω1 iff X contains
an isomorph of `1. This index generalizes readily to other bases besides the
unit vector basis of `1 and leads to a number of results of this type: Let Y be
a fixed Banach space and let C be a certain class of separable Banach spaces.
If X contains isomorphs of all spaces in C then X contains Y . If Y = C(∆)
we conclude that X is universal, i.e., every separable Banach space embeds
isomorphically into X.
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In section 3 we begin by presenting Szlenk’s index η(X). One has that
η(X) < ω1 iff X∗ is separable. We also present some more results on indices
like those in section 2 and some variants of those indices. We explain the
relationship of the Szlenk index with one of these, the `+

1 -weakly null index.
Section 4 is devoted to certain Baire-1 indices. If X is not reflexive then

there exists x∗∗ ∈ X∗∗ so that x∗∗ : K → R is not continuous where K is
the compact metric space (BX∗ , ω∗). The topological nature of this function
yields certain information about the subspace structure of X.

In section 5 we define the Schreier classes (Sα)α<ω1 and give some applica-
tions. These are classes of compact hereditary families of finite subsets of N of
increasing complexity. One can measure the behavior of weakly null sequences
against these sets and produce conclusions about their structure.

More results and references on ordinal indices can be found in [30].

1. Preliminaries

We will generally use X, Y, Z, . . . to denote separable infinite dimensional
real Banach spaces. In this section we present some background material. For
more detail we suggest the reader consult [39] or [22] (see also [41]). The two
books [33] and [34] are excellent more advanced references. We assume the
reader has a solid background in functional analysis.

X ⊆ Y will denote that X is a closed linear subspace of Y . BX = {x ∈
X : ‖x‖ ≤ 1} is the unit ball of X and SX = {x ∈ X : ‖x‖ = 1} is the unit
sphere of X. The ω∗ topology (weak* topology) restricted to BX∗ makes the
dual unit ball into a compact metrizable space K. Recall that a base for the
ω∗ topology on X∗ is given by all sets of the form (x∗ ∈ X∗, F ⊆ X is a finite
set, ε > 0)

N(x∗, F, ε) = {y∗ ∈ X∗ : |y∗(x)− x∗(x)| < ε for all x ∈ F} .

K = (BX∗ , ω∗) is always compact and the separability of X yields that it is
metrizable. Every element x ∈ X or x∗∗ ∈ X∗∗ can be regarded as a bounded
function on K (for x ∈ X, x(x∗) = x∗(x)) and x∗∗ ∈ X (i.e., there exists
x ∈ X with x(x∗) = x∗∗(x∗) for all x∗ ∈ K) iff x∗∗|K ∈ C(K), the space of
continuous real valued functions on K. Thus X is reflexive iff every x∗∗ ∈ X∗∗

is continuous on K. Also X is reflexive iff BX is weakly compact. Again we
recall that the weak topology on X is generated by the open base

N(x, F, ε) = {y ∈ X : |x∗(x)− x∗(y)| < ε for all x∗ ∈ F}
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where x ∈ X, F ⊆ X∗ is finite and ε > 0. (BX , ω) is metrizable iff X∗ is
separable. By the Eberlein-Smulian theorem, BX is weakly compact iff for all
(xn) ⊆ BX , some subsequence is weakly convergent (necessarily to an element
in BX). Thus X can fail to be reflexive in one of two ways.

(a) There exists (xn) ⊆ SX with no weak Cauchy subsequence (for all sub-
sequences (yn) ⊆ (xn), (yn) is not pointwise convergent on K) or

(b) There exists (xn) ⊆ SX which is weak Cauchy but converges pointwise
to a discontinuous function on K.

In case (a) a remarkable theorem of H. Rosenthal yields that a subsequence
of (xn) is equivalent to the unit vector basis of `1 (see below for the definition)
[45]. In case (b) there exists x∗∗ ∈ X∗∗\X so that xn → x∗∗ in the ω∗ topology
of X∗∗. Thus x∗∗|K is Baire-1 (the pointwise limit of a sequence of continuous
functions.

X and Y are isomorphic if there exists a bounded linear 1–1 onto operator
T : X → Y . We write X ∼ Y . If in addition ‖Tx‖ = ‖x‖ for all x ∈ X we
say X and Y are isometric, X ∼= Y . If X is isomorphic to a subspace of Y
we write X ↪→ Y and say X embeds into Y or Y contains X. If T : X → Y

is an isomorphic embedding with ‖T‖ ‖T−1|T (X)‖ ≤ K we write X
K
↪→ Y and

say that X K-embeds into Y . If T is onto we write X
K∼ Y . This terminology

holds for finite dimensional spaces as well. Thus if we say that X contains

`n
1 ’s uniformly then we mean that for some K < ∞ and all n ∈ N, `n

1

K
↪→ X.

(Actually in this case by a theorem of James [31], `n
1

λ
↪→ X for all n and λ > 1).

(xi)∞i=1 is a basis for X if for all x ∈ X there exist unique scalars (ai) ⊆ R
with x =

∑∞
i=1 aixi. (xi)∞1 ⊆ X is basic if (xi)∞i=1 is a basis for [(xi)∞i=1] ≡

closed linear span of (xi)∞i=1. This is known to be equivalent to: xi 6= 0 for all
i and there exists K < ∞ so that ‖∑n

i=1 aixi‖ ≤ K‖∑m
i=1 aixi‖ for all n < m

and (ai)m
1 ⊆ R. The smallest such K is called the basis constant of (xi) and

(xi) is said to be K-basic if its basis constant does not exceed K. A 1-basic
sequence is called monotone. These definitions also hold for finite sequences
(xi)n

i=1. A finite sequence is basic iff it is linearly independent.
(xi) is K-unconditional basic if xi 6= 0 for all i and for all m and (ai)m

1 ⊆ R,
εi = ±1,

∥∥∥
m∑

i=1

εiaixi

∥∥∥ ≤ K
∥∥∥

m∑

i=1

aixi

∥∥∥ .

This is equivalent to: for all x ∈ [(xi)] there exist unique (ai) ⊆ R so that
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x =
∑∞

i=1 aπ(i)xπ(i) for all permutations π of N. If (xi) is K-unconditional
basic it is also K-basic.

A sequence (xi) ⊆ X is normalized if ‖xi‖ = 1 for all i. It is seminor-
malized if 0 < infi ‖xi‖ ≤ supi ‖xi‖ < ∞. Basic sequences (xi) and (yi) are
K-equivalent if there exist 0 < c, C < ∞ with c−1C ≤ K and

c‖
∑

aixi‖ ≤ ‖
∑

aiyi‖ ≤ C‖
∑

aixi‖

for all scalars (ai) ⊆ R. This just says that there is an isomorphism T :
[(xi)] → [(yi)] with Txi = yi and ‖T‖ ≤ C, ‖T−1‖ ≤ c−1.

We assume the reader is familiar with the classical Banach spaces c0, `p

(1 ≤ p ≤ ∞), C(K), Lp[0, 1] (1 ≤ p ≤ ∞). ∆ denotes the Cantor set. C(∆)

is 1-universal: For all X, X
1

↪→ C(∆). C(∆) ∼ C[0, 1] and C[0, 1] is also
1-universal. Indeed, K = (BX∗ , ω∗) is compact metric. Thus there exists a

continuous onto map φ : ∆ → K. Then X
1

↪→ C(∆) via x 7→ x ◦ φ. Also it is

easy to then show that C(∆)
1

↪→ C[0, 1].
c00 is the linear space of all finitely supported sequences of scalars on

N. The unit vector basis is (ei)∞i=1 where ei = (0, 0, . . . , 0, 1, 0, . . .), the 1
occurring in the ith place. (ei) is a linear basis for c00 but naturally lives in
c0 and `p (1 ≤ p ≤ ∞) and forms a 1-unconditional basis for these spaces
(p < ∞). More generally, if (xi) is a normalized basis for X we may regard
X = (c00, ‖ · ‖), the completion of (c00, ‖ · ‖) under ‖(ai)‖ = ‖∑

aixi‖ and
then (ei) is a normalized basis for X. Many Banach spaces are constructed
in this way. One selects, for example, a certain F ⊆ c00 with ei ∈ F for all i,
(bi) ∈ F implies |bi| ≤ 1 for all i and (b1, . . . , bn, 0, 0, . . .) ∈ F for all n. Then

‖(ai)‖F ≡ sup
{
|
∑

aibi| : (bi) ∈ F
}

yields a norm on c00 that makes (ei) into a normalized monotone basis for the
completion (c00, ‖ · ‖F ).

If (Xi) is a sequence of Banach spaces then for 1 ≤ p < ∞
( ∞∑

i=1

Xi

)

p

≡
{
(xi)∞i=1 : ‖(xi)∞i=1‖≡

( ∞∑

i=1

‖xi‖p

)1/p

< ∞ and xi ∈ Xi for all i

}
.

(
∑∞

i=1 Xi)c0 is defined similarly. These are Banach spaces under the indicated
norm. If 1 < p < ∞ and each Xi is reflexive then (

∑
Xi)p is also reflexive.

If (xi) is K-basic, a block basis of (xi) is a sequence (yi) given by yi =∑pi
j=pi−1+1 ajxj for some p0 < p1 < · · · , (ai) ⊆ R with yi 6= 0 for all i. (yi) is
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then also K-basic (and maybe better). If aj ≥ 0 for all j and
∑pi

j=pi−1+1 aj = 1
for all i then (yi) is a convex block basis of (xi).

Let (ei) be the unit vector basis for c00 and define for (ai) ∈ c00

‖
∑

aiei‖ = sup
n

∣∣∣
n∑

i=1

ai

∣∣∣ .

Then (ei) is a basis for the completion X of c00 under this norm. We call this
the summing basis and denote it by (si). X is isomorphic to c0 and (si) is a
conditional basis (not unconditional) for X.

Every X contains a 1 + ε-basic sequence for all ε > 0. If (xn) ⊆ SX is
weakly null (such a sequence exists in X by Rosenthal’s `1 theorem if `1 6↪→ X)
then some subsequence is 1 + ε-basic. If (xn) ⊆ SX converges ω∗ in X∗∗ to
x∗∗ ∈ X∗∗\X then some subsequence (yn) is basic and dominates the summing
basis: this means that for some c > 0,

‖
∑

aiyi‖ ≥ c‖
∑

aisi‖

for all scalars (ai).
Let (xi) be a normalized basic sequence in X. Using Ramsey theory (see

e.g. [41] or [15]), given εn ↓ 0, one can extract a subsequence (yi) satisfying:

for all n ∈ N, (ai)n
1 ∈ [−1, 1]n and n ≤ i1 < · · · < in, n ≤ j1 < · · · < jn∣∣∣∣

∥∥∥
n∑

k=1

akyik

∥∥∥−
∥∥∥

n∑

k=1

akyjk

∥∥∥
∣∣∣∣ < εn .

Thus we can define a norm on c00 by

lim
i1→∞

. . . lim
in→∞

∥∥∥
n∑

k=1

akyik

∥∥∥ ≡
∥∥∥

n∑

k=1

akek

∥∥∥ .

E = the completion of (c00, ‖ · ‖) is a spreading model of X generated by (yi)
[21]. (ei) is a basis for E. If (yi) is weakly null then (ei) is 2-unconditional.

We also recall a few facts about perturbations. If (xi) is a normalized
C-basic sequence and ε > 0 then there exist εn ↓ 0 (depending solely upon C
and ε) so that if (yi) ⊆ X satisfies ‖yi − xi‖ < εi for all i, then (yi) is basic
and 1+ε-equivalent to (xi). Thus if X has a basis (ei) and Y ⊆ X then for all
ε > 0 there exists (yi) ⊆ SY which is a suitable perturbation of a block basis
of (ei) and hence is 1 + ε-equivalent to this block basis. Similarly if (yi) ⊆ SY

is weakly null then some subsequence is a perturbation of a block basis of (ei).
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We will also assume some familiarity with the ordinals up to ω1, the first
uncountable ordinal (see e.g. [28]). Listing these in increasing order we have

(0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3,

. . . ω2, ω2 + 1, . . . , ω3, . . . , ωn, . . . , ωω, ωω + 1, . . . , ωω + ω,

. . . ωω·2, . . . , ω(ω2), . . . , ω1)

These form a well ordered set and thus we can use induction to define and
prove things. One usually will use different definitions/arguments for successor
and limit ordinals. A limit ordinal is an ordinal not of the form α + 1 (often
written α+), the latter being a successor ordinal. Every ordinal 0 ≤ α < ω1,
can be written in Cantor normal form as

ωα1 · n1 + ωα2 · n2 + · · ·+ ωαk · nk + nk+1

where k ≥ 0, nk+1 ≥ 0, (ni)k
1 ⊆ N and ω1 > α1 > α2 > · · · > αk .

There are uncountably many limit ordinals < ω1 and uncountably many suc-
cessor ordinal < ω1.

2. Bourgain’s Index and some variations

The definition of this index depends upon trees or more accurately on trees
on Banach spaces.

Definition 2.1. By a tree we shall mean a nonempty partially ordered
set (T,≤) for which the set {y ∈ T : y ≤ x} is linearly ordered and finite for
each x ∈ T . The elements of T are called nodes. The predecessor node of x is
the maximal element of {y ∈ T : y < x}. An immediate successor of x is any
node y such that x is the predecessor node of y. The initial nodes of T are
the minimal elements of T (the nodes without predecessors). The terminal
nodes of T are the maximal elements of T (the nodes without successors). A
branch of T is a maximal linearly ordered subset. T is well founded if all of
its branches are finite. A subtree τ of T is a subset of T with the inherited
partial order from T .

If X is a set, by a tree on X we shall mean a subset T ⊆ ⋃∞
n=1 Xn such

that for (x1, . . . , xm), (y1, . . . , yn) ∈ T , (x1, . . . , xm) ≤ (y1, . . . , yn) iff m ≤ n
and xi = yi for i ≤ m. Clearly a tree on X is a tree (as defined above).

Definition 2.2. If T is a tree we set D(T ) = {x ∈ T : x < y for some
y ∈ T}. (Thus D(T ) = T \ {terminal nodes of T}.)



ordinal indices in banach spaces 99

We next define the order or height of T , o(T ). We inductively define
T o = T , Tα+1 = D(Tα) for α < ω1 and Tα =

⋂
β<α T β if α < ω1 is a limit

ordinal. We set o(T ) = inf{α < ω1 : Tα = ∅} if such an α exists and o(T ) = ω1

otherwise. (Of course these notions could all be defined for larger ordinals but
this suffices for our purposes.)

To help understand this we describe certain canonical trees Tα of order α.
T1 is just a single node. Given Tα we select a new node z /∈ Tα and add this
as a new initial node to form Tα+1. Thus Tα+1 = {z} ∪ Tα with z < x for all
x ∈ Tα. If β is a limit ordinal we let Tβ be the disjoint union of {Tα : α < β}
ordered by x ≤ y iff there exists α < β with x, y ∈ Tα and x ≤ y in Tα. It
is an easy exercise [36] to show by induction on α that Tα is then a minimal
tree of order α: this means that if T is well founded with o(T ) ≥ α then there
exists a subtree τ of T which is order isomorphic to Tα.

If T is a tree on a topological space X, we say that T is closed if T ∩Xn

is closed for all n ∈ N (Xn is given the product topology).

Proposition 2.3. If T is a closed well founded tree on a Polish space X
then o(T ) < ω1.

Remark 2.4. This is the only result we require below. One can actually
prove more general results. For example the conclusion holds if we only assume
(see e.g. [37, section 31]) that T is a well founded analytic tree on X (T ∩Xn

is an analytic set for each n ∈ N). A Polish space is a complete separable
metric space.

Proof of Proposition 2.3. Let d be the metric on X. If the result is
false then for each α < ω1, T contains a subtree T̃α isomorphic to Tα. Let
S = {α < ω1 : α is a successor ordinal}. For α ∈ S, T̃α has a unique initial
node xα(1) ≡ (xα

i )nα
i=1. Let εn ↓ 0. For uncountably many α ∈ S, nα = n1 for

some fixed n1 ∈ N. Also, since X is separable, for uncountably many of these
α’s, say for some uncountable U1 ⊆ S,

d(xα
i , xβ

i ) < ε1 if α, β ∈ U1 , and i ≤ n1 .

For each α ∈ U1, let T̃α(xα(1)) = {y ∈ T̃α : y > xα(1)}. Thus

sup
α∈U1

o
(
T̃α(xα(1))

)
= ω1 .

It follows that for each α ∈ S we can extract a subtree of T̃β(xβ(1)) for some
β > α with β ∈ U1 which is isomorphic to Tα, with initial node xα(2) and
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repeat the process for ε2. We obtain an uncountable U2 ⊆ S, n2 ∈ N, n2 > n1,
so that if α ∈ U2 then xα(2) ∈ Xn2 ∩ T and

(i) supα∈U2
o{y ∈ T̃α(xα(2)) : y > xα(2)} = ω1

(ii) if α, β ∈ U2 and xα(2) = (xi)n2
1 and xβ(2) = (yi)n2

1 then d(xi, yi) < ε2

for i ≤ n2.

Continuing as above we obtain, using that X is complete and T is closed,
a sequence (xi)∞1 ⊆ X and n1 < n2 < · · · so that (xi)

nj

1 ∈ T for all j. Thus T
is not well founded.

We are now ready to define Bourgain’s `1-index [19]. Let X be a separable
Banach space and K < ∞. A tree T on X is an `1 −K tree if ∀ (xi)n

1 ∈ T ,
(xi)n

1 ⊆ SX and (xi)n
1 is K-equivalent to the unit vector basis of `n

1 (thus for
all (ai)n

1 ⊆ R, ‖∑n
1 aixi‖ ≥ K−1

∑n
1 |ai|). Set I(X,K) = sup{o(T ) : T is an

`1 −K tree on X}. Clearly

I(X, K) = o(T (X, `1,K))

where

T (X, `1, K) =
{
(xi)n

1 ⊆ SX : n ∈ N and (xi)n
1 is

K-equivalent to the unit vector basis of `n
1

}
.

This latter tree is easily seen to be closed and so by Proposition 2.3

I(X) ≡ sup{I(X, K) : K < ∞} = ω1 iff `1 ↪→ X .

Indeed `1 ↪→ X iff there exists a sequence (xi) ⊆ X which is equivalent to the
unit vector basis of `1. But then (xi/‖xi‖) is K-equivalent to the unit vector
basis of `1 for some K. Hence `1 ↪→ X iff T (X, `1,K) has an infinite branch
for some K < ∞.

I(X) measures the complexity of the `n
1 ’s inside X. I(X, K) ≥ ω for some

K > 1 iff X contains `n
1 ’s uniformly iff (see [31]) for all K > 1, I(X,K) ≥ ω.

If X does not contain `n
1 ’s uniformly then I(X) = ω. Also it can be seen that

I(X) = I(Y ) if Y ∼ X.
This definition easily generalizes to an index for any semi-normalized basic

sequence. In this more general setting we can no longer in general restrict
to normalized sequences only. If (xi) is such we say a tree T on X is a
(xi) − K tree if for all (ai)n ⊆ R and (yi)n

1 ∈ T , K−1 ≤ ‖yi‖ ≤ K for
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i ≤ n and c−1‖∑n
1 aixi‖ ≤ ‖∑n

1 aiyi‖ ≤ C‖∑n
1 aixi‖ for some cC ≤ K (i.e.,

(xi)n
1

K∼ (yi)n
1 ). Let

I(X, (xi),K) = sup{o(T ) : T is a (xi)−K tree onX} .

Alternatively, I(X, (xi) = sup{I(X, (xi), K) : K < ∞}, where I(X, (xi), K) is
the maximal such tree.

As in the case of the `1 index we have

Proposition 2.5. Let (xi) be a semi-normalized basic sequence. Let X
be a separable Banach space. Then X contains a basic sequence equivalent
to (xi) iff I(X, (xi)) = ω1. Also I(X, (xi)) = I(Y, (xi)) if X ∼ Y .

Definition 2.6. A Banach space X is universal for a class of Banach
spaces C if for all Y ∈ C, Y ↪→ X.

Theorem 2.7. ([18], [50]) There does not exist a separable reflexive space
X which is universal for the class of all separable reflexive spaces. Moreover if
X is universal for all reflexive spaces then X is universal (i.e., C(∆) embeds
into X).

Proof. To better illustrate the proof we first show that if a separable space
X is universal for all separable reflexive spaces then X contains `1 (and hence
is not reflexive). We achieve this by producing for all α < ω1 a reflexive space
Xα with I(Xα, 1) ≥ α. Each Xα will have a normalized basis indexed by the
nodes of the canonical trees Tα defined above and they are defined inductively
much like the Tα’s.

Let X1 = R. If Xα has been defined set Xα+1 = (R ⊕ Xα)1. If Xβ has
been defined for β < α, where α is a limit ordinal, Xα = (⊕∑

β<α Xβ)2.
The desired properties are easily checked. Each Xα is reflexive and has a
1-unconditional basis (eγ)γ∈Tα so that if β = (γi)n

1 is a branch in Tα then

(eγi)
n
1

1∼ (ei)n
1 , the unit vector basis of `n

1 .
(Also the Xα’s are easily shown to be `2-saturated (for all Y ⊆ Xα, `2 ↪→

Y ), but we do not need this here).
The proof of the moreover statement is similar. We prove by an inductive

construction on α < ω1 that if (xi) is any normalized bimonotone basis then
there exists a reflexive space Xα with I(Xα, (xi), 1) ≥ α by modifying the
above construction slightly. If the result is proved for α and (xi)∞1 is given we
consider the space Yα produced for α and (xi)∞2 by the inductive construction.
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Yα has a bimonotone basis naturally written as (eγ)γ∈Tα where for any branch
(γi)n

1 of Tα, (eγi)
n
i=1 is 1-equivalent to (xi)n+1

i=2 . Set Xα+1 = 〈e〉⊕Yα where the
norm is given for x = ae + y by

‖x‖ = sup
β

{∥∥∥ax1 +
n∑

i=2

y(γi)xi

∥∥∥ : β = (γi)n
i=2 is a branch in Tα

}
∨ ‖y‖ .

At limit ordinals we use

Xα =
( ∑

β<α

Xβ

)

2

as before, where Xβ is constructed for (xi)∞1 .
In particular C(∆) embeds into X, since as is well known, C(∆) has a

monotone basis which can be renormed to be bimonotone.

Remark 2.8. The moreover part of Theorem 2.7 is due to Bourgain [18].
The first part is due to Szlenk [50] (see section 2 below) who proved that X∗

is nonseparable if X is universal for all separable reflexive spaces. A number
of these results and more are in the very nice expositions [46] and [9]. A
stronger theorem than 2.7 is due to S. Argyros [5]. A Banach space X is HI
(hereditarily indecomposable) if whenever X = Y ⊕ Z (i.e., Y is the range of
a projection on X with null space Z) then Y or Z must be finite dimensional.
HI spaces were first produced by Gowers and Maurey in their famous paper
[26]. Since then they have been shown to be ubiquitous (e.g., [7], [13], [6],
[10]). Argyros, using index arguments, proved that if X is universal for all
reflexive HI spaces then X is universal.

Many theorems of the type of Theorem 2.7 can be proved using these
ordinal indices. Here are some more.

Definition 2.9. Let K > 1. X has the K-Strong Schur property if for all
ε > 0 and (xn) ⊆ SX with ‖xn−xm‖ ≥ ε if n 6= m there exists a subsequence
of (xn) which is K/ε-equivalent to the unit vector basis of `1. X has the
Strong Schur property if it has the K-strong Schur property for some K.

It is easy to check that `1 has the 2+δ-Strong Schur property for all δ > 0.

Proposition 2.10. Let X be a separable Banach space which is universal
for all Strong Schur spaces. Then X is universal.
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The proof is similar to the proof of Theorem 2.7, taking `1 sums in place
of `2 sums at limit ordinals. One needs to check that if Xα has the 2-Strong
Schur property for α < β then (

∑
α<β Xα)1, also has the 2-Strong Schur

property.

Definition 2.11. Let 1 < p < ∞. X has property ω-`p if for all ε > 0
and all normalized weakly null sequences (xi) ⊆ X, some subsequences of (xi)
is 1 + ε-equivalent to the unit vector basis of `p. The property ω-c0 is defined
similarly.

Proposition 2.12. Let X be a separable Banach space which is ω-`p for
some 1 < p < ∞ or ω-c0. Then X is universal.

Again the proof is nearly the same as that of Theorem 2.7. In the ω-`p

case at limit ordinals we can take `p sums. In the ω-c0 case we take `1 sums
at limit ordinals.

We recall that if X = C(K) where K is countable compact metric then
X is isomorphic to C(α) for some compact (successor) ordinal α < ω1. Here
α = {β : β < α} is given the order topology: i.e., a base for the open sets
is all order intervals (γ, δ). For example c0 ∼ c(ω+). The next result is also
due to Bourgain (see also [47] for a different proof from Bourgain’s or the one
below).

Proposition 2.13. If X is universal for the class of spaces C(K), where
K is countable compact metric, then X is universal.

Some preliminaries are needed. Let T be a countable tree with a unique
initial node or finitely many initial nodes. We define a Banach space S(T )
as follows. Let x : T → R be finitely supported (i.e., x ∈ c00(T )). Set
‖x‖ = sup{|∑e∈β x(e)| : β is any branch or an initial segment of a branch in
T}. S(T ) is the completion of c00(T ) under this norm.

Note that if we define for such a β, fβ(x) =
∑

e∈β x(e) then {fβ : β is
a branch or a finite initial segment of a branch in T} is a compact metric
space K under the topology of pointwise convergence. Each fβ ∈ 2T which is
topologized by the product of the discrete metric on T . Hence each S(T ) is
isometric to a subspace of C(K) for some compact metric space K under the
isometry x → {fβ(x) : β ∈ K}. In fact using the Stone-Weierstrass theorem it
is not hard to see that S(T ) ∼= C(K). If T is well founded then K is countable.

Let D denote the infinite dyadic tree. Precisely we may take D = {(εi)n
i=1 :

n ≥ 0 and εi ∈ {0, 1} for all i} ordered as usual by extension. Thus the empty
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sequence ∅ is the unique initial node of D and every node has two successors.
It can be shown that S(D) is isomorphic to C(∆).

Each S(T ) has a monotone node basis (eα)α∈T where eα(γ) = δα,γ for
α, γ ∈ T when linearly ordered as (ei) to be compatible with the tree order:
if ei = eti and ej = etj where i < j, then ti < tj in T or ti and tj are
incomparable. One can show using similar arguments to those above that for
all α < ω1 if (ei) is a compatibly ordered node basis for S(D) then there exists
a well founded tree T ′ so that the node basis for S(T ′) compatibly ordered as
(ui)∞i=1 has the property that the tree

S =
{
(uni)

j
i=1 : j ∈ N, the ni’s distinct and

(uni)
j
i=1 is 1-equivalent to (ei)

j
i=1

}

when ordered by extension has order at least α.
Thus by proposition 2.5, C(∆) embeds into X.

The main unsolved problem for C(∆) is to classify all of its complemented
subspace. Each C(α) for α < ω1 is complemented in C(∆) and it is suspected
that these spaces along with C(∆) are a complete list (up to isomorphism).
Many partial results are known (see [46], [23] and many of these make use of
the Szlenk index (section 3).

Using index theory and the Haar basis, Bourgain, Rosenthal and Schecht-
man [20] were able to construct an uncountable number of mutually non iso-
morphic complemented subspaces of Lp[0, 1] (1 < p < ∞, p 6= 2). The hard
part here is to do the constructions of higher index in Lp so that the resulting
space is complemented in Lp.

Nicole Tomczak-Jaegermann [51] proved the following beautiful result us-
ing an ordinal index for unconditionality. The K-unconditional index of X is
defined by considering trees on X with nodes (xi)n

1 being K-unconditional.
Let | · | be an equivalent norm on (X, ‖ · ‖). This means that the identity

on X is an isomorphism between (X, ‖ · ‖) and (X, | · |). X is of bounded
distortion if there exists D < ∞ so that for all equivalent norms | · | on X

sup
Z⊂X

inf
Y⊆Z

{ |x|
|y| : x, y ∈ SY, ‖·‖

}
≤ D .

Theorem 2.14. ([51]) Let X be of bounded distortion. Then X contains
an unconditional basic sequence.

Very recently W.B. Johnson and the author proved the following theorem.
Before stating the result we need some notation. If X and Y are isomorphic,
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d(X, Y ) = inf{K : X
K∼ Y }, denotes the Banach-Mazur distance between X

and Y [14]. (Actually log d(·, ·) gives the metric where X and Z are identified
if d(X, Z) = 1.) We set D(X) = sup{d(Y, Z) : Y ∼ X, Z ∼ X}. The following
is known: There exists c < ∞ so that if dimension F = n then D(F ) ≥ cn
[27].

Theorem 2.15. ([35]) Let X be a separable infinite dimensional Banach
space. Then D(X) = ∞.

A key step in the proof is the following result. We say that X is elastic if

there exists K < ∞ so that if Y ↪→ X then Y
K
↪→ X. If X failed the conclusion

of Theorem 2.15 then X would necessarily be elastic.

Theorem 2.16. ([35]) If X is elastic then c0 ↪→ X.

The proof uses an index argument based upon the unit vector basis of c0.
The argument is a bit more tricky than the ones we have presented. Of course
any X containing C[0, 1] must be elastic and it seems likely that the converse
is true. This problem is raised in [35].

Open Problem 2.17. Let X be elastic. Does C[0, 1] ↪→ X?

3. Szlenk’s and other indices

The Szlenk index [50] of a separable Banach space X can be defined as
follows. Given ε > 0 and a ω∗ closed subset P of BX∗ we let P ′

ε = {x∗ ∈ P :
for all ω∗ neighborhoods U of x∗, diam(U ∩ P ) > ε}. In this definition
“diam” refers to the norm diameter of U ∩ P . It is easy to check that P ′

ε

is a ω∗ closed subset of P . We inductively define Pα(X, ε) for α < ω1 by
setting P0(X, ε) = BX∗ , Pα+1(X, ε) = (Pα(X, ε))′ε and if α is a limit ordinal,
Pα(X, ε) =

⋂
β<α Pβ(X, ε).

We next set

η(X, ε) = sup{α : Pα(X, ε) 6= ∅, α < ω1}
and set the Szlenk index of X to be

η(X) = sup{η(X, ε) : ε > 0} .

For example η(`1) = ω1. Indeed consider

A = {x∗ ∈ `∗1 = `∞ : x∗ = (εi)∞i=1 with εi = ±1 for all i} .



106 e. odell

Then if x∗ ∈ A and U is any ω∗ neighborhood of x∗ there exists δ > 0 and
n ∈ N so that U ∩ B`∞ ⊇ {y∗ ∈ B`∞ : |y∗(i) − x∗(i)| < δ for i ≤ n}. Clearly
this contains y∗ ∈ A with y∗ 6= x∗ and so ‖y∗ − x∗‖ = 2. Hence Pα(`1, ε) ⊇ A
for all α < ω1, 0 < ε < 2.

On the other hand η(`2) = ω. Indeed let x∗ = (ai) ∈ P1(`2, ε) where 0 <
ε < 1. Let δ > 0 be small and choose n0 so that (

∑n0
1 a2

i )
1/2 > ‖x∗‖ − δ. We

can choose a ω∗ open set U containing x∗ by prescribing that the coordinates
of y∗ = (bi) ∈ U satisfy |bi − ai| < δ1 for i ≤ n0 (where δ1 > 0 is arbitrarily
small). In particular we can insure that if also z∗ = (ci) ∈ U then by the
triangle inequality

‖y∗ − z∗‖ =
( n0∑

i=1

|bi − ci|2 +
∑

i>n0

|bi − ci|2
)1/2

< δ +
( ∑

i>n0

b2
i

)1/2

+
( ∑

i>n0

c2
i

)1/2

.

Now by taking δ1 sufficiently small we can insure also that (
∑n0

i=1 b2
i )

1/2 >
‖x∗‖ − δ and so

1 ≥
∑

i≤n0

b2
i +

∑

i>n0

b2
i > (‖x∗‖ − δ)2 +

∑

i>n0

b2
i .

Thus (
∑

i>n0
b2
i )

1/2 < (1 − (‖x∗‖ − δ)2)1/2. A similar estimate holds for z∗

and so ‖y∗ − z∗‖ < δ + 2((1 − (‖x∗‖ − δ)2))1/2. Since δ > 0 is arbitrary we
obtain ε ≤ 2(1− ‖x∗‖2)1/2 and so ‖x∗‖ ≤ (1− ε2

4 )1/2. Thus

P1(`2, ε) ⊆
(

1− ε2

4

)1/2

BX∗ .

This argument repeats until we ultimately obtain for some n, Pn(`2, ε) = ∅.
Thus η(`2, ε) < ω and the same sort of considerations yield η(`2) = ω.

Theorem 3.1. η(X) < ω1 iff X∗ is separable.

Proof. If X∗ is not separable then there exists ε > 0 and an uncountable
set A ⊆ BX∗ with ‖x∗ − y∗‖ > ε for all x∗ 6= y∗ ∈ A. Since (BX∗ , ω∗) is
compact metric there exist an uncountable V ⊆ A which is ω∗-dense in itself.
Every x∗ ∈ V is the ω∗-limit of a sequence in V \{x∗}. But then V ⊆ Pα(X, ε)
for all α < ω1 so η(X) = ω1.
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Suppose that X∗ is separable. We need only show that if Pα(X, ε) 6= ∅
then Pα+1(X, ε) $ Pα(X, ε). Since a compact metric space does not admit a
transfinite strictly decreasing family of closed sets, eventually Pα(X, ε) = ∅.
Thus η(X, ε) < ω1 for all ε > 0 hence η(X) = supn η(X, 1

n) < ω1.
To show that Pα+1(X, ε) 6= Pα(X, ε) when Pα(X, ε) 6= ∅, we will use the

Baire Category theorem. First we observe that if x∗ ∈ Pα+1(X, ε) then there
exists (x∗n) ⊆ Pα(X, ε) with ω∗ − limx∗n = x∗ and ‖x∗n − x∗‖ ≥ ε/2. For each
n choose xn ∈ SX with (x∗n−x∗)(xn) ≥ ε/2. Since X∗ is separable by passing
to a subsequence we may assume that (xn) is weak Cauchy.

Since (x∗n − x∗) is ω∗ null by passing to a further subsequence we may
assume that for m < n, |(x∗n−x∗)(xm)| < ε/4 and so (x∗n−x∗)(xn−xm) > ε/4
for all m < n. Setting y∗n = x∗2n and yn = (x2n − x2n−1)/2 we obtain a
weakly null sequence (yn) ⊆ BX and (y∗n) ⊆ Pα(X, ε) with y∗n → x∗(ω∗)
and (y∗n − x∗)(yn) > ε/8 for all n. Since x∗(yn) → 0, passing to one more
subsequence we may assume that for all n, y∗n(yn) > ε/9.

Now suppose that Pα+1(X, ε) = Pα(X, ε) 6= ∅. Let (xn∗)∞n=1 be dense in
Pα(X, ε). Using the observations above we construct for n ∈ N, (yn∗

m )m∈N ⊆
Pα(X, ε) converging ω∗ to xn∗ and a weakly null sequence (yn

m)m∈N ⊆ BX

with yn∗
m (yn

m) > ε/9 for all m. By a standard diagonal argument (using
X∗ separable implies (BX , ω) is metrizable) we may choose a weakly null
(xm) ⊆ {yn

m : n,m ∈ N} so that {xm}m∈N ∩ {yn
m}m∈N is infinite for each n.

Set Q = {x∗ ∈ Pα(X, ε) : there exists in Pα(X, ε) a sequence (y∗n) converging
ω∗ to x∗ and satisfying limn y∗n(xn) ≥ ε/9}. Then Q = Pα(X, ε) from our
construction. Now (xm) may be regarded as a sequence of continuous functions
in the unit ball of C(Pα(X, ε), ω∗) which is pointwise null. For N ∈ N set

AN = {x∗ ∈ Pα(X, ε) : |x∗(xm)| ≤ ε/10 for all m ≥ N} .

Each AN is closed and
⋃∞

N=1 AN = Pα(X, ε). Thus by the Baire Category
theorem some AN has non empty (ω∗) interior. But this contradicts Q =
Pα(X, ε).

Remark 3.2. Szlenk’s original definition of his index varies slightly with
ours (see [50]) but the two definitions yield the same index. As mentioned
in the previous section every C(K) where K is countable compact metric is
isomorphic to C(α) for some α < ω1. In fact α can be taken to be ωωβ

+
for some β < ω1 [16]. η(C(ωωβ

+)) = ωβ+1 [3] and it is open if given X

complemented in C(∆) with η(X) = ωβ+1, must C(ωωβ
+) ↪→ X? (Yes, if

β = 1 [1].) For more on this problem we refer the reader to [46] and to [23]
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which, in addition to new results, contains a discussion, with many references,
of this and related problems. The first part of Theorem 2.7 can be proved
using Szlenk’s index. Indeed if the Xα’s are as constructed in our proof of 2.7
(to show `1 ↪→ X) then η(Xα) ≥ α for all α < ω1.

We shortly will discuss some more indices and eventually will relate η(X)
to one of these indices. First let K < ∞. We defined the `1 index I(X, K)
earlier. One might wonder what ordinal values I(X) might take. We discuss
this in a broader context. For K < ∞ let P (K) be a property that (xi)n

1 ⊆ SX

might satisfy (e.g., being K-equivalent to the unit vector basis of `1). A tree
on X has property P (K) if each node has P (K).

We can define

IP (X, K) = sup{o(T ) : T is a tree on X with property P (K)}

and
IP (X) = sup{IP (X,K) : K < ∞} .

Proposition 3.3. Let X be a Banach space. For each K ≥ 1 let P (K)
be a property satisfying the following (in X):

(i) If (xi)m
1 ∈ P (K) then (xi)m

1 is normalized and K-basic.

(ii) Given L, C ≥ 1 there exists K ′ = K ′(K, L, C) such that if (xi)m
1 ∈ P (K)

and (yi)n
1 ∈ P (L) and max(‖x‖, ‖y‖) ≤ C‖x + y‖ for all x ∈ 〈xi〉m1 ,

y ∈ 〈yi〉n1 then (x1, . . . , xm, y1, . . . , yn) ∈ P (K ′).

(iii) There exists L = L(K) ≥ 1 such that for every (xi)m
1 ∈ P (K) and any

1 ≤ k ≤ ` ≤ m, (xi)`
k ∈ P (L).

(iv) There exists K ′′ = K ′′(K) ≥ 1 such that the closure of Xn ∩ P (K) in
the product topology of Xn is contained in Xn ∩ P (K ′′) for all n.

Then either IP (X) = ω1 and there exists (xi)∞1 ⊆ SX such that (xi)m
1 ∈

P (K) for all m ≥ 1 or else IP (X) = ωα for some α < ω1.

The proof [4] is a technical argument involving trees and we omit it here.
We now define four indices each of which are defined by properties P (K)

that can be shown to satisfy the hypothesis of Proposition 3.3. We include
the already defined `1 index.

(1) I(X): (xi)m
1 ∈ P (K) if (xi) ⊆ SX is K-equivalent to the unit vector

basis of `m
1 .
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(2) I+(X): the `+
1 -index defined by (xi)m

1 ∈ P (K) if (xi)m
1 ⊆ SX is a K-

basic `+
1 -K sequence; i.e., ‖∑m

1 aixi‖ ≥ K−1
∑m

1 ai whenever (ai)m
1 ⊆

[0,∞).

(Note: By the geometric form of the Hahn Banach theorem a K-basic (xi)m
1

is an `+
1 -K sequence iff there exists x∗ ∈ SX∗ with x∗(xi) ≥ K−1 for i ≤ m.)

(3) J(X): This is the `∞ index defined by (xi)m
1 ∈ P (K) if (xi)m

1 ⊆ SX is
K-basic and there exist 0 < c, C < ∞ with c−1C ≤ K and

cmax
i≤m

|ai| ≤
∥∥∥

m∑

1

aixi

∥∥∥ ≤ C max
i≤m

|ai|

for all (ai)m
1 ⊆ R.

(4) J+(X): The `+∞-index defined by (xi)m
1 ∈ P (K) if (xi)m

1 ⊆ SX is K-
basic and there exists (ai)m

1 ⊆ [K−1, 1] such that

∥∥∥
m∑

i=1

aixi

∥∥∥ ≤ K .

We should note that Rosenthal [47] studied `+
1 and `+∞ sequences under

the names wide-(s) and wide-(c) sequences with different quantifications.
Each of these four indices has a companion block basis index where the cor-

responding property has the additional requirement that X has an understood
fixed basis (ei) and (xi)m

1 ∈ P (K) requires also that (xi)m
1 be a normalized

block basis of (ei). We will use the subscript “b” to denote this index: Ib(X),
I+
b (X), Jb(X) and J+

b (X).
These indices can depend on the particular basis and more properly one

might write Ib(X, (ei)). One can extend Proposition 3.3 to this case.

Proposition 3.4. ([4]) Let P be a property satisfying the conditions of
proposition 3.3 and let X have a basis (ei). Let IP

b (X) be the block basis index
defined via P and (ei). Then either IP

b (X) = ω1 and there exists K < ∞ and
a block basis (xi)∞1 of (ei) with

(xi)m
1 ∈ P (K) for all m or else IP

b (X) = ωα for some α < ω1 .
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Definition 3.5. We define trees T (α, s) for each α < ω1. The construc-
tion is similar to that of the minimal trees Tα except that at each stage an
infinite sequence of nodes is added instead of a single node. Let s = (z1, z2, . . .)
be an infinite sequence of incomparable nodes and let T (1, s) = s. To con-
struct T (α + 1, s) we begin with a copy of s and after each node place a tree
isomorphic to T (α, s). For example T (n, s) is a countable infinitely branching
tree of “n levels”. If α is a limit ordinal we let T (α, s) be the disjoint union
of T (β, s), β < α.

Each T (α, s) has order α, an infinite sequence of initial nodes and if z is
not a terminal node, then z has infinitely many immediate successors.

Definition 3.6. If T is a tree on X we shall say that T is isomorphic to
T (α, s) if they are isomorphic as trees and also require that if (x1, . . . , xk) ∈ T
then (x1, . . . , xk−1) ∈ T . If (x1, . . . , xk, yi) ∈ T for all i are the immediate
successors of (x1, . . . , xk) we call (yi) an s-sequence of T . The initial nodes of
T are also called an s-sequence.

Definition 3.7. For K ≥ 1 a tree T on X is an `+
1 -K-weakly null tree if

each node (xi)m
1 ∈ T is an `+

1 -K sequence and T is a weakly null tree: this
means that T is isomorphic to T (α, s) for some α < ω1 and each s-sequence
of T is weakly null. I+

ω (X) = sup{o(T ) : T is an `+
1 -K-weakly null tree on X

for some K < ∞}.
We gather together our results above and include some new ones in the

following theorem. In any statement involving a block basis, X is assumed to
have a basis (ei).

Theorem 3.8. Let X be a separable Banach space. Then

(i) I(X) < ω1 iff `1 6↪→ X

(ii) If I(X) ≥ ωω then I(X) = Ib(X)
(iii) If I(X) = ωn for some n ∈ N then Ib(X) = ωm where m ∈ {n, n− 1}.
(iv) I+(X) < ω1 iff X is reflexive

(v) I+(X) = ω iff X is superreflexive

(vi) I+(X) = J+(X)
(vii) I+

b (X, (ei)) < ω1 iff (ei) is a shrinking basis for X

(viii) J+
b (X, (ei))) < ω1 iff (ei) is a boundedly complete basis for X

(ix) If `1 6↪→ X then I+
ω (X) < ω1 iff X∗ is separable.
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(i) is Bourgain’s result discussed earlier. (ii) and (iii) are in [36]. (iv) and
(v) are `+

1 -index restatements of old results of James [32] and Milman and
Milman [40]. The rest are proved in [4].

(ix) suggests that the I+
ω (X) index might be related to the Szlenk index

for spaces not containing `1. This is true [4].

Theorem 3.9. If X is a separable Banach space not containing `1 then
η(X) = I+

ω (X).

The smallest possible Szlenk index is ω. Spaces X with η(X) = ω were
studied in [38] (see also [25]) where it was shown that such an X could be
renormed to have the ω∗ uniform Kadec-Klee property: For all ε > 0 there
exists δ > 0 so that if (x∗n) ⊆ BX∗ , ‖x∗n−x‖ ≥ ε for all n and ω∗−limn x∗n = x∗

then ‖x∗‖ ≤ 1− δ. In fact for some p < ∞ and c > 0

δ(ε) ≥ cεp .

As we saw earlier this case was modeled by `2.

4. Baire-1 indices

We shall define an ordinal index for a bounded Baire-1 function F : K → R
where K is a compact metric space. But first let us see how this might
pertain to Banach space theory. Let X be a separable Banach space and
K = (BX∗ , ω∗), so K is compact metric. Then as we remarked earlier, we
may regard X ⊆ C(K) via x(x∗) = x∗(x).

In fact X can be identified with all continuous functions f on K which
are affine and satisfy f(0) = 0. Similarly X∗∗ can be identified with bounded
affine functions f on K satisfying f(0) = 0 and then we have that f ∈ X
iff f ∈ C(K). Goldstine’s theorem yields that BX is ω∗ dense in BX∗∗ so
for x∗∗ ∈ BX∗∗ , all finite G ⊆ K and ε > 0 there exists x ∈ BX with
|x(g) − x∗∗(g)| < ε for g ∈ G. F : K → R is a bounded Baire-1 function
(denoted F ∈ B1(K)) if F is bounded and there exists (fn) ⊆ C(K) which
converge pointwise on K to F . In [42] it is shown that if F = x∗∗|K for some
x∗∗ ∈ X∗∗ then F ∈ B1(K) iff F is the pointwise limit of (xn) ⊆ BX . Let us
recall an important theorem of Baire.

Theorem 4.1. Let K be compact metric, F : K → R a bounded function.
Then F ∈ B1(K) iff for all non-empty closed K0 ∈ K, F |K0 has a point of
continuity.
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If X∗ is separable it is easy to see from Goldstine’s theorem that X∗∗ ⊆
B1(K) and more generally we have

Theorem 4.2. ([42]) X∗∗ ⊆ B1(K) iff `1 6↪→ X.

The main direction to be proved is that if for some x∗∗ ∈ X∗∗, x∗∗|K ≡ F /∈
B1(K) then whenever (fn) is a bounded sequence in C(K) which converges
pointwise to F , some subsequence of (fn) is equivalent to the unit vector
basis of `1. This is achieved via Theorem 4.1 and the Baire category theorem.
Assume ‖F‖ = 1. If F |K0 has no point of continuity, set Kn = {k ∈ K0 : for
all neighborhoods U of k in K0, diamF (U) > 1/n}. Then each Kn is closed
and

⋃
n∈NKn = K0 so by Baire category at least one has non empty interior,

say int(Kn0) 6= ∅. Let L = int(Kn0). Let (rn)n∈N be dense in [−1, 1] and for
all n let (taking ε = 1/2n0)

Ln = {k ∈ L : for all neighborhoods U of k in L, there exists
k0, k1 ∈ U with F (k0) > rn + ε and F (k1) < rn} .

Then Ln is again closed and
⋃

n∈N Ln = L so some int(Lm0) 6= ∅. We thus
obtain a P = int(Lm0) 6= ∅ so that for all non empty open neighborhoods U in
P there exist k0, k1 ∈ P with F (k0) > r + ε and F (k1) < r (taking r = rm0).

Using this we can produce Rademacher-like behavior amongst a subsequen-
ce of (fn). We can find fn1(U0) > r + ε and fn1(U1) < r for two disjoint open
sets U0 and U1 in P by approximating F by fn1 at two points where its value
is larger than r + ε and smaller than r, and then using the continuity of fn1 .
Continuing thusly we produce a dyadic tree of non-empty open sets U~ε (where
~ε is a finite sequence of 0’s and 1’s) and (fni) ⊆ (fn) so that U~ε ⊇ U(~ε,0)∪U(~ε,1)

and fni(U~ε,0) > r + ε while fni(U~ε,1) < r if the length of the sequences (~ε, 0)
and (~ε, 1) is i.

In particular if we set Bi = {k ∈ K : fni(k) < r} and Ai = {k ∈ K :
fni(k) > r+ε} then (Ai, Bi)∞i=1 is Boolean independent [45]. This means that
for all finite F, G ⊆ N with F∩G = ∅ we have

⋂
i∈F Ai∩

⋂
i∈G Bi 6= ∅. From this

we can prove that ‖∑
aifni‖ ≥ ε

2

∑ |ai| for all (ai) ⊆ R. Indeed if (ai)k
1 ⊆ R

with
∑k

i=1 |ai| = 1 let F = {i ≤ k : ai ≥ 0} and G = {i ≤ k : ai < 0}. Let
k1 ∈

⋂
i∈F Ai ∩

⋂
i∈G Bi and k2 ∈

⋂
i∈G Ai ∩

⋂
i∈F Bi. Then
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2‖
k∑

1

aifni‖ ≥
k∑

i=1

aifni(k1)−
k∑

i=1

aifni(k2)

=
∑

i∈F

ai

[
fni(k1)− fni(k2)

]
−

∑

i∈G

ai

[
fni(k2)− fni(k1)

]

>
∑

|ai|(r + ε− r) = ε .

Thus ‖∑k
i=1 aifni‖ ≥ ε

2

∑k
i=1 |ai|.

An important subclass of B1(K) are the difference of bounded semicon-
tinuous functions, DBSC(K). F : K → R is in DBSC(K) if there exist
(fn)∞n=0 ⊆ C(K) and C < ∞ so that f0 = 0, (fn) converges pointwise to F
and for all k ∈ K,

∑∞
n=0 |fn+1(k)− fn(k)| ≤ C. The terminology comes from

the fact that in this case F = F1 − F2 where

F1(k) =
∞∑

n=0

(fn+1 − fn)+(k) and F2(k) =
∞∑

n=0

(fn+1 − fn)−(k)

and both of these are lower semicontinuous. The converse is equally trivial.
If F = F1 − F2 where F1 and F2 are both bounded and semicontinuous then
such a sequence (fn)∞0 exists. A famous theorem of Bessaga and PeÃlczyński
[17] can be stated as follows (as usual K = (BX∗ , ω∗)).

Theorem 4.3. c0 ↪→ X iff [X∗∗ ∩DBSC(K)] \ C(K) 6= ∅.
We indicate the proof of the “if” implication.
Let x∗∗ ∈ [X∗∗∩DBSC(K)]\C(K) and F = x∗∗|K . It is easy to check that

there exists C < ∞ and (xn)∞n=0 ⊆ X with x0 = 0, (xn) converges pointwise
to F and

(1)
∞∑

n=0

|x∗(xn+1)− x∗(xn)| ≤ C for all ‖x∗‖ ≤ 1 .

In other words the sequence (fn) above can be taken from X. Since F is not
continuous some subsequence of (xn) is seminormalized basic and dominates
the summing basis. Moreover (1) hold for this subsequence so we may relabel
the subsequence as (xn). But (1) easily yields that (xn) is equivalent to the
summing basis, so c0 ↪→ X.



114 e. odell

In both theorems we see that the topological nature of F = x∗∗|K affects
the subspace structure of X. Our ordinal index for β1(K) will localize these
theorems.

Let K be any compact metric space and let F ∈ DBSC(K). We define
|F |D to be the inf of those C’s so that there exists (fn)∞0 ⊆ C(K), f0 = 0,
converging pointwise to F with

∑∞
0 |fn+1(k) − fn(k)| ≤ C for all k ∈ K. It

is easy to show that (DBSC(K), | · |D) is a Banach space using the series
criterion for completeness. ‖F‖∞ ≤ |F |D but the norms are not generally
equivalent. This leads to two subclasses of B1(K). We note first that one can
show that B1(K) is closed under uniform limits.

B1/2(K) =
{
F ∈ B1(K) : there exists (Fn) ⊆ DBSC(K) with (Fn)

converging uniformly to F
}

B1/4(K) =
{
F ∈ B1(K) : there exists (Fn) ⊆ DBSC(K) with (Fn)

converging uniformly to F and sup
n
|Fn|D < ∞}

B1/4(K) can be shown to be a Banach space as well under the “inf |Fn|D” norm
— the inf taken over all such (Fn). Clearly C(K) ⊆ B1/4(K) ⊆ B1/2(K) ⊆
B1(K) ⊆ `∞(K) and all the inclusions are proper if K is large enough [29].

We are now ready to define our ordinal index for B1(K). If F : K → R is
bounded, L ⊆ K is a closed subset and ` ∈ L we define the oscillation of F |L
at ` to be

oscL(F, `) = lim
ε↓0

sup{F (`1)− F (`2) : `i ∈ L and d(`i, `) < ε for i = 1, 2}

Let δ > 0. Set K0(F, δ) = K and if α < ω1 let Kα+1(F, δ) = {k ∈ Kα(F, S) :
oscKα(F,δ)(F, k) ≥ δ}. If α is a limit ordinal we take

Kα(F, δ) =
⋂

β<α

Kβ(F, δ) .

It is easy to see that Kα(F, δ) is closed for all α < ω1 and we set β(F, δ =
inf{α < ω1 : Kα(F, δ) = ∅} provided that Kα(F, δ) = ∅ for some α < ω1 and
set β(F, δ) = ω1 otherwise. Since K is separable the transfinite decreasing
sequence of closed sets must stabilize so there exists β < ω1 with Kα(F, δ) =
Kβ(F, δ) for all α ≥ β. Baire’s theorem (4.1) yields that β(F, δ) < ω1 for all
δ > 0 iff F ∈ β1(K). More characterizations are given in the next theorem
[29]. A is the algebra of ambiguous (simultaneously Fσ and Gδ subsets of K).
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Proposition 4.4. Let F : K → R be bounded where K is a compact
metric space. The following are equivalent.

(1) F ∈ β1(K)
(2) β(F, δ) < ω1 for all δ > 0
(3) If a, b ∈ R then [F ≤ a] and [F ≥ b] are both Gδ subsets of K.

(4) If a < b then [F ≤ a] and [F ≥ b] may be separated by disjoint sets in
A.

(5) F is the uniform limit of A-simple functions (i.e., A-measurable func-
tions on K with finite range).

So if `1 6↪→ X then β(x∗∗|K) < ω1 for all x∗∗ ∈ X∗∗ (with K = (BX∗ , ω∗)).
In fact this is uniformly so by a result of Bourgain [19].

Theorem 4.5. Let X be a separable Banach space not containing `1 and
K = (BX∗ , ω∗). Then sup{β(x∗∗|K , δ) : x∗∗ ∈ X∗∗, δ > 0} < ω1.

We will not give the proof. The argument sketched above for Theorem 4.2
is localized by Bourgain to show if the “sup” were ω1 then I(X) = ω1 and
hence `1 ↪→ X.

We next characterize B1/2(K). D is the subalgebra of A consisting of all
finite unions of differences of closed sets.

Proposition 4.6. Let F : K → R be a bounded function on the compact
metric space K. The following are equivalent.

(1) F ∈ B1/2(K)
(2) F is the uniform limit of D-simple functions

(3) β(F, δ) < ω for all δ > 0
(4) α(F ; a, b) < ω for all a < b.

The index in (4) requires definition. Set K0(F ; a, b) = K and

Kα+1(F ; a, b) =
{
k ∈ Kα(F ; a, b) : for all ε > 0 and i = 1, 2 there exist

ki ∈ Kα(F ; a, b) with d(ki, k) ≤ ε, F (k1) ≥ b and F (k2) ≤ a
}

.

If α is a limit ordinal, Kα(F ; a, b) =
⋂

β<α Kβ(F ; a, b). Then we define

α(F ; a, b) = inf{γ < ω1 : Kγ(F ; a, b) = ∅}
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if such a γ exists and let it be ω1 if this set is empty. For the proof see [29].
One can also make index type observations about B1/4 functions (see [29]).

Our interest in B1/4 and B1/2 comes from the following theorem which can
be regarded as a localization of Theorems 4.2 and 4.3 using the indices above.

Theorem 4.7. Let X be a separable Banach space and x∗∗ ∈ BX∗∗\X .
Let F = x∗∗|K where K = (BX∗ , ω∗) and assume F ∈ B1(K) so there exists
(xn) ⊆ BX converging pointwise to F on K.

(a) If F /∈ B1/2(K) then (xn) has a subsequence with spreading model
equivalent to the unit vector basis of `1.

(b) If F ∈ B1/4(K) then (xn) admits a convex block basis (yn) whose spread-
ing model is equivalent to the summing basis.

The spreading model statements actually characterize B1/2(K) and
B1/4(K) (see [9]).

We sketch the proof of (a). Let fn = xn|K . We may assume ‖fn‖ = 1,
(fn) is basic and has a spreading model. Indeed since F /∈ C(K), (fn) admits
a basic subsequence and a further subsequence has a spreading model. We
shall show that there is ε > 0 so that for all m we can extract a subsequence
(gn)m

n=1 of (fn) satisfying ‖∑m
i=1 aigi‖ ≥ ε

∑m
i=1 |ai| for all (ai)m

1 ⊆ R. This
will complete the proof of a) by a diagonal argument since (fn) has a spreading
model.

By Proposition 4.6 there exists a < b with α(F ; a, b) ≥ ω. Thus
Km(F ; a, b) 6= ∅ for m ∈ N. The proof will follow from the following lemma.

Lemma 4.8. Let Km(F ; a, b) 6= ∅ and let a < a′ < b′ < b. Then there
exists a subsequence of length m, (fni)

m
i=1, so that (Ai, Bi)m

i=1 are Boolean
independent where

Ai = {s ∈ K : fni(s) > b′} and Bi = {s ∈ K : fni(s) < a′} .

Indeed the proof of Theorem 4.2 yields that ‖∑m
i=1 aifni‖ > ε

∑m
i=1 |ai|

for all (ai)m
1 ⊆ R where ε = b′−a′

2 .
To prove the lemma let kφ ∈ Kk(F ; a, b). Thus there exist k0 and k1 in

Kk−1(F ; a, b) with F (k0) ≤ a and F (k1) ≥ b. Choose n1 and neighborhoods
U0 and U1 of k0 and k1, respectively, so that f(U0) < a′ and f(U1) > b′.
Let kε1,ε2 ∈ Uε1 ∩ Kk−2(F ; a, b) for ε1, ε2 ∈ {0, 1} with F (kε1,0) ≤ a and
F (kε1,1) ≥ b for ε1 = 0 or 1. Choose n2 > n1 and neighborhoods Uε1,ε2 of
kε1,ε2 so that fn2(Uε1,0) < a′ and fn2(Uε1,1) > b′. Continue up to fnm .
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Rosenthal [48] proved a beautiful c0 theorem (dual to his famous `1 the-
orem) using an index for DBSC functions. Let (fn) ⊆ C(K). (fn) is called
strongly summing (s.s.) if (fn) is weak Cauchy and basic so that whenever
(cj) ⊆ R satisfies supn ‖

∑n
1 cjfj‖ < ∞, the series

∑∞
j=1 cj converges.

Theorem 4.9. Let F : K → R be a bounded discontinuous function on
the compact metric space K. Let (fn) ⊆ C(K) be a uniformly bounded
sequence converging pointwise to F .

(a) (fn) admits a convex block basis equivalent to the summing basis iff
f ∈ DBSC(K).

(b) (fn) has an (s.s.) subsequence iff f /∈ DBSC(K).

Part (a) is essentially discussed above. The hard part of the argument is
“if” in (b). We give the index involved in the proof. If g : K → R the upper
semicontinuous envelope of g is given by

Ug(x) = lim
y→x

g(y) .

Definition 4.10. Given a bounded function F : K → R, set osc0 f = 0,
and if β = α + 1 define for x ∈ K,

õscβf(x) = lim
y→x

|F (y)− F (x)|+ oscα F (y) .

If β is a limit ordinal set

õscβF (x) = sup
α<β

oscα F (x)

and finally let
oscβ F = U(õscβF ) .

Rosenthal proves that there exist a (smallest) α < ω1 with oscα F = oscβ F
for β > α and then F ∈ DBSC(K) iff oscα f is bounded and then |F |D =
‖ |f |+ oscα f‖∞.

For more on these Baire 1 indices we recommend the paper by S. Argyros
and V. Kanellopoulos [11].
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5. Schreier sets and an application

The discovery of the Schreier sets (Sα)α<ω1 [2] has had an important im-
pact on Banach space theory in the last decade. These are certain families of
finite subsets of N.

Definition 5.1. S0 = {{n} : n ∈ N} ∪ {∅}. Let α < ω1. If Sα has been
defined then

Sα+1 =
{ n⋃

i=1

Fi : n ≥ 1, n ≤ F1 < · · · < Fn and Fi ∈ Sα for 1 ≤ i ≤ n

}
∪{∅} .

If α is a limit ordinal, choose αn ↑ α.

Sα =
{
F : for some n ∈ N, F ∈ Sαn and n ≤ F

} ∪ {∅} .

Note: n ≤ F means n ≤ minF and F1 < F2 means maxF1 < minF2.

The Schreier sets (Sα)α<ω1 are natural collections of finite subsets of N of
increasing complexity. For example let T (Sα) be the tree

{
(ni)m

i=1 : n1 < · · · < nm and {ni}m
1 ∈ Sα

}

ordered by extension. It is not hard to prove by induction that o(T (Sα)) = ωα.
Thus the Schreier sets can be used as a collection of measures against which
we can examine the behavior of the subsequences of a given sequence (xn). For
example consider the properties (P ) given by either (xi)i∈F is K-equivalent to
the unit vector basis of `1 or there exists x∗ ∈ BX∗ with |x∗(xi)| ≥ ε for i ∈ F
(for some fixed ε > 0). Suppose that for all α < ω1 there exists (yi) ⊆ (xi)
so that ∀ F ∈ Sα, (yi)i∈F has (P ). Then some subsequence of (xi) must have
(P ). Indeed otherwise the tree T = {(xni)

m
i=1 ⊆ (xi) : (xni)

m
i=1 has (P )} is

well founded and thus, being countable, must have countable order.
Hence from the second property we have the following.

Proposition 5.2. Let (xn) be a normalized weakly null sequence in a
Banach space X. Then there exists α < ω1 so that for all ε > 0 and all
subsequences M = (mi) of N

{
(ni)

j
i=1 : n1 < · · · < nj and there exists x∗ ∈ BX∗

with |x∗(xmni
)| ≥ ε for 1 ≤ i ≤ j

}

does not contain Sα.
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Our goal in this section is to present a sketch of one particular application
of the Schreier sets. Namely if (xn) is a normalized weakly null sequence we
will show how to explicitly construct a norm null convex block basis of (xn)
[12]. This will require much more than Proposition 5.2. One might question
whether the Schreier sets are too special to be of general use for the study of
subsequences (yn) of (xn) with respect to such properties (P ) as above but
this is not the case.

First let us note that each class Sα is hereditary (if F ⊆ G ∈ Sα then
F ∈ Sα) and closed in the topology of pointwise convergence in 2N: If M ⊆ N
and (Fn) ⊆ Sα with 1Fn → 1M pointwise then M ∈ Sα. In particular M is
finite.

Let F be a collection of finite subsets of N. If M = (mi) is a subsequence
of N we define

F(M) = {(mi)i∈F : F ∈ F} and F [M ] = F ∩ [M ]<ω .

[M ]<ω denotes the finite subsets of M .
The following remarkable theorem is due to I. Gasparis [24].

Theorem 5.3. Let F and G be hereditary families of finite subsets of N.
For all subsequences N of N there exists a subsequence M of N so that either
G[M ] ⊆ F or F [M ] ⊆ G.

As a consequence we have an improvement of Proposition 5.2.

Proposition 5.4. Let (xn) be a normalized weakly null sequence in a
Banach space. For ε > 0 let

Fε =
{
(ni)

j
1 : there exists x∗ ∈ BX∗ with |x∗(xni)| ≥ ε for i ≤ j

}
.

Then there exists α < ω1 so that for all subsequences N of N there exists a
subsequence M of N with Fε[M ] ⊆ Sα.

Proof. If not then by Theorem 5.3 for all α < ω1 there exists Mα and
εα > 0 with Fεα ⊇ Sα[Mα]. It follows that for some ε > 0, Fε ⊇ Sα[Mα] for
uncountably many α’s. Thus Fε, regarded as a tree as above, has order ω1

(one can generalize the remark earlier to show that o(T (Sα[Mα])) = ωα) so
Fε must contain an infinite branch. Hence (xn) is not weakly null.

The Schreier sets are named for Schreier’s space X1 (see [49]) which can
be described as the completion of c00 under the norm ‖x‖1 = sup{|∑F x(i)| :
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F ∈ S1}. This space has a normalized basis (ei), the unit vector basis, which
is weakly null but no subsequence Ceasaro sums to 0. One could also define
generalized Schreier spaces Xα for α < ω1 using “F ∈ Sα” in place of “F ∈
S1”. (ei) is still a normalized weakly null basis for Xα and so by Mazur’s
theorem some convex block basis is norm null. Indeed by Mazur’s theorem
for all n the closed convex hull of (xi)i≥n is weakly closed and hence contains
0. Thus given εi ↓ 0 we can produce n1 < n2 < · · · and yi ∈ convex hull
(xj : ni−1 < j ≤ ni) with ‖yi‖ < εi. But as α increases the complexity of this
block basis must also increase.

Indeed if F ∈ Sα then (xi)i∈F is 2-equivalent to the unit vector basis of
`
|F |
1 and so the supports of the yn’s cannot be sets in Sα; supp(

∑
aixi) = {i :

ai 6= 0}. It turns out that one can prove that such yn’s can be chosen with
supp(yn) ∈ Sα+1. Moreover as we shall see this can be carried out in general
in a certain constructive manner.

It is perhaps also worth mentioning some other properties of the spaces Xα.
First each Xα embeds into a C(K) space for some countable compact metric
space K. Indeed let Sα be given the pointwise topology so it is countable
compact and metrizable. Then Xα

1
↪→ C(Sα) via x(F ) =

∑
i∈F xi. Hence

each Xα is c0 saturated and in particular `1 6↪→ Xα. But the unit vector basis
(ei) for Xα is an `1-Sα-spreading model with constant 2.

Definition 5.5. A normalized basic sequence (xi) is an `1-Sα-spreading
model (with constant K) if for all F ∈ Sα and (ai)i∈F ⊆ R,

∥∥∥
∑

i∈F

aixi

∥∥∥ ≥ K−1
∑

i∈F

|ai| .

The definition of the Sα’s may appear a bit arbitrary in that the choice
of αn ↑ α is arbitrary but the particular choice, while sometimes a matter of
convenience, has no impact on the theory as witnessed by Theorem 5.3 and
Proposition 5.4.

Let’s return to the problem above of constructing a norm null convex
block basis of a normalized weakly null sequence (xn). From our work above
we know that there exists α < ω1 so that for ε > 0 if

Fε = {F ⊆ N : there exists x∗ ∈ BX∗ with |x∗(xi)| ≥ ε for i ∈ F}
then Fε[M ] is contained in Sα for some M ⊆ N. But this does not reveal
enough to solve our problem. From this we could, with some work, construct
a block basis of convex combinations of (xi) whose supports were in Sα+1 and
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which were norm null. But even in this case we would not have a constructive
way of accomplishing this. We need a deeper analysis to proceed. We will
localize Ptak’s theorem [44] in a precise manner. S`+1

= {(ai) ∈ S`1 : ai ≥ 0
for all i}.

Theorem 5.6. Let ε > 0 and let F be a closed hereditary family of subsets
of N with the following property. For all (ai) ∈ S`+1

there exists F ∈ F with∑
i∈F ai > ε. Then there exists a subsequence M of N so that all finite subsets

of M are in F .

Proof. Define a norm on c00 by

‖(ai)‖F = sup
{∣∣∣

∑

F

ai

∣∣∣ : F ∈ F
}

.

The hypothesis yields that the unit vector basis (ei) is an `1 basis for
(c00, ‖ · ‖F ). On the other hand this space embeds into C(F) via (ai) →
(
∑

i∈F ai)F∈F . If the theorem is false then F is countable and so we have an
embedding of `1 into some C(α), α < ω1. But these spaces are c0-saturated so
we have a contradiction since c0 6↪→ `1. So F is uncountable and thus contains
an infinite set M .

We will localize this theorem using the Schreier sets and the following
repeated averages hierarchy [12]. Let (ei) be the unit vector basis for c00. If
f =

∑
aiei ∈ c00, supp(f) = {i : ai 6= 0}.

For α < ω1 and an infinite subsequence M = (mi) of N we define a convex
block basis (fM,α

i )∞i=1 of (ei)i∈M so that

(i)
⋃

i supp(fM,α
i ) = M and supp fM,α

i ∈ Sα for i ∈ N.

(ii) If M = (mi), N = (ni) and M ′ =
⋃

i supp(αM
ni

) then fM,α
nk = fM ′,α

k .

The definition is inductive. fM,0
i = emi . If (fM,α

n )n has been defined we
let

fM,α+1
1 =

1
m1

m1∑

i=1

fM,α
i

and inductively

fM,α+1
n+1 =

1
mkn

kn+mkn−1∑

i=kn

fM,α
i
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where kn = min{k ∈ N : mk > supp(fM,α
n )}. At limit ordinals

fM,α
1 = f

M,αm1
m1 and fM,α

k = f
Mk,αnk
1 for k > 1,

where
Mk = {m ∈ M : m > supp fM,α

k−1 } and nk = minMk .

In words, to get for example (fM,α+1
i ) we take the largest averages of

(fM,α
i ) we can to have (i) above and continue thusly. Property (ii) is easily

verified.

Definition 5.7. Let F be a closed hereditary collection of finite subsets
of N. Let M be a subsequence of N, ε > 0 and α < ω1. F is (M, α, ε) large if
for all subsequences N of M and n ∈ N,

sup
F∈F

〈fN,α
n , 1F 〉 ≥ ε .

Theorem 5.8. ([12]) If F is (M,α, ε) large then there exists a subsequence
N of M with

F ⊇ Sα(N) .

Theorem 5.9. Let (en) be normalized and weakly null in X. Then there
exists α < ω1 and N ⊆ N so that the convex block basis of repeated averages,
(fN,α

i ), is norm null.

Proof. Given ε > 0 let Fε be the closed hereditary collection of finite sets,

Fε =
{
F ⊆ N : there exists x∗ ∈ SX∗ with |x∗(ei)| ≥ ε for i ∈ F

}
.

Let M ⊆ N and α < ω1. If Fε is (M,α, ε) large then there exists N ⊆ M with
Fε ⊇ Sα(N). Thus there exists α < ω1 so that ∀ ε > 0 ∀ M ⊆ N, Fε is not
(M, α, ε) large.

Thus there exists α < ω1 such that for all M ⊆ N and ε > 0 there exists
N ⊆ M and n ∈ N so that

sup
F∈Fε

〈fN,α
n , 1F 〉 < ε .

Hence if ‖x∗‖ = 1 then writing fN,α
n =

∑
biei we have

|x∗(fN,α
n )| ≤

∣∣∣
∑

{i:|x∗(ei)|≥ε}
bix

∗(ei)
∣∣∣ +

∣∣∣
∑

{i:|x∗(ei)|<ε}
bix

∗(ei)
∣∣∣ < 2ε .
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The corollary follows applying this for successive εi ↓ 0 and Mi = N \
{1, 2, . . . ,max supp fα,N

i−1 }.

Actually more precise statements can be made (see [12], [8]) which spe-
cify exactly when one can get ‖fα,M

i ‖ → 0 versus an `1-Sα-spreading model
(ei)i∈M .

Schreier sets and indices have been used in numerous other places. For ex-
ample in [43] various ordinal indices involving the Schreier sets are introduced
to measure the proximity of asymptotic `1 spaces to `1.
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